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Abstract

Several approaches have been used to trace axonal trajectories from diffusion MRI data. If such techniques were first developed in a
deterministic framework reducing the diffusion information to one single main direction, more recent approaches emerged that were
statistical in nature and that took into account the whole diffusion information. Based on diffusion tensor MRI data coming from normal
brains, this paper presents how brain connectivity could be modelled globally by means of a random walk algorithm. The mass of
connections thus generated was then virtually dissected to uncover different tracts. Corticospinal, corticobulbar, and corticothalamic tracts,
the corpus callosum, the limbic system, several cortical association bundles, the cerebellar peduncles, and the medial lemniscus were all
investigated. The results were then displayed in the form of an in vivo brain connectivity atlas. The connectivity pattern and the individual
fibre tracts were then compared to known anatomical data; a good matching was found.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Recent developments in diffusion MRI have put this
imaging modality to the forefront of interest among the
neuroscientific community. The success of diffusion imag-
ing is related to the fact that during their random, diffusion-
driven displacements, water molecules probe tissue struc-
ture at a microscopic scale well beyond the usual imaging
resolution (LeBihan et al., 2001). It has been shown that, in
the brain, ordered axonal structure, cell membrane, and
myelin sheath strongly influence water diffusion (Beaulieu
and Allen, 1994; Beaulieu, 2002) and that there is a direct
link between water diffusion and axonal orientation and
integrity (Coremans et al., 1994; Wieshmann et al., 1999).
In fact, when diffusion tensor (DT) imaging is performed
within a compact tract with parallel running axonal trajec-

tories like the corticospinal tract, the DT is strongly aniso-
tropic and its principal eigenvector corresponds to the di-
rection of the fibre tract.

These observations were used by several researchers to
develop fibre tracking algorithms that all have the same aim:
inferring from a DT field the axonal or at least bundles of
fibres trajectories—the diameter of an axon being well be-
yond the resolution of a current MRI scan. Impressive
results have been achieved and a wide spectrum of appli-
cations is foreseen. A better understanding of diffusion
properties in many brain-related diseases, e.g., multiple
sclerosis (Maldjian and Grossman, 2001; Filippi et al.,
2001), dyslexia (Klingberg et al., 2000), Alzheimer’s dis-
ease (Rose et al., 2000; Bozzali et al., 2002), schizophrenia
(Lim et al., 1999; Foong et al., 2000), brain tumours (Field
et al., 2002; Mori et al., 2002a), periventricular leukomala-
cia (Hoon et al., 2002), as well as spinal cord injury
(Mamata et al., 2002) should benefit from those develop-
ments. The understanding of normal brain function needs
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not only the description of activated cortical areas, like that
provided by fMRI, but also a detailed description of the
underlying neuronal circuitry.

Most of the algorithms used to infer bundles of fibres
from DT imaging are based on a discrete resolution of the
integral curves of the vector field corresponding to the
reduction of the diffusion tensor to its largest eigenvector
(Conturo et al., 1999; Mori et al., 1999; Jones et al., 1999;
Basser et al., 2000; Tench et al., 2002). As opposed to those
deterministic integral path approaches, this work investi-

gates brain circuitry with a statistical random-walk-based
algorithm.

Material and methods

MRI data acquisition

The images used for this study were acquired with a 1.5
T clinical MRI scanner (Magnetom Symphony; Siemens,
Erlangen, Germany). The data were produced with a diffu-

