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Abstract—The compression of still images by means of the 
Discrete Wavelet Transform (DWT), adopted in the JPEG-2000 
and MPEG-4 standards, is becoming more and more widespread 
because it yields better performances than other compression 
methods, such as DCT. The demand of efficient architectures for 
2-D DWT coding and decoding for a variety of different 
applications and embedded systems is rapidly increasing. This 
paper presents the implementation of a 2-D DWT decoder for 
Mallat tree decomposition, suitable for low power applications, 
such as portable devices. The decoder design has been 
synthesized and validated in 0.35 µm CMOS technology. The 
architecture is scalable according to the desired maximum image 
size, the maximum DWT kernel length and arithmetic accuracy, 
and it is programmable at run-time to process different image 
sizes and to use different DWT kernels. 
 

Index Terms—Image coding, Wavelet transforms, Discrete 
transforms, Digital Signal Processors 

I. INTRODUCTION 

EXTURE coding based on wavelet transform is playing a 
leading role for its higher performances in terms of signal 

analysis, multi-resolution features and improved compression 
compared to existing methods such as the DCT based 
compression schemes adopted in the old JPEG standard. This 
success is testified by the fact that the wavelet transform has 
now been adopted by MPEG-4 for still texture coding and by 
JPEG-2000. Indeed, superior performance at low bit-rates and 
transmission of data according to client display resolution are 
particularly interesting for mobile applications. The wavelet 
transform shows better results because, thanks to its time-scale 
representation, it is intrinsically well suited to non-stationary 
signal analysis, such as images [10]. Although it is a rather 
simple transform, DWT implementations may lead to critical 
requirements in terms of memory size and bandwidth possibly 
yielding costly implementations. Extended state of the art 
researches showed that DWT coding and decoding algorithms 
can be redesigned by changing the scheduling of operations, 
yielding more efficient implementations with reduced memory 
requirements [3], [4], [6]. Further work proposed a variety of 
strategies, dealing with the trade-off among implementation 
complexity, cache memory requirements and external memory 
requirements [1], [2]. Thus, efficient implementations must be 
investigated to fit different system scenarios. In other words 

the goal is to find different architectures each of them 
specifically optimized for any specific system requirement in 
terms of complexity and memory bandwidth. 
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Because the iterative sub-band decomposition is the core 

process of wavelet transforms, the coding/decoding stage has 
to be performed on several layers as shown in Fig. 1 in the 
case of 1-D Mallat tree decomposition where only 
approximation signals (Lx) are recursively split into two sub-
signals. Along the tree decomposition it can be noticed that in 
intermediate layers some data are just temporary. For instance, 
in layer 1 represented in Fig. 1, L1 signal data is produced 
while coding input signal and is successively split into L2 and 
H2. Similarly, such temporary data can be found also in the 
reconstruction process. 

 
Fig. 1. 1D DWT with Mallat tree decomposition. The number of samples of 
the encoded signal is equal to the one of the input signal. 
 

2D DWT coding is usually based on separable basic scaling 
functions and wavelet bases so that it can be performed 
iterating two orthogonal 1-D DWT. This fact implies the 
presence of additional temporary samples between horizontal 
and vertical processing. As shown in Fig. 2 for the 2-D DWT 
reconstruction, not only the temporary signal LL1 is needed, 
produced by decoding layer 2, but also temporary signals L1 
and H1, produced as result of horizontal processing of layer 1 
and required as input to vertical processing of the same layer 
are necessary. 

T 
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Fig. 2. 2D DWT with Mallat tree decomposition. The size of intermediate 
layers decreases twice faster than in 1D case and the amount of data to be 
filtered tends asymptotically to 4/3 of the size of the input signal. Since data 
must be filtered both horizontally and vertically, the total amount of filtered 
samples tends to 8/3 of the size of input signal. 
 

