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Abstract. We present a new brain segmentation framework which we
apply to T1-weighted magnetic resonance image segmentation. The in-
novation of the algorithm in comparison to the state-of-the-art of non-
supervised brain segmentation is twofold. First, the algorithm is entirely
non-parametric and non-supervised. We can therefore enhance the clas-
sically used gray level information of the images by other features which
do not fulfill the parametric Gaussian assumption. This is illustrated by
a segmentation algorithm that considers both, voxel intensities and voxel
gradients for the segmentation task. The resulting algorithm is called a
non-supervised, non-parametric hidden Markov random field segmenta-
tion. Furthermore we have also to construct an anatomically relevant
segmentation model in the resulting two-dimensional feature space. This
is the second main contribution of this paper. We construct a morpho-
logically inspired classification model, which is also able to segment the
deep structures of the brain into a separate class, resulting in a six class
segmentation model. We prove the validity of the introduced mathe-
matical and morphological aspects on simulated T1-weighted magnetic
resonance images of the brain.

1 Introduction

Based on morphological observations, one can consider that the brain contains 3
main tissue types, gray matter (GM) tissue, white matter (WM) tissue, and cere-
brospinal fluid (CSF). Automatic segmentation of MR datasets into these classes
is very desirable for several reasons. One of them is that global or local morpho-
logical changes of these anatomical tissues are characteristic for some patholo-
gies. That’s why several research groups have been addressing the problem of
automatic brain segmentation. In particular, statistical approaches with para-
metric probability density models are widely employed. One example is called
the finite Gaussian mixture (FGM) model [I], which uses the voxel intensities
and the parametric Gaussian assumption for the intra-class statistics in order to
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classify the MR data. The main disadvantage of this histogram-based approach
is that it completely ignores any spatial information about the data. Therefore
Gaussian hidden Markov model (HMM) segmentation has been proposed [2/3]
as HMMs are able to explore spatial dependencies of the data [4]5].

Another limitation of MR brain segmentation lies in the chosen classes, GM,
WM, and CSF, into which we want to segment the original MR data. As image
voxels extend over some finite physical space, there are voxels in the data which
contain several tissue types at once. In particular along the CSF-GM and GM-
WM boundaries, voxels will contain both tissue types of the adjacent anatomical
classes simultaneously. In order to consider these partial volume effects, a five
class segmentation model has been proposed [6]. This model considers the pure
classes, CSF, GM, and WM, but also two mixture classes, accounting for the
CSF-GM mixture (CSF-GM class), and the GM-WM mixture (GM-WM class).

Common to most unsupervised statistical brain segmentation algorithms is
the fact that they explore only voxel intensities as features for the segmentation
task. This is due to the fact that Gaussian densities model well the MR intensi-
ties, but not necessarily other features. Nevertheless a very promising extension
to intensity-based segmentation would explore also other data features. For ex-
ample for the five class segmentation, the partial volume classes, CSF-GM and
GM-WM, are not only characterized by intermediate voxel intensities lying in
between the CSF and GM intensities, resp. GM and WM intensities, but also by
larger gradients. Therefore it would be very promising to construct a HMM seg-
mentation that explores both features, the voxel intensities and their gradients.
Unfortunately the Gaussian HMM will fail for this task, as there is no evidence
that the intra-class statistics of the voxels’ gradients would fulfill the Gaussian
condition. These arguments are true for most features we might want to add
to the segmentation algorithm in addition to the voxel intensities. Therefore
we developed a segmentation algorithm which does not need any parametric
assumptions about the intra-class statistics, resulting in non-supervised, non-
parametric HMMs (NPHMM). We will introduce the mathematical framework
of NPHMMSs in the next section. The developments are very general and appli-
cable to any choice of features. In the result section we will enhance the voxel
intensity-based segmentation algorithm with the norm of the voxel gradients
in order to experimentally validate the theoretical derivations on a particular
example.

2 Non-supervised, Non-parametric HMMs

Let’s consider the MR data, S, of n voxels, with associated feature vectors, y; €
2y = R?, where d is the dimension of the feature vectors. Y is the continuous
random variable associated to the samples, y;, over R? and can be estimated
by density estimation from the MR data, S. Our classification task aims to
classify the n voxels into n. classes, each class type being labeled by one of the
symbols in 2, = {1,..,n.,t} and representing one tissue type. The class label,
t, is associated to the feature subspace, Qg? c R?, for which no feature vector
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of the MR data, S, exists: 25 = {y € R¥|}s; € S with feature vector y}. Let’s
call ¢ € C any simultaneous configuration of the class labels, ¢;, where C is the
set of possible simultaneous configurations.

