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Human-computer interface
(HCI) has been a growing
field of research and develop-
ment in recent years [1]-[4].

Most of the effort has been dedicated to the
design of user-friendly and ergonomic sys-
tems by means of innovative interfaces such
as voice, vision, and other input/output de-

vices in virtual reality [5]-[15]. Di-
rect brain-computer interface
(BCI) adds a new dimension to
HCI [16]-[23]. Interesting re-
search in this direction has already

been initiated, motivated by the hope of
creating new communication channels for
persons with severe motor disabilities. In
this article, we approach the problem of
BCI from the viewpoint of interactions in a
multimedia-rich environment for the gen-
eral consumer market. However, this is by
no means incompatible with applications
for motor impaired subjects.

There is a general consensus that BCI rep-
resents a new frontier in science and technol-
ogy. One of the challenging aspects is the
need for multidisciplinary skills to achieve
this goal. The growing field of BCI is in its
infancy, and a significant amount of research
is still needed to answer many questions and
to resolve many complex problems.

This article raises various issues in the
design of an efficient BCI system in multi-
media applications. The main focus will be
on one specific modality, namely electroen-
cephalography (EEG)-based BCI. In do-

Touradj Ebrahimi, Jean-Marc Vesin,
and Gary Garcia

C
IR

C
U

IT
©

19
97

JO
H

N
F

O
X

X
IM

A
G

E
S

,H
E

A
D

:©
19

95
P

H
O

T
O

D
IS

C
,I

N
C

.

14 IEEE SIGNAL PROCESSING MAGAZINE JANUARY 2003



ing so, we provide an overview of the most recent
progress achieved in this field, with an emphasis on signal
processing aspects.

Human-Machine Interface
in Multimedia Communication
Communication—A Definition
One of the main characteristics of humans, as opposed to
animals, resides in their extended ability to communicate.
The central role of communication in society, culture, and
economy increases ceaselessly. Within this context, a first
question is “What defines communication?” Several an-
swers can be envisioned. Here, we use a simple one which
refers to communication as a process to express and share
experiences between humans. Such an experience can be
either real or imaginary. Communication took place from
the early days of cave men when they told stories around
the fire and drew sketchy figures on the walls of their
caves. Modern communication is not different, except in
its sophistication and efficiency. An evolution in commu-
nication would consist of improving the quality of the ex-
pression and that of the shared experience without
inherently modifying its underlying nature. Examples of
such evolution are the moves from black-and-white tele-
vision to color, to high definition, to stereo, to three-di-
mensional (3-D) holographic images. Following this
logic, a revolution in communication would refer to a
change at the fundamental level, either due to new modal-
ities or to the addition of new dimensions. A trivial exam-
ple is that of written book and press, which allowed for
communication to take place in an asynchronous way.
Anyone can read and enjoy the writings of his favorite au-
thor at any time. The same is true for photography, which
can grasp a scene and immortalize a moment.

Based on the above, a second question is “What will be
the next revolution in communication?” This difficult and
often posed question is not easy to answer. As in the past
the fate of communication will be shaped by many trends.
Probably the two most significant will be those in media
technologies on one hand and the interface between hu-
mans and machines on the other. Below we briefly describe
each trend but will focus on the second trend.

New Media
An essential element in any communication is the con-
tent. Content can be seen as the recipient in which we ex-
press ourselves. In the history of mankind, we have been
successful in finding multiple ways of expression. The ob-
vious audio (music, song) and visual (painting, photog-
raphy, film) expressions are by no means the only
channels available to us. Mechanisms of expression stimu-
lating all our senses, such as haptics (sculptures, cloth-
ing), olfaction (perfumes), and taste (cuisine) have
always had a strong impact in culture and art. Electronic
and digital communication has not been very successful

in taking full advantage of content beyond audiovisual
modalities as vectors of expression due to limitations in
technology and science for acquisition, representation,
manipulation, and generation of such content.

