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ABSTRACT

The work presented in this paper extends the concept of
sub-band video coding based on a 3D wavelet transform to
a more adaptive approach. A formal comparison is pre-
sented between the performances inferred by the use of the
3D wavelet transform and the use of a 2D wavelet in the
spatial domain extended by a locally adaptive transform
in the temporal dimension. Some advantages are foreseen
for the new scheme since it is able to better deal with cer-
tain signal models like appearing and moving edges. An in-
creased control of the distortion spreading is expected and
consequently a lower visual impact relevance.

1. INTRODUCTION

An increased interest on sub-band video coding has ap-
peared recently due to its suitability for certain applications
of video streaming. Scalability, low computational cost and
the possibility to set more robust delivery on lossy chan-
nels are among their main advantages. The 3D wavelet
coder SPIHT [1] is one of the most popular examples of
how this technology has evolved. According to the experi-
ence achieved by the scientific community, the relationship
between the multi-resolution structure of wavelet represen-
tation of images and the Human Visual System is evident.
What is not so evident is the fact that multi-resolution ap-
proximation, as it is performed by partially reconstructing
wavelet representations of the temporal dimension for com-
pression purposes, could be appropriate to the human per-
ception. Partial wavelet reconstruction introduces its more
relevant artifact: ringing. At some rates, it is quite imper-
ceptible, mainly in the spatial dimension, which in addition
has no causality constraints. But when trying to achieve
high compression rates, it is perceptually very noticeable
mainly in the temporal dimension, appearing like ”ghosts”
when long Group of Pictures (GOP) are used. The work
presented in this paper is intended to gain some control
on the perceptual distortion using a locally adaptive tem-
poral basis. The use of such an approach will contribute
on the reduction of the number of coefficients needed to
represent spatio-temporal piecewise smooth signals, like re-
gions bounded by an edge moving in a scene. Unlike dyadic
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wavelet bases, best basis transforms are able to set adap-
tively the scale of analysis (or window length) that better
suits the signal to be represented. In this way, there is no
need to keep coefficients at all scales, but just those really
necessary. Long stationary pieces will be grouped to be rep-
resented while fast variation on the signal will be localized.
Some work in this direction has already been done in the
domain of audio coding, where pre-echos and reverberations
are a common artifact due to compression.

2. LOCALLY ADAPTED BEST BASIS

TRANSFORMS

Best Basis representation relies on the optimization of the
non-linear approximation using a cost function:

C(Bα) =
∑

γ∈α

h
(

< f, gα
p,k(t) >

)

, (1)

where h is a certain functional depending on the coefficients
of the signal projection < f, gα

p,k(t) > [2, 3]. Commonly
known functionals (h) are the entropy of the coefficients
energy or the Lp norm of the coefficients for p < 1 or the rate
for D-R optimization [4]. The fact of being able to perform
a variable length partition of the line makes it possible to
adapt the set of functions used for the representation to
the signal structure. This kind of representation allows the
retrieval of a Best Basis representation according to the
needs of the application.

One of the simplest example of a locally adapted Best
Basis Transforms is Local Cosine Transforms. These were
first developed as an extension of block transforms to avoid
blocking effects [5]. Commonly known as Lapped Trans-
forms, they have the ability to represent a signal on a trigono-
metric base using overlapping intervals without redundancy.
In this work, we consider consider for test the Lapped Trans-
forms in order to study the fact of being temporally adap-
tive. Other adaptive transforms might be considered as
well.

A local cosine basis can be defined as a set gp,k(t) of
functions derived from the modulation of a window wp(t)
by a set of cosine functions such that it generates an or-
thonormal basis of L2(R) [6, 2]. These basis functions are



of the form
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√

2

lp
cos

[

π

(

k +
1

2

)

t − ap

lp

]

, (2)

where their length lp and window overlap 2ηp are depen-
dent on the interval p [2, 3]. Using finite windows wp(t),
the family of functions gp,k(t) have a compact support on
[ap − ηp, ap+1 + ηp+1].

3. 3D WAVELET APPROACH VS 2D + 1D

ADAPTIVE APPROACH

The main problem of separable wavelet bases is that they
are not able to represent efficiently higher dimensional sin-
gularities. This means that they will be inappropriate for
representing singularities in 2 dimensions or more. In the
case of a 2D+1D, since we are facing with another separable
transform scheme, there will be the same problem in terms
of optimality to represent multidimensional singularities. A
similar asymptotic behavior in terms of Distortion-Rate (D-
R) is then to be expected. Anyway, if looking forward to
keeping the separable scheme, something can be done in
order to get rid of the spread of coefficients that the repre-
sentation of a singularity on a wavelet basis produces. This
solution, although it will not change dramatically the decay
of the D-R, may give us an additional degree of freedom to
displace the D-R curve and obtain better performances than
with dyadic wavelets. Examples of different approaches to
solve this problem in 1D are presented in [3] and [7].

