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Abstract. Neuronavigation systems are usually subject to inaccuracy
due to intraoperative changes like brain shift or tumor resection. In order
to correct for these deformations a biomechanical model of the brain is
proposed. Not only elastic tissues, but also fluids are modeled, since an
important volume of the head contains cerebrospinal fluid, which does
not behave like soft tissues. Unlike other approaches, we propose to solve
the differential equations of the model by means of the boundary element
method, which has the advantage of only considering the boundaries
of the different biomechanically homogeneous regions. The size of the
matrix to invert is therefore drastically reduced. Finally, our method is
assessed with sequences of intraoperative MR images, showing better
performances for the elastic/fluid model than for the purely elastic one.

1 Introduction

Neuronavigation systems are used intraoperatively to help the surgeon guide and
ascertain the position of his tools within the patient’s head. Over the last decade
the development of low-cost high-performance computers, along with a constant
improvement of imaging modalities (e.g. MRI, CT), have enabled the routine
use of frameless image-guided stereotactic systems in the operating room. Their
application fields are wide, including for example tumor resection, endoscopy
and radiosurgery.

Although these systems allow a precise initial navigation (within 1 mm),
they are usually subject to a progressive degradation in accuracy during the
operation [1,2,3,4]. Indeed, both frame-based and frameless systems assume that
the preoperatively acquired images and the physical space can be registered by
a rigid transformation. This is only valid for the first steps of the operation but
after some surgical manipulations like dura opening, cerebrospinal fluid (CSF)
drainage or tumor resection [1,4], the amount of brain shift is likely to increase.
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Brain shifts reaching more than 7 mm and sometimes up to 20 mm have been
reported in [2,4,5].

The largest inaccuracy of the stereotactic systems is reached near the end
of the surgery. It is also the most critical stage, since the deep structures are
resected, diminishing the efficiency of the currently used neuronavigation sys-
tems. It is therefore of great importance to intraoperatively correct for these
deformations. To address this problem three main approaches have been devel-
oped. The first proposed method consists of updating the whole image data with
intraoperative CT or MR scanners. It has the advantage that the image space
always reflects the actual anatomy, but these devices remain expensive, are usu-
ally dedicated for operative use only, and interfere with access to the operative
field [2,6].

The second approach relies on the simulation of the intraoperative brain be-
havior based on a computational model of brain tissue deformation [6,7]. Paulsen
et al. [6] modeled the brain as an elastic body with an interstitial fluid, while solv-
ing the resulting differential equations with the finite element method (FEM).
Another work was reported in [7], which considers the brain as a damped spring-
mass model. Although both models models simulate the brain deformation under
the action of the gravity and after opening the dura, they are not able to deal
with the deformation resulting from surgical manipulations. Moreover, boundary
conditions (surface forces, skull/brain interactions) are difficult to model. More
recently, Miga et al. [8] extended the model [6] to account for retraction and
resection during surgery within the FEM framework.

The third approach is a kind of compromise between the both mentioned
above. Indeed, some information is intraoperatively measured and applied like
an initial condition to a biomechanical tissue model, in order to fit the preoper-
ative images to the actual anatomy. In this context, Ferrant et al. [9] proposed
to register intraoperative MR images by matching object surfaces (ventricles,
cortical surface) and then computing the internal deformation using an elastic
model. A similar two–steps approach is proposed in [10] where the biomechani-
cal model is guided by a pair of stereo cameras, which intraoperatively measure
the exposed brain surface. In both approaches, the biomechanical equations are
solved with the FEM. By combining intraoperative measurements with preop-
eratively acquired high quality images, it is possible to improve the accuracy of
current navigation systems with low–cost equipments.

The method proposed in the present paper belongs to the third category and
most of the efforts were focused on the tissue modeling and on the computing
method to solve the biomechanical equations:

– Unlike usual approaches, we choose to solve the biomechanical equations by
means of the boundary element method (BEM) [11] instead of the FEM. The
BEM has the advantage of only considering the boundaries of the different re-
gions, reducing therefore the problem dimension by one, and thus drastically
the size of the matrix to invert. Nevertheless, the computed biomechanical
behavior remains exactly the same as that of the original volumetric system.
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– Inspired from [12] and in order to increase the accuracy of the correction, dif-
ferent physical models are considered for the brain tissues and cerebrospinal
fluid, which are respectively simulated with the Navier and Stokes equations.

Finally, experiments are carried out on sequences of intraoperative MR (IMR)
images, in order to assess and validate the proposed method. This imaging
modality is ideal for that task, since it provides reasonable spatial and contrast
resolution.

2 Tissue Modeling

The biomechanical tissue modeling is based on the theory of continuum mechan-
ics [13]. This is a general framework, which describes the equilibrium and the
relationship between forces and displacements within a material, irrespective to
its physical nature (e.g. elastic). The specific material properties are specified
through the constitutive equations. They are the link between the stress and
strain inside the body, and the general relationships mentioned above.