In the meantime, efforts have been made to further the
limits of expression as far as audiovisual content is con-
cerned. Progress in virtual, augmented, and mixed reality
is a good indication that science and technology can con-
tribute in defining new paradigms of expression
[64]-[66]. Advances in electronics, software, and com-
munication technologies not only allow for the more effi-
cient production, distribution, and consumption of
traditional media but also will extend what is defined as
media today. New media include modalities such as 3-D
video, photo-realistic 3-D, and animated 3-D models and
even scenes built from synthetic and natural objects com-
ing from multiple sources. In the near future, digital me-
dia will eventually include totally new sensory
information such as those mentioned above, aiming at
stimulating all our senses and bringing us new possibili-
ties of expression and experiences.

The Weak Link in Communication
Somewhere in the tumbling evolutions of communica-
tion, tools found their place in between communicating
humans. Pen and paper are simple examples of such tools.
These tools were further improved to become machines,
of which computers are an important representative. Be-
cause of the existence of machines and computers in the
chain of communication between humans, a new prob-
lem was identified: how to improve the communication
between machines. This was a central focus of science and
technology in the 20th century and continues to be so,
leading to various disciplines and technologies which are
still evolving. The last two decades have witnessed tre-
mendous progress in communications. This progress has
succeeded to make communication between machines
the strong link in the information chain, somewhat un-
dermining, if not ignoring, the importance of the links
between humans and machines. In fact, despite the
above-mentioned progress in connecting machines, we
still use rather primitive interfaces to communicate with
them. The several-fold increase in computer performance
and communication channel bandwidth does not seem to

JANUARY 2003 IEEE SIGNAL PROCESSING MAGAZINE 15

Examples of Revolutions and Evolutions
in Communications

Story telling and
cave drawing

Books and written press

Photography Telegraph

Telephone Radio and music recording

Cinema Television and video recording

Internet Mobile communication



properly reflect in human-machine interfaces, and the
good old keyboards, pointing devices, and displays still
assure the majority of our interactions with computers. It
seems as if Moore’s Law has not applied with the same
rigor to interfaces between humans and computers. Re-
cently, other more natural communication modalities
such as speech recognition and synthesis have paved the
way out of this situation. Research and development in
these areas indicate that there is hope that human-ma-
chine interaction can extend to other modalities such as
interaction through smart cameras (vision), haptics
(touch), olfaction (smell), and others. Most current ef-
forts aim at adapting the interface to our natural senses or
to replace them. Visual sensors mimic the human eye in
machines to allow them to see or at least to interpret vi-
sual cues emanating from a user. Haptic devices allow ma-
chines to feel and measure pressure for machines to react
in a more natural way to commands and actions. Like-
wise, they can produce haptic or even olfactory feedback
to provide users with a richer experience, exciting senses
beyond those of conventional audiovisual information. Is
there a way to extend the man-machine interface beyond
this? Are there ways to altogether bypass the natural inter-
faces of a human user such as his muscles and yet establish
a meaningful communication between man and ma-
chine? Many in the research and development community
assert that this is within possibilities of today and near fu-
ture state of the art.

All proposed solutions seem invariantly to point to the
source of our senses and emotions: the human brain.

Brain Activity—A New Communication Modality
Recent progress in technology allows us to probe and
monitor physiological processes inside our body, for
which no natural interfaces exist. In particular we can
measure our blood pressure, heart rate variability, muscu-
lar activity, and brain electrical activity in efficient and
noninvasive ways. It is natural to assume that such activity
can be used as information in new communication chan-
nels. In this article, we focus on brain electrical activity
and review methods and procedures aiming at detecting
and interpreting such signals for the purpose of com-
mand and control in a multimedia environment. A variety
of noninvasive methods are now available to monitor
brain functions. These include EEG, magentoen-
cephalography (MEG), positron emission tomography
(PET), and functional magnetic resonance imaging
(fMRI) [23]. PET, fMRI, and MEG are expensive and
complex to operate and therefore not practical in most ap-
plications. At present, only EEG, which is easily recorded
and processed with inexpensive equipment, appears to of-
fer the practical possibility of a noninvasive communica-
tion channel. Furthermore, EEG signals are rather well
studied, and there is evidence that subjects can control
them to some extent in a voluntary manner.