In order to compare 3D wavelets for video representa-
tion and the 2D+1D adaptive scheme, we consider a model
of a kind of signal that puts in real trouble the separable
representation: A synthetic sequence of images that repre-
sents a “Horizon” model, which is being displaced through
the image (see Fig. 1). In this case, a slow displacement of
at least a pixel per frame will be considered. Thus, at every
frame it will be necessary to use coefficients to represent the
produced discontinuity.

3.1. 3D Wavelet approach

For the 3D separable wavelet case, it can be shown in the
same way as it was done for the 2D case in [8] that the
necessary rate to code the manifold has the asymptotic be-
havior

R ∼ N · log2(∆
−1), (3)

where N is proportional to the number of coefficients needed
to represent the surface, and ∆ is a uniform quantization
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Fig. 1. Model taken for the theoretical performance esti-
mation.

step, ∆ ∼ 2−
3J

2 for J decomposition levels. At every level
the number of coefficients is proportional to

nj ∼ 22j



(j + 2) +

J−j
∑

j′=1

2j′



, (4)

where j corresponds to the selected spatial sub-band. For
the whole truncated approximation, N turns to be

N ∼
J
∑

j=0

22j



(j + 2) +

J−j
∑

j′=1

2j′



+
J
∑

j=0

2j ∼ 22JJ−2J , (5)

where J corresponds to the number of bands for the spatial
representation and the same number of sub-bands is as-
sumed for the temporal dimension. From Eqs. (3), (5), and
considering the distortion introduced by the quantization
and the truncation of the approximation series,

D ∼
(

22JJ − 2J
)

2−3J + 2−J , (6)

then the asymptotic D-R behavior is given by [8],

D(R) ∼ log2
√

R√
R

. (7)

3.2. 2D+1D temporally adaptive

In the 2D+1D adaptive scheme we may consider the fact
that since it will be possible to adapt the length of the anal-
ysis window to the data set, it will be somehow equivalent to
determine which is the biggest resolution of analysis. Thus,
fewer coefficients will have to be kept. We can consider then
as an upper bound that, in this case, the obtained rate will
be a fraction of Eq. (3) R′ ∼ Rα being α ∈ (0, 1]. Then,

R′ ∼
(

22JJ − 2J
)

Jα, (8)

where we assume that the same size of group of pictures
(GOP) is taken such that the wavelet transform of the 3D
approach would be possible to be performed. In this way,
the equivalence of the amount of information to be coded is
ensured. The factor α, is however depending on the spatial
sub-band as well as the velocity of the edge that is being
displaced. Here, a “worst case” assumption is performed
considering a slow motion of the contour (1 pixel/frame)
and, for simplicity, α will be considered to be an average
of the whole coefficient savings. From Eqs. (6) and (8) it
follows that:

D′ ∼
(

22JJ − 2J
)

2−3Jα + 2−J , (9)

where the first term corresponds to the distortion intro-
duced by quantization and the second term corresponds to
the scale truncation for a continuous approximation of the
surface. From Eqs. (8) and (9) we find that an upper bound
for the temporally adaptive transform scheme is

D′(R′) ∼ log2
√

R′/α
√

R′/α
α α ∈ (0, 1]. (10)



Comparing both expressions (3) and (8), it can be clearly
seen that the general asymptotic behavior of both D-R ex-
pressions is the same. But in the second expression a factor
appears that can improve the behavior of the distortion.
When getting a reduction in the number of coefficients (α)
with respect to the 3D wavelet scheme used for video cod-
ing, it will be possible to reduce R′ with respect to R while
keeping D(R) = D′(R′). Two factor will be determining in
making α < 1: the retrieval of stationary segments and the
good localization of high variations like edges.

In practice, being able to adapt locally the temporal
transform will contribute to move the asymptotic behavior
of the wavelet scheme used in video coding towards the be-
havior of an isotropic 3D wavelet scheme when representing
edges. Nevertheless, it will still be possible to highly com-
pact static regions as it is the case for the wavelet scheme
used in video coding. Considering the horizon model se-
quence as before, and assuming that for every spatial sub-
band (see Fig. 1) the temporal windows used for the anal-
ysis of the active coefficients have the same size as the cor-
responding spatial analysis functions (∼ 2−j), a bound for
the asymptotic behavior of D(R) turns to be, more precisely
than in Eq. (10):

D(R) ∼ log
√

R√
R

. (11)

4. APPLICATION OF THE ADAPTIVE

SCHEME TO A SUB-BAND VIDEO CODER.

In common sub-band video coding using 3D wavelet separa-
ble bases, the stage of transformation is just a simple linear
operation that filters independently in every direction. In
our approach this procedure turns to be slightly more del-
icate. The core of the application relies on the fact that
the signal is first analyzed in order to extract the sufficient
information from its structure. This must be performed in
a way to enable the choice of the best basis. In this work,
the spatial information is decorrelated using a common sep-
arable 2D wavelet kernel (Daubechies 9/7 [9]), similarly to
the 3D wavelet coding scheme.