Fig. 1. Virtual dissection of the occipitofrontal fascicle and various connectivity maps as an example of the methodology. (a and b) Colour maps with ROIs.
(c) Fibres passing a posteriorly placed yellow ROI. (d) Fibres selected in part c and also passing in the second anterior yellow ROI. (e) Fibres selected in
ROI (part d) and that do not pass outside the blue frame. (f) Fibres selected in part e that have a VI above the 20th quantile. (g and h) Statistical density maps
of the fibres selected in f.
Fig. 2. Corticobulbar and -spinal tracts. ROIs on colour maps, 3D views, and statistical density maps. (a) Frontopontine tract (yellow), (b) corticospinal tract
(blue), (c) parieto-temporo-pontine tract (green).
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sion-weighted single-shot EPI sequence using the standard
Siemens Diffusion Tensor Imaging Package for Symphony.
We acquired 44 axial slices in a 128 by 128 matrix size
covering the whole brain. The voxel size was 1.64 by 1.64
mm with a slice thickness of 3.00 mm without gap. Timing
parameters were a TR of 1000 s and a TE of 89 s. Diffusion
weighting was performed along six independent axes ac-
cording to Basser’s polyhedral tessellation (Basser and Pier-
paoli, 1998). We used a b-value of 1000 s/mm2 at a maxi-
mum gradient field of 30 mT/m. A normalizing T2 image
without diffusion weighting was also acquired. In order to
increase the signal-to-noise ratio, the measures were aver-
aged four times. An anatomical T1 magnetization prepared
3D rapid acquisition gradient echo (MPRAGE) was also
performed during the same session. The whole examination
lasted about 1 h. Images were obtained from two healthy

volunteers (one male and one female, both between 25- and
30-years old). Informed consent from both subjects was
obtained in accordance with institutional guidelines.

Data preprocessing

The data were processed with Matlab 6.1 (The Math-
works, Inc., Natick, MA, USA) running on a standard PC
(PIII, 500 MHz). The DT was computed for each voxel by
linear combination of the log-ratio images (Basser and Pier-
paoli, 1998). The data were then linearly interpolated in
order to obtain a volume with a 3D regular grid of 1.64 mm
by side (matrix of 128 by 128 by 79). We computed then
some useful scalar images like the fractional anisotropy
(FA) map (Basser and Pierpaoli, 1996) and a colour map
(Pajevic and Pierpaoli, 1999).

Fig. 3. Corticothalamic, corpus callosum, and limbic system projections. ROIs on colour maps and 3D views. (a) Thalamic frontal projections (green), (b)
thalamic superior projections (red), (c) thalamic posterior projections (yellow), (d) corpus callosum projections (orange), (e) cingulum (green) and fornix
(red). The lower right image is a projection of the fornix onto an axial slice.
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An important condition for any fibre tracking algorithm
to work properly is to use a good mask on the tensor data.
This mask prevents tracking in aberrant areas like the ven-
tricles or outside the brain. It forbids also areas where the
tensor data is uncertain for proper tracking of white matter
bundles, e.g., the cortex. Most authors used a binary thresh-
olded FA map as stopping criteria, sometimes combined
with a coherence measure of the principal eigenvector (Mori
et al., 1999; Jones et al., 1999; Basser et al., 2000; Tench et
al., 2002). We adopted a similar strategy but used a com-
bination of the normalizing T2-weighted image and the FA
map to build our mask. We used the T2 water enhancing
property to delineate the ventricles. The FA map was me-
dian filtered to eliminate the slight salt and pepper effect and
get homogeneous white matter regions, and then thresh-
olded at 0.2. Both binary thresholded images were then
multiplied in order to achieve precise white matter segmen-
tation. The T2 contribution to the mask was a separation of
the ventricles from the white matter and the FA mask
segmented the white–grey matter border. Using a relatively
low FA threshold and median filtering, the FA map avoided
rejection of white matter voxels of low anisotropy due to
fibre crossing or noise.

Statistical axonal trajectories

Water particles animated by thermal heat experience
random motion. This Brownian movement can be described
by a random walk model. It means that the particle trajec-
tory is made of a succession of jumps that are the realization
of a random variable. In an infinite homogeneous medium
the distribution of the random variable is an isotropic three-
dimensional Gaussian function whose variance is propor-
tional to the diffusion coefficient (Einstein, 1956). Living
tissue, or more specifically the human brain, is far from a
homogeneous medium. It is highly structured and highly
compartmented for water particles. Under those circum-
stances, the diffusion function deviates from an isotropic
Gaussian and becomes a complicated function of position
and diffusion time (Wedeen et al., 2000). Considering the
limitations inherent to a clinical scanner, limited acquisition
time and resolution, the DT model is a reasonable compro-
mise to reflect reality. It can be seen as a second order
approximation of the average diffusion coefficient over a
voxel in any direction of space (Frank, 2002).