An Overview of BCIs
Background
Although the EEG is an imperfect, distorted indicator of
brain activity, it remains nonetheless its direct conse-
quence. Also, it is based on a much simpler technology
and is characterized by much smaller time constants when
compared to other noninvasive approaches such as MEG,
PET, and fMRI. When it became possible to process digi-
tized EEG signals on a computer, the temptation was
great to use EEG as a direct communication channel from
the brain to the real world. Early research programs in
that direction were sponsored by defense agencies. One
often cites the project headed by Dr. J. Vidal, director of
the Brain-Computer Interface Laboratory at UCLA, as
the first successful endeavor at building a BCI [24]. Some
years later, works such as [25] confirmed that it was in-
deed possible to determine reasonably well what mental
task (out of a specified small set of tasks) was performed
by a subject on the basis of his EEG. In this reference,
mental task discrimination used a feature compounding
asymmetry between right and left hemispheres in all fre-
quency bands and on all electrodes.

The last ten years have witnessed an explosion in the
area of BCI research. A cornerstone was the first work-
shop on BCI technology that took place in 1999, in Al-
bany, New York, where 22 research groups presented
their work [21]. Among them were the Graz group [18],
the Neil Squire foundation [19], the Wadsworth Center
[17], the Tuebingen group [22], and the Beckman Insti-
tute [26]. A formal definition of the term BCI has been
set forward [23]: “A brain-computer interface is a com-
munication system that does not depend on the brain’s
normal output pathways of peripheral nerves and mus-
cles.” The framework is now clearly defined, and the criti-
cal mass is reached. An excellent review of all the efforts to
make BCI technology a mature field of research can be
found in [23].

The main motivation today is to develop replacement
communication and control means for severely disabled
people, especially those who have lost all voluntary mus-
cle control (locked in). As expressed by [26], the poten-
tially huge human impact of such developments does not
result in high levels of funding or commercial interest.
BCIs are classified as dependent or independent. De-
pendent BCIs rely upon voluntary ocular activity to gen-
erate a specific EEG pattern, i.e., a visual evoked potential
(VEP) provoked by redirection of subject’s gaze [27],
[28] and as such do not fully satisfy the above definition.
On the contrary, independent BCIs do not imply recourse
to muscular intervention of any kind and constitute by far
the principal topic of investigation.

General Structure of an Independent BCI
To create a communication channel from the brain to a
computer, a BCI must first acquire signals generated by
cortical activity. Most existing BCIs are based on an EEG.
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Figure 1 shows an example of a typical EEG acquisition de-
vice in BCI applications. Some preprocessing is generally
performed due to the high levels of noise and interference
usually present. Then features related to specific EEG com-
ponents must be extracted. Finally, some mapping from
the feature vectors to device commands is exerted. In a vast
majority of existing BCIs these commands take the form of
a selection of a specific letter, in a letter set, or cursor dis-
placement on a computer screen (Figure 2).

Clearly, to obtain an effective communication, a fea-
ture-to-command translation must be established. In al-
most all BCIs this is done through one or more training
sessions composed of trials. During each trial the subject
is asked to perform some mental task (typically from a set
of two to five mental tasks), and the EEG features corre-
sponding to this task are extracted. After enough trials, a
classification algorithm can take care of the fea-
ture-to-command translation. In test sessions, the BCI
system initiates a succession of trials. During each trial the
subject performs the mental task corresponding to the
commands he wants executed. A feedback is usually pro-
vided, i.e., the extracted feature vector is translated into a
command that is executed (for instance a cursor moves to
the left). This synchronous mode of operation may be un-
fit in control applications such as mechanical device con-
trol. Reference [29] presents an interesting approach for
an asynchronous BCI, in which an additional EEG fea-
ture set is used by the subject to initiate a new trial. Note
also what is called in [30] the man-machine learning di-
lemma. Feedback constitutes effectively an important as-
pect of human learning. And in a BCI, the subject uses
feedback information to improve the production of an
EEG activity such that fewer errors occur in fea-
ture-to-command translation. However, repeated failures
during a session may induce subject’s frustration and
modification of his mental state. Additionally, the feed-
back itself, which is often visual, can cause a perturbation
in EEG activity.

