
Abstract In this paper we use support vector learning ma-
chines (SVM) for classifying EEG signals corresponding to 
imagined motor movements. The parameters of an SVM 
Kernel are optimized for minimizing a theoretical error 
bound. Fourier features and correlative time-frequency based 
features are extracted from EEG signals and compared with 
respect to their discriminatory power. 
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I. INTRODUCTION 
 
A noninvasive electroencephalogram (EEG) based brain-
computer communication device (henceforth called brain-
computer interface BCI) can be subdivided into three subsys-
tems, namely EEG acquisition, EEG signal processing and 
the output subsystem (Figure 1).  
The EEG acquisition subsystem is responsible for gathering 
and digitizing the EEG signals measured at the scalp. EEG 
signals are composed of the single signals measured at dif-
ferent electrodes placed on the scalp according to the  
ten-twenty international system [1]. 
Digital EEG is fed into the signal processing subsystem 
where it is preprocessed and classified among a predeter-
mined set of classes. The classification result (a label indicat-
ing the most probable class) is sent to the output subsystem 
which executes the action associated with the class label. 
Each class corresponds to a mental activity (MA). Usually, a 
BCI is operated with a small number of MAs that correspond 
to imagined motor tasks [2]. 
Successful operation of a BCI depends on the judicious 
choice of features that are extracted from EEG signals, the 
classification strategy and the user himself who has to modu-
late his mental activity so as to make the BCI accomplish his 
intents [2]. The first two points involve knowledge of brain’s 
electrophysiology and machine learning. The latter point 
deals with the feedback provided to the user during the train-
ing [3]. 
In the case of imagined motor tasks, the Fourier analysis of 
each EEG component appears to be adequate for the classifi-
cation [2]. Good results using the joint correlative time-
frequency representation (CTFR) of EEG were also reported 
in [4]. 
The classification strategy is adapted to the nature of the 
extracted features and must allow for continuous updating of 
its intrinsic parameters. Indeed, the EEG associated with a  
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Figure 1. Parts of a BCI. 

specific MA can present short term and long term variations 
as a result of different brain background activities [2]. 
Recent advances in machine learning research have pointed 
out the advantages of support vector machines (SVM) over 
other classification techniques [5]. Solid theoretical founda-
tions, good generalization capabilities and easy parameters 
updating are among the most appealing qualities of SVMs 
for BCI applications. 
In this paper, we focus on the application of SVMs to EEG 
classification in the Fourier and in the CTFR domains. 
 
II. FOURIER ANALYSIS AND CTFR OF EEG 
 

We note an EEG signal as [ ]1( ) ( ) ... ( )NX t x t x t= T where T 
is the transpose operator, ( )nx t is the signal measured at the 
nth electrode and N is the number of electrodes. 
A simple Fourier analysis of ( )X t (such as reported in [2] 
and [3]) consists in computing the power at some frequency 
bands of each of the components of X(t). If we note by NB 
the number of frequency bands, the result of this analysis is a 
set of values that can be arranged into a vector of length 
NNB. When no prior information about the optimal NB and 
the length of the frequency bands is available, one can com-
pute the power corresponding to the uniformly spaced 2 Hz 
bands ranging from 2 to 40 Hz. 
The CTFR of X(t) is defined as 
 ( ) ( )( , ) / 2 / 2 i t

XA X t X t e dtθθ τ τ τ= + ⋅ −∫ H  (1) 

where θ andτ  are the frequency and time lags respectively, 
“ ⋅ ” denotes the ordinary matrix multiplication and H is the 
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Hermitian operator. If we note by Nτ and Nθ the number of 
time and frequency lags for which ( , )XA θ τ is computed, we 
obtain 2N  matrices of dimension Nθ x Nτ. As in the Fourier 
case, these values can be arranged into a single vector. When 
no prior information about the optimal values for Nθ and Nτ 
exists, ( , )XA θ τ  can be sampled at the same rate as X(t). 
The CTFR measures the degree of similarity between two 
time-frequency shifted versions of X(t). Besides the spectral 
information, the CTFR provides information about the  
time-frequency interactions between the components of X(t). 
Thus, with the CTFR the EEG components are not inde-
pendently analyzed (as in the Fourier case) but their relation-
ship is also taken into account. 
An important drawback of the CTFR resides in its relative 
high sensitivity to noise. Consequently, the most important 
values of the CTFR, in terms of classification must be se-
lected [4]. 
By virtue of the above considerations, the result of the Fou-
rier analysis or the CTFR applied to an EEG signal X(t) is a 
feature vector that we note x. 
 