In a voxel where all the axons travel in a unique direc-
tion, the measured DT exhibits strong anisotropy and the
first eigenvector is aligned with the axonal trajectory. But as
it was stressed by Pierpaoli et al. (1996) and confirmed by
von dem Hagen and Henkelman (2002) experiments, a
voxel that contains several populations of axons with dif-
ferent directions has a tensor whose shape will change
according to the proportion of each fibre population, mov-
ing toward a donutlike or spherical shape. In this situation,
the principal eigenvector loses its signification and tracking
becomes more hazardous. The principal eigenvector is also

very sensitive to noise, especially in areas of low anisotropy
(Jones, 2003). The family of tracking algorithms that we
could globally describe as deterministic reduce the tensor-
to a vector-field (Conturo et al., 1999; Mori et al., 1999;
Jones et al., 1999; Basser et al., 2000; Tench et al., 2002)
and consequently do not take into account the uncertainty of
the fibre direction. To address this issue we developed a
statistical fibre tracking algorithm based on two hypotheses.

● Considering a voxel, the probability of a fibre to prop-
agate in a given direction is proportional to the corre-
sponding diffusion coefficient. This assumption can be
justified by the works of von dem Hagen and Henkel-
man (2002) showing the positive correlation between
the diffusion coefficient and the fibre orientation prob-
ability.

● Axonal trajectories or more cautiously trajectories of
axonal bundles follow regular curves.

Based on these two ideas we constructed a random walk
model of a particle diffusing in a nonhomogeneous medium,
here a DT field, D�, with a curve regularizing constraint
emphasizing colinearity:

qi�1 � qi � ��i , (1)

�i � � �di � �i�1

��di � �i�1�
�i · �i�1 � 0

, (2)

di � Di
�ri , (3)

with ri a random vector uniformly distributed over a unit
sphere. The continuous trajectory of a particle in a 3D
Euclidean space is given by its time varying position vector
qi, where i is the discrete time step (0 � i � m). The curve
that the particle propagation generates grows along a unit
vector �i, that is a random direction vector modelling the
statistical nature of the diffusion process and the curve
regularizing constraint. �i is a weighted sum of the random
vector di, defined on the unit sphere and distributed accord-
ing to the local diffusive properties1 and the previous dis-
placement vector �i�1, enhancing colinearity. �i · �i � 1 �
0 is just an additional constraint to avoid backward jumps.
� is the step size (here � � 0.75), whereas � is an anisot-
ropy enhancing exponent. � is a power to the diffusion
matrix D. If � is put to 1 the algorithm gives a lot of weight
to possible fibre trajectories deviating from the main direc-
tion, whereas if � is large, the distribution is tightened
around the main eigenvector in which case the propagation
rule comes close to a classic main eigenvector-based fibre
tracking. We propose a value of 2 for � as a good compro-
mise between alternative path exploration and near main
diffusion direction propagation. � is a constant tuning the
relative importance of the random diffusion component vs

1 Here di is a single contraction between the nearest neighbour DT, Di
�,

and a random vector uniformly distributed over a unit sphere, ri.
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the curve regularizing term. As � approaches zero, the
global regular shape of the curve will be favoured, whereas
if set to a large number, more weight is given to the local
DT (here � � 1).

In order to map the connectivity of the entire brain,
random curves were initiated on a bootstrap of the white
matter. This means that a given proportion of the mask
voxels, e.g., 40%, were selected randomly to be an initiation
point for curves. From those voxels n curves (e.g., 10) were
grown in both directions. The curve elongation stopped
when a maximum of m steps were performed (e.g., 100,
depending of size of the step) or the border of the mask was
reached. The result was a statistical estimate of the entire
brain connectivity, modelled by a “huge spaghetti plate” of
about 100’000 curves. This operation, which needs to be
done only once for one DT-MRI dataset, took several hours
on our machine with unoptimized Matlab code.

