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ABSTRACT 
 
An electroencephalogram (EEG) based Brain Computer 
Interface (BCI) and its main components are presented. 
The BCI operation model is established on the basis of a 
three-state machine where the direct transitions from the 
neutral to the active state are not allowed. A transition 
state is introduced in order to make the user confirm his 
intents through latency. The latency is a dynamic  
parameter that decreases when the user achieves an  
acceptable level of performance. 
EEG signals are classified in the space generated by their 
correlative time-frequency-space representation (CTFSR). 
Nonlinear separation in this space is achieved by using the 
support vector machine approach. An adequate kernel 
design makes the computations take place in the temporal 
domain.  
Good efficiency is obtained after five experiment sessions 
by two subjects. 
 

1. INTRODUCTION 

Systems capable of understanding the different facets of 
human communication and interaction with computers are 
among trends in Human-Computer Interfaces (HCI). 
An HCI which is built on the guiding principle (GP): 
“think and make it happen without any physical  
effort” is called a brain-computer interface (BCI). Indeed, 
the “think” part of the GP involves the human brain, 
“make it happen” implies that an executor is needed (here 
the executor is a computer) and “without any physical  
effort” means that a direct interface between the human 
brain and the computer is required.  
To make the computer interpret what the brain intends to 
communicate necessitates monitoring of the brain activity. 
Among the possible choices the scalp recorded electroen-
cephalogram (EEG) appears to be an adequate alternative 
because of its good time resolution and relative simplicity. 
Furthermore, there is clear evidence that observable 
changes in EEG result from performing given mental  
activities [1]. 

In this study, we present an EEG based BCI hereafter 
called BCI. 
 

2. BCI IN A NUTSHELL 
 
Our BCI system is subdivided into three subsystems, 
namely EEG acquisition, EEG signal processing and  
output generation. (Figure 1). 
The EEG acquisition subsystem is composed of an  
electrode array arranged according to the 10-20 interna-
tional system [2] and a digitization device. The acquired 
signals are often noisy and may contain artefacts due to 
muscular and ocular movements. 
The EEG signal processing subsystem is subdivided into a 
preprocessing unit, responsible for artefact detection, and 
a feature extraction and recognition unit that determines 
the command sent by the user to the BCI. This command 
is in turn sent to the output subsystem which generates a 
“system answer” that constitutes a feedback to the user 
who can modulate his mental activities so as to produce 
those EEG patterns that make the BCI accomplish his  
intents. 
 

User

Output

Digitized
signals

Commands

Feedback

EEG
Acquisition

Preprocessing

Feature
extraction

+
classification

EEG Signal
Processing

 
Figure 1. General BCI architecture. 



Figure 2 illustrates the basic scheduling of our BCI. The 
BCI period is the average time between two consecutive 
answers and the EEG trial duration is the duration of EEG 
that the BCI needs to analyze in order to generate an  
answer. We assume that every EEG trial elicits a system 
answer.  
We call “neutral state” when nothing happens (the BCI 
provides a neutral answer), the “active state” when the 
BCI executes something, the “neutral EEG set” as com-
posed of those EEG trials that elicit the neutral answer 
and the “active EEG set” the complement of the neutral 
EEG set. 
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Figure 2. BCI scheduling. 

The ideal BCI is a two-state machine whose state changes 
occur at a rate defined by the BCI period and are  
determined by a Boolean variable B1 (activation) which 
becomes true when the BCI detects an element of the  
active EEG set and false otherwise (Figure 3). 
The ideal BCI behave properly when the recognition error 
rate is near zero. 
In a real application, the false positive error (the system 
switches to the active state while the corresponding EEG 
trial belongs to the neutral EEG set) and the false negative 
error (the system switches to the neutral state while the 
corresponding EEG trial belongs to the active set) are not 
zero. Depending on the application, these errors are  
differently penalized. 
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Figure 3. Ideal BCI. 

We propose a less ideal BCI by introducing a transition 
state so that the BCI cannot switch from the neutral to the 
active state immediately. The BCI remains in the transi-
tion state as long as a second Boolean variable B2  
(confirmation) is false (Figure 4). B2 is true if the L  
(latency parameter) previous EEG trials are equally  
recognized as the current EEG trial. 
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Figure 4. Less ideal BCI. 

 
The introduction of the transition state allows us to pre-
vent the BCI from abruptly switching to the active state 
and to introduce a user rewarding mechanism by reducing 
his latency when false positive and false negative error 
rates decrease.  
The latest statement constitutes the key for the computa-
tion of L. Let, p+ + be the true positive recognition rate 

and p+ − be the false positive error rate. Then, L increases 

if p+ − increases or p+ + decreases. Likewise L decreases if 

p+ − decreases or p+ + increases.  