Practical system limitation and requirements encountered 
by the designer include memory size and bandwidth for the 
storage of the temporary data, and the efficient use of both on-
chip and off-chip storage [1]-[7]. Therefore redesigning the 
data processing scheduling and the memory storage scheme 
allows a joint optimization of the algorithmic and architectural 
features according to specific system requirements. The 
optimum choice of these factors can be achieved by analyzing 
different strategies. Each of these strategies corresponds to an 
implementation characterized in parametric form in terms of 
generic architectural features such as on-chip memory size, 
on-chip data-path bandwidths, overall filter complexity, 
external memory size and external data-path bandwidths [1]-
[3]. This paper presents the implementation of an hardware 
DWT decoder based on “Sliding Windows Layer-by-Layer” 
architecture (SW-LbL) [1], [2]. Among the different 
approaches studied in literature, the SW-LbL approach [1], [2] 
offers a good trade-off between system performance and 
complexity. The main result is a sensible reduction of the 
bandwidth and of the size of external memory, at the price of 
a small increase of implementation complexity. 

This paper is organized as follows: Section II presents the 
“Sliding-Windows Layer-by-Layer” architecture [1], [2] 
chosen to implement the DWT decoder, comparing it with the 
classical architecture. Section III describes the VHDL 
implementation of the decoder. Section IV reports the results 
of the synthesis in terms of performance and system 
requirements. Section V concludes the paper summarizing the 
main results achieved. 

II. “SLIDING-WINDOWS LAYER-BY-LAYER” DWT DECODER 

A. Classical approach 
The classical approach to 2D DWT decoding (see Fig. 2) is 

to process each layer in the tree decomposition separately and 
to process the vertical and horizontal layers successively one 
after the other. The performance of this approach is strongly 
limited by the management of temporary data required 
between two successive layers and between horizontal and 

vertical filtering. 
Let’s consider an input image with resolution of W H⋅  

samples encoded on L layers with Mallat tree decomposition. 
As shown in Fig. 2, while processing layer 1 the amount of 
temporary data between horizontal and vertical filtering is 
equal to the size of the image to be decoded. Even with 
relatively small image resolutions, the memory required to 
store these temporary data might be in general too large to be 
implemented on-chip, therefore an external memory (EM) 
must be used and its size, measured in samples, is 

 
EM WHs Classical, = . (1) 

 
The amount of data to be filtered on each layer decreases by 

a factor of 4 from one layer to the next one and the total 
amount of processed data along the whole tree reconstruction 
process is given by: 
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The last term of the expression 2 approximates in excess the 

exact result with an error smaller than 0.4% already 
for , hence, the approximated value for D will be used 
in the following expressions. Because of horizontal and 
vertical filtering, these data must be read and written twice on 
each layer, thus: 

L ≥ 4
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Assuming that the compressed image bitstream is read by 

the decoder from the outside and that the decoded image is 
sent outside as the decoder output signal, the external memory 
is used only to store temporary data and the total amount of 
samples exchanged with the external memory is: 
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that is equivalent to: 
 

EM EM WHr Classical w Classical, ,= =
5
3

. (5) 

 
The implementation of the decoder consists mainly of two 

1-D linear filters with a small support interval (e.g., DWT 
kernels suggested in JPEG 2000 are not longer than 18 
samples). These filters can be used both for vertical and 
horizontal processing because these two operations never 
occur at the same time. Thus, the implementation of a decoder 
according to the Classical approach is rather simple and its 
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main disadvantage is the need of a large external memory and, 
above all, of a large data exchange with it. Indeed external 
memory is less efficient than on-chip cache memory both in 
terms of available bandwidth, power consumption and overall 
system complexity. The management of temporary data is thus 
the main bottleneck of the Classical approach. 

B. Sliding-Windows Layer-by-Layer approach 
A redesigning of the DWT algorithm, in order to change the 

operation scheduling, allows to reduce the temporary data 
lifetime and to optimize the overall system performance [1]-
[3]. The SW-LbL approach [1], [2] allows to significantly 
reduce both external memory size and bandwidth at the price 
of a slightly more complex implementation and the need of a 
small on-chip memory. The main idea behind this approach is 
to exploit data dependencies between horizontal and vertical 
processing in order to try to use temporary samples as soon as 
they are available. 