Tract selection or virtual dissection

In order to visualize anatomical connections in the form
of separate identifiable tracts or bundles, a virtual dissection
in this modelled brain had to be performed. This was done
in two main steps; first, a selection by knowledge-based
region of interest (ROI) placement and second, selection by
fibre validity classification.

As Mori et al. (2002b) in a deterministic framework, we
defined here a ROI as a volume that selects fibres. The
manner those ROI were placed needed some attention. Be-
cause our approach toward fibre tracking was stochastic,
there was a potential risk to map aberrant connections,
although those should be very few compared to real tracts.
Therefore to avoid a possible bias in the results, we adopted
the following general approach:

1. The placement of a first ROI is chosen according to
the structure that shall be investigated, guided by the
knowledge coming from postmortem anatomical
studies.

2. The general structure of the tract appears, though it
might be mixed up with other pathways. Their origin,
termination, and trajectories can be appreciated.

3. The different tracts selected are identified by confron-
tation with the postmortem studies.

4. If necessary, a second or a third ROI is selected, in
order to separate the tract of interest from the others.

Axonal trajectories were modelled as a result of a stochastic
process, thus imbeding in the algorithm the orientational
uncertainty related to the DT (Pierpaoli et al., 1996; von
dem Hagen and Henkelman, 2002). Among the very large
number of curves generated, some accurately match reality
whereas others are aberrant. If along an axonal trajectory the
tangential diffusion can locally drop due to fibre crossing or
fanning in a voxel, we expect the tangential diffusion coef-
ficient averaged along the axonal trajectory to be large.

Therefore, trajectories that follow directions of high diffu-
sion should be more likely than those which do not. To
select a posteriori the “good” trajectories, we assigned to
each curve a “validity index” (VI), which is the result of an
integration of the tangential diffusion coefficient along the
trajectory and normalized to the length

VI �
�i�1

m ��i
TDi�i

�i�1
m ���i�

�
1

m
�
i�1

m

�i
TDi�i, (4)

where �i
TDi�i is the double contraction of the DT, Di,

with the unit displacement vector, �i. This contraction is
the diffusion coefficient in the displacement direction.
For tracts that were selected by one or several ROI, the
histogram of the fibre population VI could be plotted. It
usually followed a bell-shaped distribution. Fibres below
a certain quantile (here 20%) were then discarded so that
only the most credible fibres with a high VI were re-
tained.

In Fig. 1, we took the example of the occipitofrontal
fascicle, an important association bundle (Nieuwenhuys et
al., 1988) for illustrating the technique. A first yellow ROI
was placed in the caudal part of the brain (Fig. 1c). A large
population of fibres was selected of which the occipitofron-
tal projections as well as fibres of the superior and inferior
longitudinal fascicles and fibres belonging to the corona
radiata and posterior corticothalamic projections (not visible
here in those sagittal figures). Willing to visualise only the
occipitofrontal connections, a second yellow ROI was then
placed in the frontal brain (Fig. 1d). In some situations,
instead of choosing a second ROI, it was more appropriate,
because it was less susceptible to bias, to cut out fibres that
pass out of a region. We illustrated it here in Fig. 1e with a
blue box. The final step of our virtual dissection was to
eliminate unlikely fibres that are defined as having a VI
inferior to the 20th quantile (Fig. 1f).

We actually used three types of ROI in this paper that
have been colour-coded in the following way: (1) yellow
region selected fibres that pass through the box, (2) fibres
passing in a red box were cut out, and (3) fibres that passed
out of a blue box were also discarded.