The optimal value (L=0) is reached when p+ + is 1 and 

p+ − is 0. Thus, L can be calculated as 

 ( )( )( )log 1p p+ + + −= −L Lnint -C  (1) 

where ( )nint i is the nearest integer function and LC is a 
normalization constant. 
In practice, for the sake of user comfort the value of L 
multiplied by the BCI period should not exceed two  
seconds.  
The BCI parameters are summarized in Table 1. Signal 
processing parameters are described in Section 3.  
The optimal values for the BCI parameters are determined 
in the training phase. However, they should be  
continuously updated in order to take into account  
possible variations in the EEG caused by different brain’s  
background activities over time. Thus, BCI operation  
requires constant training and adaptation from both, the 
user and the computer [3]. 
 

BCI period 
EEG trial duration 
Latency 
Signal processing parameters 

Table 1. BCI parameters. 
 

3. EEG SIGNAL PROCESSING IN BCI 
APPLICATIONS 

 
3.1. EEG trial preprocessing 
 
The preprocessing aims at identifying those EEG trials 
contaminated by noise. By definition (Sect. 2) a noisy 
EEG trial belongs to the neutral EEG set.  
External electromagnetic perturbations, muscular and ocu-
lar movements are the main sources of noise.  
External perturbations are essentially present at high  
frequencies (above 40 Hz). Since the interesting EEG  
frequencies are located below this limit, each EEG trial is 
filtered between 1 and 40 Hz. 
Muscular movements induce relatively high frequency 
(above 25 Hz), high amplitude components (muscle arte-
facts) in electrodes located in the motor area [4]. We set a 
power threshold (determined during the training phase) on 
the frequency band above 25 Hz, in order to detect such 
artefacts. 
Ocular artefacts are identified by tracking the abrupt 
power changes in the signals recorded at prefrontal  
electrodes  

3.2. Feature space 
 
In the context of BCI, the features used for EEG trial  
classification mainly result from the time, frequency, and 
time-frequency analysis. 
Most of the research groups work in the frequency do-
main and extract the information characterizing mental 
activities from the nonparametric and parametric spectral 
representations of EEG [3]. Also, the joint spectral  
properties of the EEG components are analyzed in [5] for 
detecting particular emotional states. 
The relationship between the time evolutions of the sig-
nals coming from different electrodes serves as an  
indication of motor activities in [6]. Useful information 
can also be extracted from particular brain configurations 
that can be interpreted in terms of brain states [7][8]. 
Time-frequency and time-scale representations of EEG 
signals were exploited for finding those neuronal groups 
that synchronize their activity as a response to a particular 
stimulus (event related potentials) [9][10]. 
From the above considerations it can be stated that mental 
activities, when mapped onto the time-frequency repre-
sentation of EEG signals, display a picture that illustrates 
the cooperative activity of neuronal groups. A possible 
way to explore this activity consists in analyzing the joint  
time-frequency-space correlations between the  
components of an EEG signal. 
The correlative time-frequency-space representation 
(CTFSR) of an EEG trial [ ]1( ) ( ) ... ( )NX t x t x t= T  (T is 
the transpose operator) composed of N signals measured 
at different electrodes, is defined as [11] 
 

 ( )  ,
2 2

j t
XA X t X t e dtθτ τθ τ    = + ⋅ −   

   ∫ H  (2) 

where θ andτ  are the frequency and time lags  
respectively, “ ⋅ ” is the ordinary matrix multiplication and 
H is the Hermitian operator. 
A measure of the similarity between the CTFSR of two 
EEG trials X(t) and Y(t) is given by  
 

( ) ( ) ( ) ( )*
( , ),, , ,X Y N X Y NX YD A A d dθ τ θ τ θ τ= ⋅ ∆ ∆ ⋅∫∫ T1 1:  (3) 

where: is the element wise matrix multiplication, * is the 
complex conjugate operator, N1  is a 1xN real matrix with 
unit components and 
 
 ( ) ( ) ( ) ( ), , , ,X YX Y A Aθ τ θ τ θ τ∆ = −  (4) 
We define an inner product in the CTFSR space as  
follows. 
 ( ) ( )*, , ,X Y N X Y NA A A A d dθ τ θ τ θ τ= ⋅ ⋅∫∫ T1 1:  (5) 

The inner product in Eq. (5) can be directly calculated in 
the time domain. 