Signal Processing Aspects
Movement-induced perturbations in the EEG can be
avoided by a careful monitoring of the experi-
ments in terms of subject discomfort, so
electrooculogram (EOG) and electromyo-
graphic (EMG) artifacts constitute the major
source of trouble in EEG processing. In some
works such as [31] and [32], the contami-
nated EEG trials are detected and discarded.
In [33] a nonlinear filtering approach is pro-
posed for EMG artifact cancellation. The
EOG can be estimated by placing a pair of
electrodes near one eye. This additional infor-
mation is first used for direct subtraction from
the EEG [34]. A more elaborate technique
based on adaptive interference cancellation is
proposed in [35]. It seems, however, that
global techniques [36], that is, using simulta-

neously the information from all electrodes, represent the
most promising approach. In [37] principal component
analysis (PCA) is used to decompose a multielectrode
EEG trial in linearly uncorrelated components, and then
reconstruction is performed by omitting unwanted com-
ponents such as EOG. A now familiar improvement con-
sists of using independent component analysis (ICA)
[38], [39] instead of PCA [40]-[42]. A quantitative eval-
uation [43] confirms the superiority of ICA with respect
to other techniques. Another interest of ICA lies in the
fact that it can also be used for event related potentials
(ERPs) extraction [44].

Many existing BCIs use features related to EEG events
known to be representative of specific brain activities. Those
events may be characterized in the time domain, such as the
slow cortical potentials (SCPs) or P300 evoked potentials.
SCPs are slow voltage changes occurring on time scales
from 0.5 to 10 seconds and associated with movement and
cortical activation [45], [46]. SCPs have been shown to be
controllable by a subject and have been used in the
so-called thought translation device [22]. The evoked po-
tential “P300,” a positive peak, takes place about 300 ms
after an infrequent or significant stimulus imbedded in a
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series of routine stimuli. As such, it can be used to detect the
subject’s choice by proposing in turn the possible options.
This approach has been implemented in [26]. But much
emphasis in the BCI literature has been put on frequency
events, namely mu and beta rhythms (see “The Electroen-
cephalogram”). Those rhythms are linked to motor output
cortical activity but also to preparation of movement,
which makes them suitable for BCI design. In several re-
search works such as [18], [17], [31], [32], [47], and [48],
the mental tasks consist of imagined movements, typically
right- and left-hand imagined movement in a binary choice
BCI. Spatial filtering such as surface Laplacian [31] or the
method of common spatial patterns (CSPs) [32], [48] has
also been employed to enhance those frequency features.

An interesting approach to frequency component
selection, based on an extension of Kohonen’s LVQ [49],
is described in [50]. Finally, some BCIs use features not di-
rectly related to specific brain activities, such as those pro-
posed in [51] that are based on autoregressive parameters.

The choice of the classification method for the fea-
ture-to-command translation, while important, is prob-
ably less crucial for a successful BCI operation. A
decision tree is used in [31], a local neural network in
[53], a Bayesian network in [54], and in [55] a time-de-
pendent multiplayer perceptron (MLP) is proposed as
an improvement upon conventional MLP [55]. What
matters, however, is the adaptability of the classifier,
which permits adjustment of the BCI to short- and
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The Electroencephalogram