Various connectivity maps

The classical way of fibre tract representation is a simple
trajectory plot. We also adapted Koch et al. (2002) statisti-
cal density maps to our algorithm. From the computed
axonal trajectories we summed in each voxel the number of
curves that passed through. This measure gave us, for each
voxel, a qualitative measure of the probability that a given
voxel was connected with the ROI or an empirical measure
of the relative amount of fibres of the given tract that passed
through that voxel (Fig. 1g and h). We used these two ways
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of representing connectivity because they are both useful
and complementary.

Results

The evaluation phase of this research work was per-
formed on two healthy volunteers. It allowed assessing the
capacity of our tracking algorithm to infer axonal connec-
tivity by comparing the results to postmortem-based neuro-
anatomical knowledge, using the Nieuwenhuys et al. (1988)
atlas. We applied the above-mentioned methodology in or-
der to perform a virtual dissection of several well-known
anatomical systems. This collection of connectivity maps
can also be considered to be the beginning of an in vivo
brain connectivity atlas. The illustrations are always orga-
nized in a similar manner. Two colour maps are used to
present the location of the ROI. Some images present the
tract of interest on three-dimensional views, whereas a few
are projections on an anatomical T1-weighted slice and
some others are statistical density maps. We systematically
did a bilateral investigation using perfectly symmetric ROI
so that side comparison was possible.

Corticobulbar and corticospinal tracts

The corticospinal tract is a large, well-characterized, and
highly anisotropic tract. It has therefore been used by sev-
eral authors for evaluating their tracking algorithm (Jones et
al., 1999; Basser et al., 2000; Poupon et al., 2001; Stieltjes
et al., 2001; Koch et al., 2001; Tench et al., 2002; Gossl et
al., 2002). The anatomical position of these fibres as well as
the position of the corticobulbar tracts is in the brain stem is
well described in the literature [for comprehensive sum-
mary, see Nieuwenhuys et al. (1988)]. At that level the
different bundles separate well. With different locations of
the ROIs, we have achieved the dissection of different
tracts. For the whole analysis of this subsection, we have
excluded fibres coming from the cerebellum on their way to
the brain stem.

Fig. 2a shows fibre tract selection by an axial ROI in the
ventromedial part of the cerebral peduncles. The fibres thus
selected originate mainly in the frontal cortex and are clas-
sically described as the frontopontine tract. If the ROI was
placed more laterally in the ventrolateral part of the cerebral
peduncle, the selected fibres corresponded to the pyramidal
tract, originating mainly in the region of the central sulcus
and travelling down the brain stem (Fig. 2b). Placing the
ROI at the dorsolateral border of the cerebral peduncle

Fig. 4. Cortical association bundles. ROIs on colour maps, 3D views, and
statistical density maps. (a) Inferior occipitofrontal fascicle (violet), (b)
inferior longitudinal fascicle (orange), (c) uncinate fascicle (red), (d) su-
perior longitudinal fascicle (cyan).
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revealed what can be regarded as the parieto-temporo-pon-
tine tract (Fig. 2c).

Corticothalamic projections

The thalamus sends and receives axons from the differ-
ent cortical areas. The thalamocortical connections can be
roughly separated into three groups, the anterior, superior,
and posterior projections.

For selecting the anterior projections, we placed two
ROIs in the frontal plane, one in the anterior part of the
thalamus, and the other larger ROI in the frontal lobe white
matter, anterior to the genu of the corpus callosum (Fig. 3a).
Fibres that ran caudally beyond the thalamus were elimi-
nated. In Fig. 3b, we visualised the superior projections by
placing an axial ROI in the upper part of the thalamus; fibres
running further down were discarded. A similar approach
was adopted for the posterior projections by placing ROIs in
the frontal plane, one in the posterior part of the thalamus,
and another large window in the white matter at the level of
the temporooccipital junction (Fig. 3c). Fibres running ros-
trally beyond the thalamus were eliminated.

Fig. 5. Cerebellar peduncles and medial lemniscus. ROIs on colour maps, 3D views. (a) Inferior cerebellar peduncle (green and yellow), (b) midcerebellar
peduncle (orange), (c) superior cerebellar peduncle (cyan), (d) medial lemniscus (red).