4.1. Temporal Decomposition

After the spatial transformation, the temporal segmenta-
tion tries to extract in priority stationary segments. Such
an approach means that it is preferable not to apply recur-
sive dyadic segmentations in a normal tree structure. It is
more interesting to perform non-uniform segmentation of
the temporal axis, such as the one applied in audio com-
pression (i.e. [3]).

The approach introduced in sec. 2 has been used to ob-
tain the dictionary of adaptive functions in the form of a
Fast Modulated Lapped Transform (MLT) defined by Mal-
var in [6]. Even if ideally it may be of interest to use long
windows for very long static scene regions, only a limited set
of windows is used: M = [2, 4, 8, 16, 32]. Longer windows,
would indeed be of no use in many applications since they
introduce a very long delay. The whole procedure to gen-
erate the representation can be shortly described as: first,
the spatial wavelet transform is performed on the group of
frames used in the temporal transformation. Then, for each

t

1.− Bounded Interval Extraction

2,− Computation of all the cost for the restricted set
of the unbalanced tree.

3.− The first partition of the last best basis choice is kept.
Following to this, the algorithm is restarted.

t

Selection of the best set.

Fig. 2. Algorithm for the research of the best partition.

spatial wavelet coefficient, transform using the optimal ba-
sis through the Best Basis Algorithm Retrieval (see sec. 4.2)
is carried out. Once all the necessary locally adapted trans-
forms for a GOP have been computed, a new one would
be spatially transformed and like this the procedure would
continue. However, it has to be taken into account that a
control structure will be needed in order to supervise the
adapted segmentation procedure of all the temporal wavelet
coefficients.

4.2. Best Basis Algorithm Retrieval

A common retrieval strategy for partitions of the line is the
use of a tree [9, 4]. In our approach, an unbalanced ver-
sion of such an algorithm is used in order to focus on the
retrieval of long windows for smooth areas instead of the
known embedded hierarchic partitions in balanced trees.
Fig. 2 shows the algorithm to retrieve the best partitions.
First, the biggest window length of M is selected for the
analysis of a long piece of signal. All the possible par-
titions concerning the unbalanced tree are computed and
their cost is estimated. Once the best set of segments has
been selected and the first partition has been kept to divide
the signal, the procedure will be re-started taking again the
longest window for an optimal tree representation of the
signal. Although D-R optimized retrieval criteria can be
used [4], tests on the model sequence will be performed on
the basis of the entropy of the energy of the coefficients.
Thus, Eq. 12 has been taken as the cost function:

C(Bα) = −
∑

γ∈α

| < f, gα
p,k(t) > |2
‖f‖2

log

(

| < f, gα
p,k(t) > |2
‖f‖2

)

.

(12)

5. SIMULATIONS

Some simulations have been performed on the basis of a syn-
thetic sequence of the kind of Fig. 1 to validate assumptions
on the model. The synthetic sequence was generated by the
construction of a horizon function drawn with a polyno-
mial of degree 3 which had a translational motion vector of
(1, 1) pixels/frame. As said previously such a displacement
represents the worst case for the temporal adaptive trans-
form compared to the 3D wavelet transform (Daubechies
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Fig. 3. PSNR comparison keeping (top) 1000 and (bottom)
20000 coeffs./GOP.

9/7 in space and a haar wavelet in the temporal dimension
with a GOP of 32 has been used). Clearly a higher speed
would favor the adaptive algorithm. Wavelets would have
to code the same number of discontinuities as the adap-
tive scheme, but they would spread the energy through all
the fix number of sub-bands. Furthermore, local adaptive
transforms would be able to fit them better and reduce the
distortion. In Fig. 3, it can be seen that the proposed
adaptive approach performs better than the 3D wavelet
scheme. According to the theoretical estimates from sec.
3, both schemes have approximately the same asymptotic
behavior. The adaptive scheme keeps an approximatively
constant PSNR gain with respect to the wavelet scheme
independently of the requested number of coefficients.

In Fig. 4 the effect of localization of high variations on
the coefficients can be seen. The most common visual effect
of wavelets is ringing. Considering that we may not have
the same perception of the ringing in the spatial dimension
than in the temporal dimension, the appearance of “ghosts”
in fast motion or scene changes can be very annoying.

6. CONCLUSIONS

A new scheme for sub-band video codding has been pre-
sented. Thanks to the temporal adaptivity, distortion can
be reduced for a give rate. The localization of singularities
in the video sequence can help reducing the visual impact
of distortion. The use of the proposed scheme allows to
smoothly adapt to static scenes or sharp temporal varia-
tions. However, further research has to be performed to
improve the best basis optimization in order to make the
decision algorithm more robust to work with natural se-
quences.

Fig. 4. Comparison between locally adaptive transform
(top) and 3D wavelets (bottom) keeping 40000 coeffs./GOP.
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