, ( ) *( ) *( ) ( )X Y N NA A X t X t Y t Y t dtdτ τ= ⋅ ⋅ ⋅ − ⋅∫∫ T1 1: (6) 

Since the Eq. (3) can be written in terms of inner products 
(Eq. (7)), the similarity measure in the CTFSR space can 
be directly calculated in the time domain. 
 
 ( ), , , , ,X Y X X Y Y X Y Y XD A A A A A A A A A A= + − −  (7) 
 
3.2. Classification in the CTFSR space 
 
The classification in the CTFSR space is a nontrivial  
problem because of the large dimensionality of this space. 
Common approaches in the univariate case (N=1) suggest 
to enhance the discriminating regions by multiplying the 
CTFSR by a time-frequency kernel (TFK) [12]. In the 
multivariate case a linear Fisher discriminator was used in 
[13] and multivariate TFKs were proposed in [14].  
However, considerable computational effort was neces-
sary for obtaining acceptable results.  
We applied the support vector machine (SVM) approach 
for classification in the CTFSR space. The advantage of  
using SVMs resides in the fact that SVM computations 
only involve inner products [15]. As the inner product in 
Eq. (6) is computed in the time domain, we do not need to 
explicitly calculate the CTFSR of EEG trials. 
In addition, one often points out the good generalization 
capabilities of SVM based classifiers. 
For our purposes we consider only the two-class classifi-
cation problem. Multi-class classification can be done 
with multiple pair-wise comparisons. 
The SVM approach for two-class classification can be 
summarized as follows (for a more detailed explanation 
the reader is referred to [15]). 
Given a set of decision functions parameterized by 
α ∈Λ (Λ is a space) 

{ } { } ,  :  CTFSR space 1, 1f fα αα∈Λ
→ − +  

and a labeled training set ( ){ }, ;1
iX iA y i MΓ = ≤ ≤

 
where { }1, 1iy ∈ − + is the label of the EEG trial iX and 

iXA the CTFSR of iX , we wish to find a function 'fα that 
minimizes the risk of misclassification of new unknown 
EEG trials, given by the risk functional 
 

( ) ( )1( ) ,
2 X XR f A y dP A yαα = −∫  

where ( , )XP A y is the unknown probability distribution 
that generated Γ . 
One can show that the risk functional is bounded by the 
sum between the empirical error (depending on the  
training set) and a complexity measure of the set of  
functions { }fα [15]. 

In the linear separable case the optimal decision function 
is a hyperplane that can be written as 
 
 ( ) ( )sgn ,X Xf A w A b= +  (8) 

The optimal estimates for w and b are found by solving  
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where ρ (loss parameter) andν are user defined constants.  
The support vectors (SVs) are the

iXA ’s for which 

( )ii Xy f A ρ⋅ ≤ . It can be shown thatν is a lower bound 

on the fraction of training elements that are SVs [15].  
The results in [15] show that w is a linear combination of 
the

iXA ’s 
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and that solving Eq. (9)is equivalent to finding 
 

 
1 2 1 2 21

1 2, 1

1max ,
2 i i

M

i i i i X X
i i

y y A Aα α
=

 
− 
  

∑  (11) 

subject to constraints 
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The offset b and the loss parameter ρ can be found using 

 ( ) 1,     when    0
ii X iy w A b

M
ρ α+ = < <  (13) 

The problem of nonlinear decision boundaries is solved 
by mapping the training set into a high dimensional space 
(HDS) where the decision function is linear. This  
mapping is done by the means of kernel functions  
(functions that define an inner product in the HDS). The 
above considerations hold in the HDS and Eqs. (8)-(13) 
can be applied by replacing the inner products by the  
kernel function. 
A popular kernel function is the Radial Basis Kernel that 
can be written as function of inner products in the CTFSR 
space (Eq. (14)). 

 ( ) ( )
2

,
, exp X Y

RBF X Y

D A A
K A A

σ
 

= − 
 

 (14) 

where 2σ is the kernel parameter. 



This approach allows us to perform nonlinear classifica-
tion in the CTFSR space whereas the computations are 
done in the time domain. 
As mentioned in Sect. 2, a key requirement in BCI appli-
cations consists in the regular adaptation of the classifier 
to the possible changes in user’s mental activities. As only 
the SVs determine the classification parameters (w and b) 
we can easily update them by including the old SVs in a 
new training set. 
 