Fig. 6. Three-dimensional view of several systems. (a) Corticobulbar and
-spinal tracts, cerebellar peduncles, (b) corticothalamic projections, (c)
limbic system, (d) association bundles.
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Corpus callosum and limbic system

In order to identify fibres passing through the corpus
callosum, we placed a large ROI encompassing the whole
corpus callosum at the midsagittal plane (Fig. 3d).

Some of the major pathways constituting the limbic
system are known to be the fornix and the cingulate bundle.
The horizontal portion of the fornix was isolated by placing
a ROI in a frontal plane parasagittally beneath the body of
the corpus callosum. But both anterior and posterior col-
umns together with the temporal extension could not be
identified. This could be due to an insufficient spatial reso-
lution of our DT acquisition technique. The cingulum was
identified by using two ROIs placed in a frontal plane, 2 cm
apart within the white matter of the cingulate gyrus (Fig.
3e).

Cortical association bundles

Corticocortical connections are widespread and form
only loose association bundles that are variable in size and
shape. Using our method, we visualised four of those major
association bundles.

Fig. 4a shows the inferior occipitofrontal fascicle as it
was isolated with two ROIs. The first was placed in the
posterior parietal and the second in the frontal lobe. In order
to isolate the inferior longitudinal fascicle, we also used two
selection ROIs. The posterior was, as for the inferior occip-
itofrontal fascicle, in the posterior parietal lobe, whereas the
second in the temporal lobe (Fig. 4b). For identification of
the uncinate fascicle, we placed a first ROI in the anterior
part of the temporal lobe and a second one in the frontal
lobe (Fig. 4c). The superior longitudinal fascicle was se-
lected by two ROI placed below the motor and the posterior
parietal cortices in frontal planes (Fig. 4d). This tract shows,
interestingly, a clear left–right asymmetry.

Cerebellar peduncles and medial lemniscus

Here we investigated the relationship between the cere-
bellum and the brain stem. The three cerebellar peduncles
were successively identified by appropriate placement of
ROIs. In Fig. 5a, we selected the right and left inferior
cerebellar peduncles by means of two ROIs, one in the brain
stem and one in the cerebellum. The midcerebellar peduncle
was selected by means of one ROI placed across the pons
for selecting the fibres that travel in this region laterally and
a second ROI was placed on the cerebellum itself (Fig. 5b).
The upper cerebellar peduncle was more difficult to isolate
and we used the fact that these fibres decussate at the level
of the cerebral peduncle to place a ROI in the sagittal plane.
Two other ROIs were positioned in an axial plane on each
side of the mid line (Fig. 5c). Despite cautious ROI place-
ment, this tract shows an asymmetry in the amount of fibres
passing either left or right.

Finally, looking at a colour map at the level of the pons

we could easily identify the medial lemniscus that was then
selected with another ROI. Those fibres are known to ter-
minate in the thalamus (Fig. 5d), and to visualise this fibre
population, we selected the fibres that did not continue
beyond it.

Discussion

We developed a new approach to map brain connectivity
that was statistical in nature and based on a global approach
toward fibre tracking. This lead to the identification of
several fibre tracts (Fig. 6) that all showed accurate corre-
lation with current postmortem-based neuroanatomical
knowledge (Nieuwenhuys et al., 1988). Furthermore, pre-
vious studies based on other fibre-tracking methods de-
scribed analogous trajectories for many of those tracts— the
pyramidal tract (Jones et al., 1999; Basser et al., 2000;
Stieltjes et al., 2001; Poupon et al., 2001; Tench et al., 2002;
Gossl et al., 2002), the thalamic projections and the cortical
association bundles (Mori et al., 2002b), the brain stem
(Stieltjes et al., 2001), and the corpus callosum (Basser et
al., 2000; Tench et al., 2002; Poupon et al., 2001—thereby
validating our results. The presented data constitute an in
vivo brain connectivity atlas.