An electroencephalogram (EEG) is a recording of the
very weak (in the order of 5-100 µV) electrical poten-

tials generated by the brain on the scalp. EEG has been
the subject of much fantasy in some popular books and
movies. Its origin seemed to imply it was a direct expres-
sion of the cerebral processes, but unfortunately (by
some aspects one could say fortunately) reality is quite
different. The layers of cerebrospinal fluid, bone, and skin
that separate the electrodes from the brain itself induce
much attenuation and volume conduction. The former
causes a poor signal to interference ratio and the latter an
ample smoothing of the electrical activity of the cortex.
Also, many physiological factors influence the EEG.
The pioneering work of Berger in the 1930s led him to
discover the existence of structured patterns in the EEG,
still under study today. Later, analysis of EEG activity, per-
formed visually on paper records, was aimed at clinical
purposes such as detection of epilepsy and other severe
pathologies. The huge advances in acquisition devices
and computers in the last 20 years have triggered a host
of research on the EEG. If no mind-reading machine is
likely to appear, some of the links between EEG activity
and sensorimotor and mental processes are now at least
partially understood.

The EEG is recorded as a potential difference between
a signal electrode placed on the scalp and a reference
electrode (generally one ear or both ears electrically con-
nected). A conductive paste is used to decrease contact
impedance and electrode migration. Due to signal levels,
high-gain, high-quality amplifiers are placed between
the electrodes and the acquisition devices. The Interna-
tional Federation in Electroencephalography and Clinical
Neurophysiology defined a standard called the 10-20
electrode placement system (see Figure 5). The elec-
trode names are standardized too and correspond to

their location on the scalp. For instance, the two occipital
electrodes are called O1 and O2. The average frequency
content of the EEG imposes a sampling rate in the range
100-200 Hz, typically 128 Hz.

It is common practice to consider specific frequency
bands thought to be associated with specific brain
rhythms: the alpha (8-13 Hz), beta (13-30 Hz), delta
(0.5-4 Hz), and theta (4-7 Hz) bands. Alpha waves, of
moderate amplitude, are typical of relaxed wakefulness
(idling). Lower-amplitude beta waves are more promi-
nent during intense mental activity. Theta and delta
waves are normal during drowsiness and early
slow-wave sleep. Recently a distinction has been made
between idling activity focused over visual cortex, still
called alpha rhythm, and idling activity focused over mo-
tor cortex, now called mu rhythm. The latter seems to be
associated to beta rhythm.

Another modality of EEG that is largely used in studies of
human cognitive processing is the evoked potential (EP),
or, to use a more neutral denomination, the event-related
potential (ERP). EP is the voltage change in EEG activity re-
corded (typically during a one-second trial) after a stimulus
has been presented to the subject. This stimulus is in most
cases an auditory or a visual one. In the latter case one of-
ten uses the term visual evoked potential (VEP).

The main causes for EEG perturbation, particularly at
frontal, temporal, and occipital electrodes, are the
electrooculogram (EOG) and the electromyogram
(EMG). These perturbations are most often called arti-
facts in the relevant literature. EOG is due to fluctuating
electrical fields generated by eye movement, with the
eyeball constituting an electrical dipole. EMG is due to
the electrical activity of scalp muscles.
Further useful references on EEG and ERP are [61] and
[68]-[70].



long-term variations in a subject’s EEG activ-
ity. Typically adaptation should take place
during test sessions.

Example of a Working BCI System
Architecture and Operational Modes
This section presents the overall architecture
of a BCI system which was built to carry out
research and development in BCIs for multi-
media applications [71]. The system has been
designed to be very modular and flexible, so as
to exploit it in a large number of BCI applica-
tions. In a typical application, the resulting
EEG pattern of a specific mental activity
(MA) is first learned by the computer in an
initial training session and automatically rec-
ognized in ulterior sessions.

The training process is mutual as the hu-
man subject and the computer learn how to
produce and how to recognize a given EEG
pattern corresponding to an MA.

Real-time interaction between the subject and the
computer is therefore an essential part of the system. For
reasons of efficiency, the BCI system has been designed
around five operational modes (OMs) going from simple
to more sophisticated.