The random variable over {2, associated to the class labels is denoted C.
Furthermore we consider a random variable different from C, called C¢*!, also
over (2., which models an estimation of C' from the data Y. Very naturally we
can build the following stochastic process:

C—Y —C* = E, (1)

where F is an error random variable being 1 whenever the estimated class label,
c®t, is considered a wrong estimate of the initial class label, ¢, and 0 other-
wise. Using non-parametric Gaussian kernel density estimation, we can get the

following probability densities for the transitions of eq. [Ik

1
P(yle) = Z ma(y _yhU%) (2)
ylesc ¢
LG - ; 2 if est t,
P(ey) = { e Tl O a2 T ®)
fgé G<y - Y2, 02)dy2 if ¢ = t7

where G(z — a,b) denotes a Gaussian kernel with expectation, a, and variance,
b. |y| is the number of samples with feature vector y. S, is the subset of S
that contains the samples classified to class ¢ and |S,| is the cardinality of S..
Eq. Bljustifies the introduction of the class label ¢, which simply ensures that we
include the tails of the Gaussian kernels in the probability estimations, i.e. that
> ceq, Plcly) = 1. In addition to this, the probability P(c) is given by IS L We
could have chosen to use other transition probabilities than the ones of egs.
and Bl For example we could have imposed that the probability density of the
random variable C'*! equals the density of C. In this case, P(c®*|y) would have
to be estimated from P(y|c) using the Bayes theorem.

Let’s now use the transition probabilities of eqs. 2l and [3 to estimate a key
quantity of eq. [[] It is the probability of error, Pe|c, of the transmission from C
to C°* and equals the expectation of E, ug. This error probability, P, for a
given class label map, c, is calculated as follows:

Pre=pr=Y / E = 1¢°*, o) P(c"*'y) P(y]e) P(c)dy

cefN, Y ceste(),

sy &Z 5 Gln=moi+ad

cEQN{t} et e\ {t} Y1E€Se Y2E€8 ot 02|

=1\t
s #Z/ Gy — o, 0% + 02)da. (1)

ceN\{t} y1ES.
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Let’s now assume that 0 = 03 = 02, and P(E = 1|t,¢) = 1,Ve € 2.\{t}.
Then, by identification of the terms of eq. @ we can write

Pe = Z Z A est Tp gest + P(2), (5)
ce\{t} cesten\{t}

1 1
where FC7CCSt == E : § 7G(y1 — Y2, 202)7VC7 e Qc\{t}v (6)
n 2]
Y1E€Sc Y2ES cest

is called the transmission matrix and measures the probability that a data sample

of S with initial class label, c, is transmitted to an output label, ¢,

Ae et = P(E = 1e, c*), Ve, " € 2,\{t}, (7)

is called the distortion matrix which weights the erroneous transmissions through
the transmission matrix of eq. 6, and

P(t) = % > /Qg G(y1 — y2,20°)dy, (8)

Y1E€S

is the probability that any sample gets transmitted into the out-layer, Q{’; It’s
important to note that P(t) just depends on the data to be classified but is
independent of the specific class labeling, c.

One way to apply this framework to MR segmentation would consist of de-
termining the class labels, c, that minimize the error probability of eq. Bl This
approach would neglect spatial dependencies between the voxels though. But
the probabilistic nature of the derived formulae allows us to add a HMM to the
error probability minimization, resulting in a NPHMM segmentation:

C = in P - P 9
¢ argrcnelél (€) - Peje, (9)

In complete analogy to parametric HMMs, the prior probabilities, P(c), are
modeled by a Gibbs distribution [4J5]. The derived non-parametric framework
for classification allows us to consider voxel features for which we do not know
any parametric model, as it is the case for e.g. voxel gradients. In what follows,
we will consider the voxel intensities and the norm of the voxel gradients as
a two-dimensional feature space representation of the MR data to perform the
segmentation task. We have therefore to check if the five class model (CSF,
CSF-GM, GM, GM-WM, and WM) is still adequate to model the anatomy in
the resulting feature space. In fact we will show that it is not, and we will
derive an anatomically more adapted class model which contains six different
anatomical classes.
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3 A New Anatomical Model for Brain Segmentation