The scheme of Fig. 3 shows how to manage temporary 
samples between horizontal and vertical filtering in order to 
reduce their lifetime. Let’s suppose that the horizontal filters 
are applied first. Horizontal filters produce samples along 
rows, while vertical filters need input samples along columns. 
To generate these columns of samples with horizontal filters, a 
set of horizontal filters could be used, with a couple of p-q 
filters for each line. In this way, scheduling the horizontal 
filters line by line, columns of temporary data capable of 
feeding vertical filters are generated. Actually it is not needed 
to implement a couple of filters for each line because they 
never work in parallel, only one line is active at a time. It is 
just needed to store 2 columns of samples necessary as input 
by all the virtual horizontal filters and read them line by line 
to load them in parallel in a true real couple of horizontal p-q 
filters. These two columns behave like two windows sliding 
over the input image, because they cache successive columns 
of input samples. This is the origin of the name for this 
approach. Supposing to put the sliding-windows memory on 
chip, to reconstruct layer n it is necessary to exchange with 
external memory only input layer data (layer n-1 coded 
signals) and output layer data (reconstructed layer n), while all 
the temporary samples between horizontal and vertical 
filtering are managed by on-chip memory. 

 

 
Fig. 3. “Sliding-Windows Layer-by-Layer” DWT decoder. The lifetime of 
temporary data between horizontal and vertical filtering is minimized by using 
them as soon as possible after their creation. The two columns of coupled 

horizontal filters are virtually implemented by means of a cache memory and 
of one couple only of real filters working line by line. 
 

In general the memory required to store temporary data 
between two successive layers is still too large to be 
implemented on-chip. Looking at Fig. 2 and keeping in mind 
that temporary data between horizontal and vertical filtering 
no longer need to be stored on external memory, it can be 
noticed that the maximum amount of temporary data to be 
managed is given by LL1 signal storage that can be expressed 
as: 

 
EM WHs SW LbL, − = 4 . (6) 

 
Concerning data exchange with external memory, it can be 

observed that with respect to the Classical approach it is no 
longer needed to read and write temporary data between 
horizontal and vertical filtering. That is, in previous 
expression 5, instead of considering  samples (because of 
expression 3) only  samples must be considered: 
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that , according to equation 2, results in: 
 

EM EM WHr SW LbL w SW LbL, ,− −= =
1
3

. (8) 

 
Considering Fig. 3 it can be observed that the size of the 

memory required to store the two columns of samples hp and 
hq depends on the size of the reconstruction filters. Such size 
depends on the chosen DWT kernel, and on the height of the 
highest layer to reconstruct, that is on the height H of the 
image. Let  be the kernel size: sK

 
qpK s += , (9) 

 
and let  be the maximum supported kernel size, it 

results that:  
MAXsK ,

MAXMAXMAXs qpK +=, . (10) 

 
According to the DWT reconstruction process, input data 

must be up-sampled before being processed by reconstruction 
filters p and q. Therefore p and q filters may be replaced by 
two couples of filters pe-qe and po-qo, whose length is half of 
that of the original filters, working alternately on the same 
input data to produce respectively output samples in even and 
odd positions. Therefore, the total size of the inter-layer 
temporary memory is given by: 
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and considering that typical kernel lengths range up to 20 

samples [8], this memory, referred here as Internal Memory 
(IM), can be conveniently and efficiently implemented on-
chip.  

Every line of the Sliding-Windows memory holds the input 
data of the corresponding horizontal virtual filter, thus 
emulating the functionalities of a FIFO. For each L-H couple 
of input samples, two output samples are produced, and this 
implies that for each output sample a new input sample has to 
be stored in virtual filter’s FIFO, according to expression:  
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Having to work along columns, whole lines of data in 

Sliding-Windows memory have to be reloaded, line by line, 
into the horizontal filter to produce each column of output 
data. Consequently, the amount of data read from Sliding-
Windows memory is larger than the amount of written data: 
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This relatively high bandwidth requirement can be easily 

satisfied by the high-speed performances provided by 
available on-chip memory cores. 

By means of a small on-chip cache, the SW-LbL approach 
achieves a reduction of the external memory size to a quarter 
of that of the Classical approach and the memory bandwidth 
to a fifth. In the following section the most significant issues 
about the hardware implementation of the SW-LbL decoder 
are discussed. Moreover, the main results achieved and 
performances related to system requirements are presented. 