Visualization OM
In this OM, the user can see a visual representation of
her/his EEG activity in real time. Particular features asso-
ciated with EEG signals, such as the power values in the
typical frequency bands (delta, theta, alpha, and beta),
inter-electrode coherences, and total power at a given
electrode, are mapped to a 3-D virtual environment and
regularly updated. The objectives of this OM are calibra-
tion and familiarization of the subject with the system.

Training Without Feedback OM
In this OM, audio or visual cues are presented to the sub-
ject for him to perform predefined mental activities. This
OM allows the computer to learn those EEG patterns as-
sociated with particular mental activities. The learning
process is carried out offline. Reference models are built
for each predefined MA.

Training with Feedback OM
In this OM, the subject is asked to perform an MA and
feedback is provided. The feedback is positive when the
computer recognizes the MA and negative otherwise.
This recognition is based on the reference models of the
mental activities calculated during the training without
feedback OM. This OM allows the subject to modulate
his electrical brain activity to minimize the misclassifi-
cation rate. As a matter of fact, several series of training

with and without feedback are necessary to achieve good
recognition rates.

Control OM
As the result of the previous experiments is a model of MA,
the subject can start to control the system by producing the
mental activities for which the system has been trained.
Thus, visual or sound cues are no longer necessary.

Multiuser OM
This OM exists in a multiuser game where the goal is to
gain control of an object by performing an MA. This kind
of training paradigm was chosen because of its more stim-
ulating effect when compared to a simple feedback.

The above experiments require a carefully designed
BCI system in terms of flexibility, speed, and EEG real-
time processing. A solution fulfilling these requirements
is a distributed system in which each component provides
specific services to the others in an efficient and transpar-
ent way. Figure 3 depicts the general block diagram of this
BCI system.

Three component types can be distinguished:
� a signal production component whose responsibility is
to digitize the acquired EEG signals and transmit them to
the processing units
� a signal processing component that is in charge of the
signal preprocessing, feature extraction, model building,
and classification
� a rendering component that is used to display visual or
auditory cues and for rendering possible feedback.

The communication rules between these components
were designed according to the CORBA specifications
and the algorithms were implemented in Java, C, and
MATLAB.
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Signal Preprocessing
As said before, EEG signals can be contaminated by ocu-
lar and muscular artifacts. Ocular artifacts are particularly
undesirable because of their large amplitude. Therefore,
we implemented an online elimination of those EEG seg-
ments that are contaminated by ocular artifacts.

The EEG signal is segmented into half-second seg-
ments and the variations in the signal power at electrodes
Fp1 and Fp2 (Figure 4) are evaluated. Whenever the
power values at both electrodes change abruptly the cor-
responding EEG segment is discarded (Figure 5).

Feature Extraction and Classification
The BCI system receives commands sent by the user in
the form of EEG patterns produced during MAs.
Typically the BCI system analyzes EEG segments (EEG
trials) and extracts features from them that are compared
with MA models computed during the training phase.
The features extracted from EEG trials, the models com-
putation, and the comparison methods are interdepen-
dent and constitute one of the most important design
aspects in a BCI system.

The single EEG trial-classification problem can be
stated as follows. Given a labeled set of EEG trials (train-

ing set) that were recorded during the performance of
known MAs, we wish to characterize each MA by a model
so that we can compare an unknown EEG trial to each
MA model and assign it to its nearest MA model.

The features that are extracted from EEG trials deter-
mine the nature of the MA models and the comparison
method. Among the possible choices, we focused on two
approaches based on a multivariate autoregressive analy-
sis of EEG trials and on a joint time-frequency-spatial
analysis of the correlations between the univariate com-
ponents of EEG trials.