A pathologist who dissects a fixed brain distinguishes darker areas from brighter
ones. He denominates them GM and WM respectively. This contrast reflects
at a microscopic level the difference in tissue types. Schematically there is GM
tissue that is rich in neuronal soma and very poor in myelinated axons, and WM
tissue that is exclusively made of axons, that are myelinated or not. One can also
speak about a CSF tissue which is roughly said physiologic liquid. Of course in
the GM and WM tissues, glial cells and vessels are also to be found but are of no
interest in the present discussion. The three above mentioned tissue types have
also different MR-relaxation parameters which explains the similar contrast of
a T1-weighted MR image and a brain section in pathology. As explained above,
most algorithms use either a three or a five class model in order to perform the
classification task (CSF, CSF-GM, GM, GM-WM, and WM classes). It happens
that pixels falling in the GM and GM-WM classes are made from an anatomical
point of view of quite heterogeneous material. This can be summarized for the
five class model in the following way:

— The GM class regroups parts of the thalamus and the nucleus caudatus,
small parts of the truncus cerebri and most cerebral cortex.

— The GM-WM class regroups the interface between the cerebral cortex and
the white matter, the lentiform nucleus, parts of the thalamus, the sub-
thalamic region and large parts of the truncus cerebri.

We define from now on the term deep cerebral nuclei (DCN) as an ensemble
made of the thalamus, the sub-thalamic region, the lentiform nucleus, the nucleus
caudatus and abusively also large parts of the truncus cerebri which is made of
a mixture of small nuclei and WM fibers. When reviewing in more detail the
morphology of the structures belonging to the GM-WM class, i.e. the cortico-
subcortical interface and the DCN, one notices that partial volume at the cortico-
sub-cortical interface is mainly due to the overlapping of a pixel over a sharp
edge with on the one side GM tissue, i.e. the cortex, and on the other side WM
tissue (Fig. [} Section 3). We could call it partial volume of edge type (GM-WM
edge type). The classification of the DCN is usually split over the GM, WM and
GM-WM classes. The reason for this heterogeneity can be easily understood
when looking at a histological section focused either on the lateral border of the
thalamus (Fig. It Section 1.a), on the lentiform nucleus (Fig. [} Section 1.b) or
on the pons (Fig. [} Section 2). In each case there is a micro-metric mixture of
myelinated axons and islets of neuronal soma, present in different proportions
depending on the location. We propose to speak about partial volume of mosaic
type (GM-WM mosaic type). These morphological considerations allow us to
naturally introduce a six class model where the GM-WM class is split into two
subtypes: edge and mosaic. It should not only enable the distinction of two really
different anatomical brain tissues, i.e. the cortico-subcortical interface versus the
DCN but also give access to a separate estimation of their respective statistical
densities that have a-priori no reason to be identical.

Our approach is also perfectly meaningful from a medical point of view.
Depending on the type of disease, atrophy can be predominantly cortical, e.g.
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Alzheimer’s disease, age related atrophy, fronto-temporal dementia, or predom-
inantly centered on the DCN, e.g. Parkinson’s and Huntington’s diseases or
progressive supra-nuclear palsies. It can also be centered on the WM tissue, e.g.
leukodystrophies, some vascular dementia or it can be mixed, involving WM as
well as GM tissue, i.e. Lewy body dementia and multi-systemic diseases. It is
therefore clear that a six class model has potentially useful clinical advantages.

4 Results

We used the BrainWeb MR simulation ([7]) in order to validate the proposed
framework for T1-weighted MR brain segmentation. The BrainWeb simulation
just considers 5 classes. In order to create the distinction between GM-WM edge
type and GM-WM mosaic type, we checked for every reference voxel containing
both, GM and WM, if it has a 1% order neighbor with pure tissue, GM or WM.
If yes, this voxel was considered as a voxel of the GM-WM edge type class, while
the others of the GM-WM mosaic type class. The resulting six-class reference
constituted the ground truth to validate our segmentation results. An axial slice
of this reference data set is shown in fig.