III. SUPPORT VECTOR MACHINES FOR CLASSIFICATION 
 
For the sake of explanatory convenience we only consider 
the two-class classification problem. Multi-class classifica-
tion for a small number of classes (as in BCI applications) 
can be done with multiple pair-wise comparisons. 
A more complete description of the SVM theory can be 
found in [6]. 
Given a set of labeled observations (training set) 
( ){ },  ;  1  l ly l L≤ ≤x ( D

l ∈x is the observed vector and 

{ }1,1ly ∈ − its label); one has to estimate a decision function 

{ }* : 1,1Dfα → −  chosen from a set of admissible decision 
functions{ }fα  (α is a vector of parameters) such that *fα will 
correctly classify unseen vectors x. 
The risk associated with a function fα  is 

 1( ) ( ) ( )
2

R y f dP yαα = −∫ x x,  (2) 

where ( ),P yx  is the (usually unknown) probability distribu-
tion of pairs ( ), yx . The empirical risk is defined as the 
mean error rate on the training set. 
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2
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mp l
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f
L αα

=

= −∑ x  (3) 

For some η such that 0< η<1, with probability of at least  
(1- η), the following bound holds [6]: 
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where h is the Vapnik-Chervonenkis (VC) dimension (a 
measure of the learning capacity of the set{ }fα ). The second 
term in the right side of (4) is called the VC confidence. 

While the empirical error can become arbitrary small by 
choosing { }fα  with large h, the VC confidence term in-
creases with h. The SVM approach for reaching a good com-
promise consists in keeping the value of the empirical risk 
fixed (e.g. equal to zero) and minimize the VC confidence. 
In the linearly separable case, the decision functions can be 
written as ( )( , ) ( ) ,w bf sign w b= +x x ( ,w x is the inner prod-

uct of , Dw ∈x ). One can show that the following bound on 
h holds [6]: 
 ( )22min , 1h R w D≤ +  (5) 

where R is the radius of the smallest sphere containing the 
training vectors. 
The parameters of the decision function can be found by 
minimizing 2w subject to ( , ) ( )  1 ;  1l w b ly f l L≥ ≤ ≤x . In this 
formulation, training errors are not allowed.  
In order to allow for training errors one introduces the non-
negative lack variables 1,...,l Lξ = such that the parameters w and 
b are now found by minimizing 

 [ ]( ) 2
1

1

1, ,...,
2

L

L l
l

w w Cξ ξ ξ
=

Φ = + ∑Tξ =  (6) 

(C is a user defined constant controlling the learning capac-
ity) under the constraints 

1,...,
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 0 
( )  1  ;  1

l L

l w b l ly f l L
ξ

ξ
= ≥

≥ − ≤ ≤x
 

Introducing positive Lagrange multipliers for the constraints 
and taking the derivatives with respect to w , the solution of 
(6) is 
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where the lα are found by solving the dual problem of (6): 
maximize 

 [ ]( )1
1,...,
2L LW α α= = ⋅ − ⋅Λ ⋅T 1α α α αΤ Τ  (8) 

(1L is the L x 1 matrix with unitary elements and Λ is a L x L 
matrix whose elements are ),jk j kΛ = x x under the con-

straints 
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The Karush-Kuhn-Tucker (KKT) conditions imply that the 
solution of (8) is sparse (some of the lα ’s are equal to zero). 
An lx associated to a nonzero lα is called a support vector 
(SV); in this case the corresponding lξ is equal to zero 
and ( , ) ( ) = 1l w b ly f x . The latter equality allows us to determine 
b. 
The optimal decision function can be expressed as 



 
; 0
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∑x x x  (9) 

As the optimal decision function depend on the SVs only, 
one says that the training set is entirely characterized by the 
SVs. Because of this property, it is easy to build a new set of 
support vectors by adding the old support vectors to a new 
training set. 
It is important to note that the optimization problem Eq. (8) 
and the decision function Eq. (9) only involve inner prod-
ucts. This property allows us to apply the above solution to 
the nonlinearly separable case. 
When the data is not linearly separable it is projected to a 
high dimensional space (Ң) so that it becomes linearly sepa-
rable in Ң. The mapping :  Dψ →Ң does not need to be 
calculated explicitly. Instead, a Kernel function that com-
putes the inner product in Ң is defined: 
( ), ( ), ( )j k j kK ψ ψ=x x x x . In this case, the solution is ob-

tained by replacing the inner products in Eq. (8) and Eq. (9) 
by the Kernel functions. 
A popular Kernel in SVM classification is the radial basis 
kernel 
 ( ) ( )2

, expRBF j k j kK θ= − −x x x x  (10) 

In this study, we consider a multiple parameter radial basis 
kernel [8]  
 ( ) ( ) ( )( ), expj k jk j k j kK K= = − − ⋅Θ ⋅ −

T
x x x x x x  (11) 

where Θ is a D x D diagonal matrix with elements 
{ }0 ;  1d d Dθ ≥ ≤ ≤ .  
The elements of Θ are found by optimizing a bound on the 
generalization error [8]. The optimal value of θd measures 
the discriminative power of the dth component of vectors x. If 
θd is zero we can safely remove the corresponding compo-
nent. This can be considered as a feature selection step.  
The process of optimization is briefly presented below. For a 
more complete description the reader is referred to [8]. 
In [9] Vapnik proposed the following upper bound on the 
leave-one-out error. 