Multivariate Autoregressive Analysis
The multivariate autoregressive (MVAR) representation
of a discrete time N-multivariate signal S k( ) consists of a
weighted linear combination of past observations plus a
random, uncorrelated input

S k M l S k l e k
l

p

( ) ( ) ( ) ( ).= − +
=
∑

1 (1)

In (1), S k( )and e k( )are vectors of dimension N and the
M l l p( ), ,...,=1 are matrices of dimension N N× whose
coefficients are called MVAR coefficients. The MVAR
coefficients are estimated with a least squares procedure.

The MVAR coefficients were chosen
because they reflect the auto and
cross-spectral relationships between the
components of a multivariate signalS k( ).

In the case of EEG trials, the set of
MVAR coefficients calculated for each
trial constitutes its feature vector. We
used a single layer neural network (NN)
with two possible output values (0 or 1)
for each MA pair. The output of the NN
corresponding to an MA pair indicates to
which MA the input EEG trial is closest.
With this method, the classification of an
unknown EEG trial S is performed in the
following way. The MVAR coefficients
of S are estimated and grouped into a fea-

ture vector which is fed into different NNs. A majority rule
is then used on outputs to classify the EEG trial.

Joint Time-Frequency-Space Correlation (TFSC) Analysis
In this approach, the EEG trials are analyzed with respect
to their correlative time-frequency representation
(CTFR). The CTFRs provide a measure of the interac-
tion strength between groups of neurons as a function of
the time and frequency. Previous studies emphasized the
importance of these parameters to classify brain activity
[57]. The CFTR is commonly characterized by the ambi-
guity function [58]. In the following we limit ourselves to
the continuous time and frequency representations for
sake of clarity. A discrete domain formulation can be
found in [72].

20 IEEE SIGNAL PROCESSING MAGAZINE JANUARY 2003

Common Reference

Fp1

F3

T3

C3

T5 P3

O1

Pz

O2

P4
T6

C4

T4
A2

Cz

F4Fz

Fp2

A1

+

+

+

+

–

–

–

–

� 4. International 10-20 system placement for an EEG acquisition.

Fp1

Fp2

Discarded EEG Segment Because of the Abrupt
Power Changes in the Signals Recorded at
Electrodes Fp1 and Fp2

0.5 s

0 1 2 3

� 5. Example of preprocessing of EEG signals.



The ambiguity function of a multivariate signal
S t s t s t s tN

t( ) [ ( ) ( ) ( )]= 1 2 K is defined in (2). The
univariate signals s t Nl l( ); ,...,=1 are the spatial compo-
nents of S t( )

A S t S t dtS
H

j t

( , )θ τ τ τ θ

= +



 ⋅ −



∫ 2 2 (2)

where H stands for the conjugate transpose andθ, τare the
frequency and time lags, respectively. Equation (2) can be
written as

[ ]A A m n N

A s t s t

S mn

mn m n

( , ) ( , ) ,

( , ) *

θ τ θ τ

θ τ τ τ
= ≤ ≤

= +



 −

1

2 2




∫

j t

dt
θ

.
(3)

The diagonal terms of AS ( , )θ τ are called the auto ambigu-
ity functions and the off-diagonal terms the cross-ambi-
guity functions.

In [59] Cohen defined the characteristic function in
the univariate case as the product between the ambiguity
function and a two-dimensional function called the ker-
nel. In an analog way we can define the multivariate char-
acteristic function as

[ ]M A m n NS mn mn( , ) ( , ) ( , ) ,θ τ θ τ θ τ= φ ≤ ≤1 . (4)

The two-dimensional functions φmn ( , )θ τ are the ker-
nels. Results in the univariate case [60] demonstrated
that it is possible to design a
kernel that is optimized for
the classification in the θ τ−
plane. We generalized these
results to the multivariate
case by considering N 2 ra-
dially Gaussian kernels
parameterized by their
shape [60].

The characteristic func-
tion of a multivariate signal
provides information on its
joint time, frequency, and
space correlations. The off-
diagonal terms of the matrix
MS ( , )θ τ (4) represent the
spatial correlations. If we
transform the multivariate
signal to obtain spatially de-
correlated components, we
then reduce the number of
kernels to optimize from
N 2 to N [36]. The decorre-
lating transformation is de-
signed to obtain trans-
formed components (direc-
t ions) that maximal ly
separate the classes [67].