Our segmentation algorithms considered voxel intensities and the norms of
their gradients as features. We used the independent conditional modes algo-
rithm (ICM) [§] to perform the NPHMM-based segmentation. In table [ we
validate our framework for the MR simulations with noise levels n = {1, 3,5, 7}.
We show the percentages of correct classification and completely misclassified
voxels (considering the mixture classes), for both, error probability minimization
without hidden Markov random field (Min. P,|c) and error probability minimiza-
tion with hidden Markov random field (NPHMM).

Table 1. We show the six class error statistics resulting from non-parametric clas-
sification for both, without (Min. P,c) and with the addition of a hidden Markov
random field (NPHMM). We applied the algorithm for the Brain Web simulations with
noise levels n = {1, 3,5, 7}. The indicated percentages measure the fraction of correctly
classified voxels and the percentage of completely misclassified voxels (considering the
mixture classes).

l “ n=1 l n=3 l n=>5 l n="7 ‘
Min. P c||71.0% \ 0.2%|64.0% \ 6.1%59.4% \ 1.4%|54.6% \ 6.9%
NPHMM||71.0% \ 0.2%]71.6% \ 0.7%|71.5% \ 0.3%64.2% \ 1.4%

We also want to show that the intra-class statistics of the six classes are well
approximated by our framework. Therefore we show in fig. Blthe intra-class his-
tograms of the reference dataset and compare them to their analogues resulting
from our algorithm. In fig. [, we also show axial views of our segmentations for
the BrainWeb dataset with noise level n = 5 and compare them with the refer-
ence data. The new class, segmenting the deep structures of the brain (DCN),
is shown in green.
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Fig. 1. Tissue structure in the GM-WM class. 3 types of images: i) Scheme showing the
distribution of the neuronal soma on the left and the axonal distribution on the right,
ii) Myelin-stain section and iii) Nissl-stain section enhancing respectively myelinated
axons and neuronal soma. 1) Demonstration that in the thalamus (A) and in the
lentiform nucleus (B) WM and GM tissue, i.e. neuronal soma and axons, mix at the
microscopic level in a mosaic like manner. 2) Demonstration that in the pons the cranial
nerve nuclei are embedded in a matrix of axons in a mosaic like manner. 3) Section
showing the sharp edge between the cortex (GM) and the underlying WM.

. i
om an o
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by e f o
| ‘edge type. | mosaic type cSF-GM | edge type
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2
b
H
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Inensity : ntensity Intensity

Reference Min. Pc NPHMM

Fig.2. On the left, we show an axial slice of the MR simulation with noise level
n = 5 (Original). Thereafter we present the same slice of the six-class reference dataset,
i.e. the ground truth, and its resulting intra-class histograms (Reference). In the last
two columns, we present the non-parametric segmentation results and the resulting
intra-class statistics for both, with (NPHMM) and without the addition of a hidden
Markov random field (Min. P,|c). The new class, segmenting the deep structures of
the brain (segmenting the DCN as defined in section [3), is presented in green and
distinguishes clearly from the GM-WM edge type class (red), lying predominantly
along sharp boundaries between the pure GM class and the pure WM class.
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5 Discussion and Conclusion

The presented results demonstrate the validity of the mathematical and anatom-
ical framework. Comparing to the six-class reference, the segmentation results
of fig. [ outline nicely the deep structures of the brain (DCN) in green, which,
as described in section [3] allows to exploit medically relevant information. The
quantitative evaluation of the segmentation results (table [[]) further validates
the presented framework if we want to explore other features than the voxel
intensities of the MR images.

We have presented a new mathematical framework for MR brain segmen-
tation, namely non-supervised, non-parametric HMMs. This algorithm doesn’t
assume that the intra-class statistics belong to any particular parametric family
of probability densities. We have applied this novel framework to brain segmen-
tation and were able to consider both, voxel intensities and voxel gradients, for
the segmentation task. For this particular case, we have also introduced a new
morphological model of the human brain which distinguishes between GM-WM
partial volume of mosaic type and GM-WM partial volume of edge type. These
anatomical considerations allowed a reliable segmentation of the deep structures
of the brain which added valuable information to the segmentation. We have
evaluated the algorithm on simulated T1-weighted MR scans.
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