 221P R w
L

=  (12) 

The radius R of the smallest sphere containing the training 
vectors can be found by solving the following optimization 
problem: 
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under constraints 
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In order to find the optimal value for θd, one can compute the 
derivative of P with respect to θd and perform a gradient step 
algorithm. As the optimal solution of Eq. (8), that we note α 
implicitly depends on θd the chain rule is applied. 
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The following results can be obtained 
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where K is the matrix whose elements are jk j k jkK y y K= , 

0l
Kα ≠ is the matrix obtained after removing the elements cor-
responding to the nonsupport vectors from K and 0l

Yα ≠  is the 
matrix whose elements are the labels of the SVs. 
The parameter θd is updated as follows: 

d d
d

Pθ θ ε
θ
∂

← −
∂

 

where ε is a user defined learning factor. 
 
IV. RESULTS AND DISCUSSION 
 
Two male right handed subjects participated in the experi-
ments. The signals from electrodes C3 and C4 [1] were 
measured at a rate of 128 Hz. The reference was placed in 
Cz. In addition, an electrode was placed at each eyebrow for 
detecting ocular artefacts.  
The subjects were asked to perform two types of imagined 
mental activities, namely left and right index finger move-
ment (MA1 and MA2 respectively). Half second segments of 
EEG (EEG trials) were classified. 
Five hundred (artefacts-free) EEG trials per MA and per sub-
ject were selected for experimentation. 
The training set was composed of 200 randomly selected 
EEG trials per MA, the generalization error rate was esti-
mated on the remaining 600 EEG trials. 
For the Fourier analysis, we computed the power of the two 
Herz frequency bands uniformly spaced in the 2 to 40 Hz 
frequency range. Thus, a vector of 38 components was ob-
tained for each EEG trial. 
As the modulus of the CTFR (for real signals) is symmetrical 
with respect to the origin we can compute the CTFR at 32 
time lags and 32 frequency lags. Thus, a vector of 4096 
components was obtained for each EEG trial. 
The estimated error rate associated with the Fourier and 
CTFR analysis are represented in Figure 2. The theoretical 
error bound (Eq.(12)) is also represented for comparison.  
Furthermore, the error rate obtained with a linear discrimi-
nant analysis (LDA) based classification is depicted in 
Figure 3. 
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Figure 2. Classification error rate for Fourier and CTFR 
based features. 

0 .2 5

0 .3 5
0 .3 2

0 .4 3

0

0 .1

0 .2

0 .3

0 .4

0 .5 L D A  b a s e d  c la s s if ic a tio n
e rro r ra te

S u b je c t 1
F o u r ie r

S u b je c t 1
C T F R

S u b je c t 2
C T F R

S u b je c t 2
F o u r ie r

 
Figure 3. Error rate for the LDA based classifier. 

From the results reported on Figure 3, one can say that the 
Fourier analysis provides better results when the classes are 
assumed to be linearly separable. This is an obvious result 
since each feature vector’s component is considered inde-
pendently in the LDA based classifier, and the Fourier com-
ponents reflect global characteristics of the signal while the 
CTFR components are local measures that are dependent one 
another.  
In Figure 2 the error obtained with the CTFR analysis is 
smaller than in the Fourier case. This means that the CTFRs 
corresponding to the two MAs considered here are better 
discriminated when nonlinear separation is assumed. Indeed, 
the classification error for the CTFR based features is con-

siderably smaller when a SVM allowing for nonlinear deci-
sion boundaries is used. 
 
V. CONCLUSIONS AND FUTURE WORK 
 
The flexibility requirements imposed on the classification 
strategy, in the framework of BCI applications are satisfacto-
rily fulfilled by an SVM based classifier. The solid theoreti-
cal foundations of the SVM allow us to optimize several 
parameters of a Kernel function using analytical methods. 
The overfitting is cleverly avoided by controlling the trade-
off between the training error minimization and the learning 
capacity of the decision functions. Finally, the decision func-
tion parameters can be easily updated because they depend 
on the SVs only. 
Features based on the time-frequency interaction between the 
signals coming from different electrodes provide better re-
sults in terms of classification error rate. These features can 
efficiently separate the classes when nonlinear decision 
boundaries are constructed. 
Kernel based methods can be used in the context of novelty 
detection for outliers detection [5]. We intend to utilize this 
approach for providing the feedback during the training ses-
sions, in order to make the user confine his mental activity, 
corresponding to a given MA into a small region in the fea-
ture space. 
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