When working with transformed components only N
kernels have to be determined. They are separately opti-
mized using an iterative procedure that updates their shape
so as to enhance those regions in the θ τ− plane where class
separation is maximal [36]. The resulting characteristic
functions are linearly separable.

Results and Discussions
Three types of mental activities, mental counting (MA1)
and imagined left and right index movements (MA2 and
MA3, respectively), were selected. Three healthy male sub-
jects (S1, S2, and S3) participated in the experiments.

Five 20-minute sessions were carried out. In the first
training session no feedback was provided. In the next ses-
sions the model references were updated at the end of each
session and used in the next session to provide feedback.

The protocol used in a session where feedback was
provided is shown in Figure 6. During the first five min-
utes the visualization OM was applied to calibrate the sys-
tem and familiarize the user with the system. The rest of
the session was divided into three five-minute slices.
These five-minute slices were divided into rest and re-
cording periods. During a recording period a feedback
was provided each half-second. The half-second segment
immediately after the visual cue was discarded because of
the influence of the visual evoked potentials.

EEG signals were recorded from electrodes Fp1, Fp2,
C3, C4, P3, P4, O1, and O2 of the 10-20 international sys-
tem [61]. Among these signals the last six were used for the
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classification, and Fp1, Fp2 for artifact detection and re-
moval [36].

After the first training session where no feedback was
provided, the weights of the NNs and the optimal value
[62] for the model order p for the MVAR approach and the
kernel parameters for the time-frequency-space correlation
(TFSC) analysis were determined. From sessions two to
five a continuous feedback was provided to the subject.

The results in terms of error rate are shown in Figures 7
and 8. As can be observed from these figures, the classifi-
cation error rate decreased over the sessions for both ap-
proaches. This indicates that the feedback provided to the
user and the update of the MA models at the end of each
session positively influenced the overall performance of
both user and BCI. The same trend can be observed in
other studies where the feedback strategy was evaluated.

The second approach was better in terms of error
rate. This last point indicates that the analysis of the co-
herent neuronal activity in time, frequency, and space ap-
pears to be more appropriate for the recognition of
mental activities.

Perspectives and Challenges

BCI technology, by its intimate connection with the won-
der of human thought processes, is a fascinating research
field. The existing BCI systems have demonstrated that di-
rect information transfer from the brain to a device is in-
deed possible, but many lines of investigation are wide
open for multidisciplinary teams. One of the first problems
to address is the limitation of the information transfer rate,
which is at best currently 20 bits/min. It seems dubious
that BCI protocols based on mental task classification can
improve this figure by much. A simple reason for this is the
practical impossibility for a subject to switch between
mental tasks, even simple ones such as imagined move-
ments, at time intervals smaller than two or three seconds.
Finer spatial and temporal scales of analysis as well as deter-
mination of more stable and more reliable features could
cope with more complex mental tasks. Other cortical activ-
ities such as emotions could be employed to initiate infor-
mation transfer. In the framework of performance
improvement, let us mention the very sensible advocacy in

[23] for the design of reliable tools for perfor-
mance assessment, in order to assure scientific
credibility. Information transfer rate [23], [63] is a
first step in this direction.

Another very challenging aspect in BCI tech-
nology is the interplay between the BCI system
and the subject, in terms of adaptation and learn-
ing. Ideally, the BCI system should adapt to
changes in subject EEG activity and the subject
should also learn to better control his EEG activ-
ity, but these conjugate tasks should be as harmo-
nious as possible. Finally let us note that the
limitations of EEG-based BCI systems seem less
important in a multimodal HCI. The EEG activ-
ity is, by its very nature, “orthogonal” to more
classical modes. Inclusion of a BCI in a
multimodal interface thus results in a net gain of
information transfer capability.
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