Two biomechanical models are considered in our work, namely linear elastic
materials for the brain tissues, and Stokes flows for the CSF. We refer to [12] for
a complete description. The biomechanical tissue relationships are the Navier
equations for the linear elasticity

G ui,jj +
G

1 − 2 ν
uj,ji + bi = 0 , (1)

and the Stokes equations for the incompressible fluid model

µ∗ ui,jj − p,i + bi = 0
uj,j = 0 ,

(2)

where the index notation was used and ui, pi, bi (i = 1, 2) are the components
of the displacement, traction and body force (e.g. gravity) vectors respectively.
G stands for the shear modulus and ν for the Poisson ratio. µ∗ is the dynamic
viscosity and is related to the standard fluid viscosity µ by µ∗ = µ/δt where δt
is the deformation time interval [12,13].

3 Approximate Method

Unlike [6,9,10,12], where the differential equations are discretized and solved
with the finite element method (FEM), our approach relies on the boundary
element integral formulation [11]. It has the advantage of only necessitating the
discretization of the domain boundaries, reducing therefore strongly the size of
the matrix to invert (see Figure 1). Unfortunately, the resulting matrix does not
remain diagonal banded any more as for the FEM. This property was extensively
used in [9] to design a fast linear system solving algorithm. The matrix size
ratio between the BEM and FEM depends on the geometry under consideration.
However, when coupling different homogenous regions with the BEM, the matrix
becomes partially sparse and the required storage amount can be reduced.
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FEM BEM

Fig. 1. 2D domain discretization for the finite and boundary element methods.

3.1 Navier Equation

The boundary integral formulation for the elastic model (cf. Equation (1)) is
given by [11]

cij(x) uj(x) =∫
∂D

u∗
ij(x,y)pj(y) dΓy −

∫
∂D

p∗
ij(x,y)uj(y) dΓy +

∫
D

u∗
ij(x,y)bj(y) dΩy

(3)

where cij(x) is a coefficient, whose value depends on the position x. D and
∂D refer respectively to the integration domain and its boundary. u∗

ij(x,y) and
p∗

ij(x,y) are the fundamental solutions of Equation (1) and take the following
forms for the two-dimensional (2D) case:

u∗
ij(x,y) = − 1

8 π (1 − ν) G
{(3 − 4 ν) ln(r) δij − r,i r,j}

p∗
ij(x,y) = − 1

4π(1 − ν)r

{
[(1 − 2ν)δij + 2r,ir,j ]

∂r

∂n
− (1 − 2ν)(r,inj − r,jni)

}

with r =
√

(x1 − y1)2 + (x2 − y2)2 and ni the normal vector to the boundary.
The last surface integral of Equation (3) can be transformed into a curve integral
by means of the Galerkin tensor [11]. This yields
∫

D

u∗
ij(x,y)bj(y)dΩy =

∫
∂D

−r

8πG

{
(2 ln(r)+1)(binkr,k − 1

2(1−ν)
bkr,kni)

}
dΓy .

3.2 Stokes Equation

The details for the boundary integral formulation of the Stokes flow may be
found in [14]. The boundary integral referring to Equation (2) is

cij(x)uj(x) =∫
∂D

u∗
ij(x,y)pj(y) dΓy −

∫
∂D

K∗
ij(x,y)uj(y) dΓy +

∫
D

u∗
ij(x,y)bj(y) dΩy

(4)
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with the fundamental solutions for the 2D case

u∗(x,y) = − 1
4 π µ∗ {ln(r) δij − r,i r,j}

K∗
ij(x,y) =

1
π r

r,i r,j r,k nk .

The same remark as for the elastic case applies for the surface integral of Equa-
tion (4), leading to

∫
D

u∗
ij(x,y)bj(y)dΩy =

∫
∂D

−r

8πµ∗ {(2 ln(r)+1)(binkr,k − bkr,kni)} dΓy .

All the surface integrals are now transformed into curve integrals, which
can be discretized using linear isoparametric elements since they proved to give
satisfactory accuracy without requiring too much computing efforts [11]. After
coupling the different homogenous regions (brain tissues and ventricles) with
the compatibility and equilibrium conditions [12], the resulting system becomes
a standard system of linear equations. Solving this system returns the missing
boundary displacements or tractions. All unknown displacements are now deter-
mined on the boundary, and the internal displacements can be computed in a
second step at any arbitrary position x, using Equations (3) and (4) respectively.