4. RESULTS AND DISCUSSIONS 
 
Two male right-handed subjects (S1 and S2) participated 
in five experiment sessions. The signals at electrodes: 
Fp1, Fp2, C1, C3, C4, C2, T3, T4, P3 and P4 of the 10-20 
International System [2] were measured. 
Three types of mental activities (MAs) were used: imagi-
nation of left (MA1) or right (MA2) index finger  
movements and a baseline (MA3) where the subject can  
imagine anything except MA1 or MA2. MA1 and MA2 
are the elements of the active EEG set (Sect. 2). 
Each session was preceded by a short calibration period in 
which the BCI was adjusted to the subject and the  
thresholds for the detection of artefacts were set (Sect. 
3.1). During this operation, the subject could see a repre-
sentation of his EEG signals mapped onto a 2D or 3D 
scene in order to get familiarized with the system. 
The first session was entirely devoted to training. In the 
next sessions the first twenty minutes, after the calibration 
were spent in training and the remaining time (about ten 
minutes) in freely moving a cursor on a computer screen, 
using the less ideal state machine of Sect. 2.  
In the training time of sessions two to five, continuous 
feedback was provided to the subjects indicating if the 
MA they were requested to perform was successfully  
recognized or not. The feedback of a session was pro-
vided using the updated classification parameters of the 
precedent session. 
After the first session, the BCI period and the EEG trial 
duration were chosen among three possible alternatives 
depending on the classification error (Table 2). Based on 
these results the BCI period and the EEG trial duration 
were set to 250 and 500 milliseconds respectively for both 
users. 
 

 0.12s/0.25s 0.25s/0.5s 0.5s/1s 
Subject 1 38 % 36 % 43 % 
Subject 2 35 % 30 % 45 % 

Table 2. Classification error rate in the first training session 
for different values of BCI period/EEG trial duration 

In Figure 5, we report the true and false positives rates of 
the last four experiment sessions (ES). 
For subject 2 the true positives rate increased over the 
sessions reaching 88 % at the end of the fifth session. The 

false positive rate slightly increased in the fourth session 
and decreased in the last session reaching 19%. 
At the end of the fifth session, subject 1 reached 80% and 
22 % for the true positive and false positive rates  
respectively. A decrease in the true positive rate and a 
slight increase in the false positive rate were observed at 
the end of the fourth session. 
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Figure 5. Evolution of the false positives vs. true positives 

rate for both subjects.  

Interestingly, both subjects reached their best performance 
at the end of the fifth session. More sessions are then  
necessary in order to see if they can still improve their 
ability to operate the BCI. 
In Table 3 we report the evolution of the latency  
parameter L. At the end of the first session L was set to 4 
(i.e. 4 confirmation trials) for both subjects. 
 

 Session 2 Session 3 Session 4 Session 5 
S1 4 3 3 2 
S2 3 2 2 2 

Table 3. Evolution of the latency parameter L from  
sessions two to five.  

Because of the logarithm in the definition of L (Eq. (1)). 
This parameter is not sensitive to small variations on the 
true positive and false positive rates. The evolution show 
that the results obtained were good for both subjects as L 
never increased.  
In the last session we used an L equal to two for both  
subjects. This value is reasonably good in terms of user 
comfort because he does not need to confirm his intents 
for more than two BCI periods. 
Using this parameter as a measure of user performance we 
could reward both users as they improved their ability to 
operate the BCI. 



5. CONCLUSIONS 
 

In this paper, we defined several concepts that aim at  
establishing a BCI development framework.  
Some of the most important parameters of a BCI were 
introduced and the BCI operation was characterized in 
terms of states that take into account the errors in the  
classification of EEG trials. 
A way of rewarding the user improvement in using the 
BCI was proposed by updating the latency parameter.  
The latency is not sensitive to small changes in the true 
positive recognition and false positive error rates. This 
constitutes a suitable behavior for a system interacting 
with human users. 
We also presented an SVM based classification technique 
in the CTFSR space which performs nonlinear separation 
whereas all the computations are done in the temporal 
domain. The explicit computation of the CTFSR of EEG 
trials is thus avoided. 
Another advantage of the SVM approach resides in the 
fact that the classification parameters can be easily  
updated by adding the old support vectors in a new  
training set. The requirement of continuous adaptation of 
the computer to the user is thus fulfilled. 
In order to design an application requiring two dimen-
sional control, at least five MAs should be recognized by 
the BCI. We need to explore the nature of these MAs 
from both user and computer perspective. Further  
adjustments to the BCI parameters might be necessary. 
Since part of the successful operation of a BCI depends on 
the user himself the feedback strategy needs to be  
carefully designed by taking into account physiological 
and psychological aspects. 
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