III. SW-LBL DECODER IMPLEMENTATION 
The architecture of a SW-LbL decoder is composed by four 

main blocks: the horizontal filters block (HOR_FIL), the 
vertical filters block (VER_FIL), the state machine that 
synchronizes all the operations at layer level 
(FIR_CONTROL) and the state machine ruling the whole 
system functionalities at high level, from parameters setup to 
decoding along all layers (SCHEDULE). It will be shown that 
the most complex part of this implementation is the 
FIR_CONTROL, because the synchronization of all the 
operations (mainly the synchronization of vertical and 
horizontal filtering, in steady state as well as at the borders) is 
not a simple task. 

At the synthesis stage, the SW-LbL decoder can be scaled 
in terms of maximum image sizes, maximum kernel length, 
samples word-size and kernel coefficients word-size. At run-

time, the decoder can be programmed to process any image 
size within the maximum image size, with any kernel of any 
length within the maximum kernel length. 

While it has been shown that DWT kernel filters can be 
efficiently implemented using the Lifting Scheme [8], [9], it is 
chosen here to implement the filters with the classical filters 
scheme. Despite the fact that the classical filter scheme needs 
a larger Sliding-Windows memory than the Lifting Scheme 
(the total number of taps of Lifting-Scheme’s filters is about 
half of that of the corresponding classical scheme), the 
classical scheme presents several advantages that make it 
preferable for several reasons: 

 Both in the classical scheme and in the Lifting-Scheme, 
the filters are typically non-causal. Having to implement 
the whole kernel system as a causal system, the lifting 
scheme presents some obvious problems because not 
only each filter must be “delayed” to make it become 
causal but also an extra delay must be introduced on the 
line to which the filter’s output is added in order to 
preserve the correct synchronization. This extra delay 
can either be implemented reusing the FIFO line of the 
previous step’s filter, when available and with enough 
taps, or introducing another ad-hoc FIFO line. In the 
classical scheme both filters just need to be delayed of 
the same number of samples, which needs no extra 
delays and does not give any further synchronization 
problem. The same does not apply for the Lifting-
Scheme. 

 The programmability of the kernel is drastically more 
complex in Lifting-Scheme. In the classical scheme it is 
just needed to store the kernel’s coefficients, store the 
divisor at the end of each filter and synchronize the 
output in order to take into account the delay introduced 
to make filters causal. In Lifting-Scheme such operations 
must be performed at each step, in addition it is required 
to synchronize any step in order to respect the delay 
introduced by the previous step. As explained above, 
depending on the kernel either the FIFO line of previous 
step’s filter can be reused or another FIFO line can be 
used, implying the need of more multiplexers and 
making the overall set-up by far more complex than the 
classical filter scheme. 

 According to JPEG-2000 specifications, samples at 
signal borders must be mirrored. Depending on the 
filter’s impulse response, samples may be mirrored with 
respect either to first (last) sample or to half sampling 
interval before (after) first (last) sample. While with the 
classical scheme we can easily reuse the taps of the 
filters to implement this feature, with the Lifting-Scheme 
this implementation is not straightforward. 

 As shown with equation 12, for each processed sample, 
it is necessary to write one sample only in the Internal 
Memory. With the Lifting-Scheme, one sample has to be 
written for any step with impulse response of more than 
one sample as well as for all the extra delay lines. 
Besides increasing the bandwidth to write on Internal 
Memory, the complexity of the management of the data 
to be written would increase as well. 
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All the filtering operations are based on integer arithmetic. 

Experimental results with floating point kernels of JPEG-2000 
showed that the PSNR loss of decoded image can be kept 
smaller than 2 dB by storing processed samples on 15 bits 
integers and scaling floating point coefficients in order to map 
them on 9 bits integers.  

So as to manage the different timing requirements among 
the inputs of the filters and their outputs, and among the speed 
of the internal memory and the external one, it has been 
chosen to use two clocks: the first clock (CLK) controls the 
output of the filters and the load and store operations of the 
external memory, whereas the second clock (CLK’), 20 times 
faster than CLK, controls the input of the horizontal filter and 
the load and store of the internal cache. 