4 Results and Discussion

In this section, the accuracy of the proposed elastic/fluid biomechanical model is
assessed on 2D slices of 3D intraoperative MR images (0.5 Tesla, 256×256×60,
0.9375.9375 × 2.5 mm3), and compared to a purely elastic model. Experiments
are carried out on two data sets of two different patients. The columns (a) of
Figures 2 and 3 depict the actual brain anatomy at two time points, reflecting the
deformation occurring during the surgery. The small white dots superimposed
on the images represent the initial cortical and ventricle boundaries prior to the
dura opening. An important shift is visible at the top of the brain for both cases.
Moreover, a clear loss of CSF can be observed.

The experiments were carried out as follows: First, the images are rigidly
registred by maximizing their mutual information [15] to remove eventual intra-
operative patient’s movements. Second, the brain boundaries are extracted using
a geodesic active contour model [16]. The appropriate constitutive equation is
then given to the corresponding region defined by the extracted boundaries. The
model parameters are G = 112′000 N/m2 and ν = 0.4 for the elastic material,
and µ∗ = 0.01 N/m2 for the Stokes flow. They reflect the mean values of brain
and skull elastic coefficients from a comprehensive review published in [12]. The
cortical (outter) boundaries are matched, looking for the smallest distance be-
tween the initial boundary to the actual one. Finally, the resulting boundary
displacements are used as input (initial conditions) to the biomechanical model
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(a) (b) (c)

Fig. 2. Case 1. (a) Brain deformation at two time points during surgery. (Black crosses:
Initial landmarks, white crosses: Actual landmarks.) Correction using the purely elas-
tic (b) and the elastic/fluid model (c). (White crosses: Landmarks after deformation.)

(a) (b) (c)

Fig. 3. Case 2. (a) Brain deformation at two time points during surgery. (Gray crosses:
Initial landmarks, white crosses: Actual landmarks.) Correction using the purely elas-
tic (b) and the elastic/fluid model (c). (White crosses: Landmarks after deformation.)
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and after solving the linear system, the internal displacements can be computed
for the whole brain.

Brain shift correction results can be seen on Figures 2 and 3, column (b) for
the purely elastic model, and column (c) for the model simulating the CSF as
an incompressible viscous flow. As quantitative measure, we propose to use the
mean value of the distances (errors) computed between 12 landmarks identified
on the preoperative and actual scans. Note that none of the landmarks was
situated on the cortical boundary, since it would be perfectly registered during
the boundary matching, and the resulting error would be unrealistically small.
The mean errors are reported in the tables below for the different cases.

Case 1 Max. Shift Mean Error Elastic Elastic + Fluid
1st Time Point 4.5 mm 3.0 mm 1.8 mm 1.8 mm
2nd Time Point 5.1 mm 3.4 mm 2.4 mm 2.3 mm

Case 2 Max. Shift Mean Error Elastic Elastic + Fluid
1st Time Point 1.8 mm 1.4 mm 1.4 mm 1.3 mm
2nd Time Point 7.5 mm 4.5 mm 2.3 mm 1.6 mm

The first column indicates the maximum shift between the initial and actual
(i.e. not deformed) images. The mean error is reported in the second column
when no correction is performed. The third and fourth columns show the mean
error for the purely elastic and inhomogeneous elastic/fluid models respectively.

A maximum error up to 7.5 mm was observed and compensated on the
cortical boundary. In all cases the mean error could be decreased by the use
of a biomechanical model, with the smaller residual error for the elastic/fluid
model (mean correction up to 2.9 mm). Note also the better behavior near
the ventricles. These results act therefore favorably for using an inhomogeneous
model and for simulating the CSF with the appropriate equation.

The programs were written in C++ and the simulations were run on a Pen-
tium III, 1.1 GHz. The boundaries were discretized with about 500 points for the
cortical boundary and 100 points for each ventricle, leading to matrices of size
1400 × 1400 (two coordinates per point). The linear system was solved in about
0.3 second and the internal displacements were computed in about 1 second,
corresponding to a reasonable computation time for such an application.

5 Concluding Remarks

This paper introduces a non-homogeneous biomechanical model of the brain
combining elastic materials and fluids to compensate for the progressive shift
occurring during surgery. Our model is driven by correspondences on the cor-
tical surface, and through experiments carried out on real medical data, the
elastic/fluid model shows to perform better than a purely elastic one.

In order to reduce the computation time, the boundary element method
(BEM) is used to solve the system of differential equations. The BEM only con-
siders the boundaries of homogeneous regions, reducing therefore the problem
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dimension by one, and thus drastically the size of the matrix to invert. Never-
theless, the computed biomechanical behavior remains exactly the same as for
the original volumetric system. Although BEM does have strong advantages,
anisotropy and especially white/gray matter inhomogeneity may be complex to
address effectively with BEM. Finally, brain shift is a complex 3D phenomenon
and, although our 2D approach shows to be effective in correcting for intraop-
erative brain changes, a 3D model should even capture the deformation better.
3D modeling is the future direction of our investigation.
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