Both Koch et al. (2002) and our results suggest that
statistical fibre tracking is a valuable way for mapping brain
connectivity. But it is necessary to notice the clear differ-
ences with the classical deterministic fibre-tracking algo-
rithms, and they should be taken into account when inter-
preting the results. Current deterministic tracking
algorithms follow the main eigenvector of the diffusion
tensor (Conturo et al., 1999; Mori et al., 1999; Jones et al.,
1999; Basser et al., 2000; Tench et al., 2002), reducing the
available information. Thus, only the largest and the most
homogeneous fibre bundles can be followed, those that do
not have a much smaller diameter than the size of a voxel.
The identified trajectories are smooth and accurate under the
assumption that the signal-to-noise ratio is sufficiently high
for limiting the deviation of the tensor field from reality and
therefore introducing instability of the discretized differen-
tial equation. These problems were investigated by Lazar et
al. (2000) as well as by Gossl et al. (2002). Whereas Lazar
maps streamlines that are deflected by the local diffusion
tensor, Gossl et al. consider fibre tracking in a noisy main
eigenvector field as an optimal filtering problem. Gossl’s
implementation based on a Kalman filter generates curves
that follow a corrected main eigenvector in order to mini-
mize the mean square error between the estimated and the
underlying ideal tract.

The statistical approach, as presented here, goes one step
further. It makes use of the whole diffusion information
available in order to explore many potential connections and
selects appropriate tract by measuring a posteriori the mean
diffusion along the trajectory.

We see here three advantages:
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1. The nature of the data is better taken into account.
2. The sensitivity to noise is decreased.
3. The possibility of fibre crossing and diverging is

introduced.

However, an uncertainty concerning the trajectory of indi-
vidual fibres appears. Each curve should not be interpreted
as a precise mapping of a real axonal trajectory.

Selected fibres should be considered together and areas
of high fibre density as very likely trajectories whereas
projections of few fibres may not correspond to an anatom-
ical entity. In that sense the statistical density mapping
seems a complementary tool to the trajectory maps in the
context of statistical fibre tracking in order to evaluate the
validity of the fibres passing by a given region.

In the presented implementation, several improvements
appear also when compared with Koch et al. (2002). Our
random walk is continuous as opposed to voxel to voxel
jumps. We map individual trajectories and not only statis-
tical density maps. The major drawback of Koch’s algo-
rithm which is the dependence of the intensity of the con-
nectivity measure on the distance of the initialization point
has been solved in our method by multiple initialization all
over the brain.

Our approach, “whole brain simulation” and then virtual
dissection, showed striking similarity with known anatomy
(Nieuwenhuys et al., 1988). Worth noting are also very
obvious left–right asymmetries of the superior longitudinal
tract (Fig. 4d) and the upper cerebellar peduncle (Fig. 5c). If
inadvertent asymmetric ROI selection and the statistical
nature of the algorithm might be a partial explanation,
clearly, anatomical difference between both sides is a pre-
dominant component, e.g., proportion of grey and white
matter (Gur et al., 1980). These observations might be the
starting point of asymmetry and male/female dysmorphism
study (Clarke et al., 1989).

Using knowledge-based ROI for tract selection is not, at
least in the context of statistical fibre tracking, an ideal
solution. There remains a risk of biasing the results if the
windows are not placed fairly. Therefore, in the future, new
solution for ROI placement should be found. Another re-
maining problem for deterministic as well as statistical fibre
tracking is the limited resolution of the imaging scanner and
the incapacity of a tensor to model properly multiple fibre
tracts in one voxel. High angular resolution imaging
(HARDI) (Wedeen et al., 2000; Frank, 2001) seems to be a
promising tool for overcoming this limitation.

Finally, fibre tracking is a complex task and different
approaches can be valuable. Here, based on a random walk
model, we modelled in one shot the global white matter
connectivity of healthy volunteers. This model was then
virtually dissected in order to identify many different fibre
tracts. This collection can be seen as far as we know as a
first realization of an in vivo brain connectivity atlas.
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