The main blocks of the decoder are the horizontal and the 
vertical filtering blocks: every block implements the low-pass 
and a high-pass filter for DWT reconstruction. The filters 
have been implemented using a poly-phase approach as shown 
in Fig. 4.  

 
Fig. 4. Poly-phase implementation of kernel filters. 
 

For every input sample two results are obtained. These 
results correspond to the two steps of a classical filtering 
process using the original data interlaced with zeros. The two 
outputs of both filters have to be appropriately added, as 
shown in Fig. 5, in order to produce samples in even and odd 
positions. 

 
Fig. 5. Output data in even and odd positions (respectively data_out1 and 
data_out2) according to poly-phase implementation of kernel’s low-pass and 
high-pass filters. 
 

The input samples for the horizontal filters are stored in the 
internal cache while a whole line of samples has to be loaded 
at every CLK clock cycle to let both the horizontal filters 
produce an output value. Samples are loaded from internal 
cache at CLK' rate, in order to load all required samples 
within the available time according to CLK. The vertical 
filtering block is clocked just by CLK clock, to synchronize 
both the initialization process and the outputs. 

Both horizontal and vertical borders of input signal must be 
mirrored in the same way but, because of the different 
implementations of horizontal and vertical filters, the 
mirroring operations are implemented in two completely 

different manners. For horizontal filtering, the border 
mirroring is implemented reading data twice from internal 
cache, first backward then forward for the beginning border, 
first forward than backward for the ending border. The 
number of memory accesses to the internal cache is not 
affected by mirroring, because the number of written and read 
samples is exactly the same like in the steady state. Within the 
vertical filtering block a set of multiplexers is in charge of 
carrying the input sample to the output of any register of the 
FIFO line (beginning border, multiplexers “B” in Fig. 6) or to 
reuse samples already in the FIFO line itself as input value 
(ending border, multiplexer “E” in Fig. 6). In both horizontal 
and vertical blocks, all the mirroring operations depend on 
parameters to be set during system initialization in order to 
correctly mirror input data according to the chosen kernel and 
image sizes. 

 
Fig. 6. Border mirroring in vertical filter block. The multiplexers “B” 
implement mirroring operations at the beginning of the column, by allowing 
carrying the input sample to any register’s output, while the multiplexer “E” 
implements the mirroring operations at the end of the column, by allowing 
reusing as input sample the value stored in any register. 
 

The most critical issue during the decoding process is the 
synchronization of operations between HOR_FIL and 
VER_FIL. To describe how these two blocks interact, it is 
necessary to distinguish between columns in even and odd 
position. In order to produce two decoded samples along a 
column, the filter blocks are fed with 4 samples, as shown in 
Fig. 7. HOR_FIL block produces two samples at the same 
time, the first in an even column and the second on the same 
row in the following odd column. Since the vertical block 
have to process one column at a time, the first sample 
produced by horizontal block can be passed immediately to 
vertical block while the other sample has to be stored in the 
internal cache in order to delay its use after current column 
has been completely processed. Seemingly VER_FIL needs 
two consecutive input samples on a column before being able 
to compute two output samples, therefore it has to wait for 
HOR_FIL to process a “square” of 4 samples on two rows 
before producing two output samples. 

While producing an even column of output samples, 
HOR_FIL and VER_FIL work together. Each clock cycle 
HOR_FIL produces 2 temporary samples on even and odd 
columns and the two of them on the even column are 
immediately processed by VER_FIL. Producing the 
successive odd column, only VER_FIL works, using for input 
the samples previously produced by HOR_FIL and stored in 
the internal cache. In both cases, VER_FIL produces two 
samples at the same time each two clock cycles. The first 
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sample is passed immediately to the output while the second 
one is delayed of one clock cycle, in order to produce, in 
steady state, one output sample at each clock cycle. 

 

 
Fig. 7. Basic data flow in the decoding process. Horizontal filters (H_FIR) 
produce at the same time two columns of (temporary) output data while these 
columns have to be fed one after the other into vertical filters (V_FIR).  
 

The FIR_CONTROL block is basically a state machine in 
charge of synchronizing all the steps to decode one layer. First 
it resets the filtering blocks, initializing them to process a new 
layer, then it controls the behavior of HOR_FIL and 
VER_FIL in order to synchronize the two blocks to decode a 
layer, take care of border mirroring, take into account the 
delay introduced by causal kernel filters and manage the 
accesses to internal cache. 

The SCHEDULE block controls the whole decoding 
process interacting with FIR_CONTROL. Its main tasks are 
initializing FIR_CONTROL to start decoding a layer, 
controlling input and output operations and managing the 
transition from one layer to the next one when 
FIR_CONTROL notifies that a layer has been completely 
processed. 

IV. PERFORMANCE AND REQUIREMENTS 
This section presents the results obtained with a VHDL 

implementation of the SW-LbL DWT decoder. The decoder 
has been synthesized and validated in 0.35 µm CMOS 
technology. 

The parameters chosen to customize the implementation of 
the decoder and the tables of the corresponding results 
obtained after synthesis are reported below: 

 Maximum image size: 768x512 pixels. 
 Maximum kernel length: 10 taps both for high pass and 

low pass channel. 
 Data samples’ word-size: 16 bits. 
 Kernel coefficients’ word-size: 16 bits. 
 

TABLE 1 
HOR_FIL 

Description Value Unit 
Ports 101 # 
Multipliers (16x16 bits) 20 # 
Adders (32 bits) 4 # 
Data registers (16 bits) 8 # 
Kernel coefficient registers (16 bits) 20 # 
Combinatorial area 2.54 mm2

Noncombinatorial area 0.25 mm2

Net Interconnect area 0.42 mm2

Total area 3.20 mm2

 
TABLE 2 

VER_FIL 
Description Value Unit 
Number of ports 102 # 
Multipliers (16x16 bits) 20 # 
Adders (32 bits) 4 # 
Data registers (16 bits) 8 # 
Kernel coefficient registers (16 bits) 20 # 
Combinatorial area 2.52 mm2

Noncombinatorial area 0.26 mm2

Net Interconnect area 0.38 mm2

Total area 3.17 mm2

 
TABLE 3 

FIR_CONTROL 
Description Value Unit 
Ports 100 # 
Combinatorial area 0.93 mm2

Noncombinatorial area 0.14 mm2

Net Interconnect area 0.18 mm2

Total area 1.25 mm2

 
TABLE 4 

SCHEDULE 
Description Value Unit 
Ports 84 # 
Combinatorial area 0.26 mm2

Noncombinatorial area 0.16 mm2

Net Interconnect area 0.08 mm2

Total area 0.49 mm2

 
We tested the synthesized chip using JPEG2000’s 7x9 

floating point kernel, with an image coded over 6 layers. The 
steady state throughput of the decoder is one sample per clock 
cycle and, according to equation 2, we find that the minimum 
time required to decode an image is 

 

[ ]min CLK cyclesT D= . (14) 

 
Because of the delays introduced to make the kernel’s 

filters causal and because of mirror operations at layers’ 
borders, the total simulated decoding time is slightly greater 
than the theoretical minimum : minT

 

[ ]1.04 CLK cyclesT D= ⋅ . (15) 

 
The bandwidth required between the external memory and 

the chip and between the horizontal filters and internal cache 
meet the theoretical values shown respectively in equations 5 
and 12, 13. The Sliding Windows on-chip cache memory is 
composed by two blocks of 2560 words of 16 bits. 
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V. CONCLUSIONS 
This paper presents the implementation of a JPEG 2000 

compliant hardware DWT decoder for Mallat tree 
decomposition. The decoder is capable of image decoding 
applications, both with integer and floating-point kernels. The 
customizable design allows setting the basic features of the 
decoder, such as maximum image size, maximum kernel 
length and computational precision. The synthesized decoder 
may be programmed to process images with different sizes, 
coded on a different numbers of layers and using different 
kernels, while always guaranteeing the correct mirroring 
operations at layers’ borders. By means of an on-chip cache 
and of a specifically optimized scheduling of operations, the 
decoder requires a minimum number of accesses to external 
memory, making it suitable for low-power embedded 
applications. 
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