
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

A Scalable And Programmable Architecture For
2-D DWT Decoding

Massimo Ravasi, Livio Tenze and Marco Mattavelli

§

Abstract—The compression of still images by means of the
Discrete Wavelet Transform (DWT), adopted in the JPEG-2000
and MPEG-4 standards, is becoming more and more widespread
because it yields better performances than other compression
methods, such as DCT. The demand of efficient architectures for
2-D DWT coding and decoding for a variety of different
applications and embedded systems is rapidly increasing. This
paper presents the implementation of a 2-D DWT decoder for
Mallat tree decomposition, suitable for low power applications,
such as portable devices. The decoder design has been
synthesized and validated in 0.35 µm CMOS technology. The
architecture is scalable according to the desired maximum image
size, the maximum DWT kernel length and arithmetic accuracy,
and it is programmable at run-time to process different image
sizes and to use different DWT kernels.

Index Terms—Image coding, Wavelet transforms, Discrete
transforms, Digital Signal Processors

I. INTRODUCTION

EXTURE coding based on wavelet transform is playing a
leading role for its higher performances in terms of signal

analysis, multi-resolution features and improved compression
compared to existing methods such as the DCT based
compression schemes adopted in the old JPEG standard. This
success is testified by the fact that the wavelet transform has
now been adopted by MPEG-4 for still texture coding and by
JPEG-2000. Indeed, superior performance at low bit-rates and
transmission of data according to client display resolution are
particularly interesting for mobile applications. The wavelet
transform shows better results because, thanks to its time-scale
representation, it is intrinsically well suited to non-stationary
signal analysis, such as images [10]. Although it is a rather
simple transform, DWT implementations may lead to critical
requirements in terms of memory size and bandwidth possibly
yielding costly implementations. Extended state of the art
researches showed that DWT coding and decoding algorithms
can be redesigned by changing the scheduling of operations,
yielding more efficient implementations with reduced memory
requirements [3], [4], [6]. Further work proposed a variety of
strategies, dealing with the trade-off among implementation
complexity, cache memory requirements and external memory
requirements [1], [2]. Thus, efficient implementations must be
investigated to fit different system scenarios. In other words

the goal is to find different architectures each of them
specifically optimized for any specific system requirement in
terms of complexity and memory bandwidth.

M. Ravasi and M. Mattavelli are with the Integrated Systems Laboratory

(LSI) of the Swiss Federal Institute of Technology, CH-1015 Lausanne,
Switzerland (telephone: +41-21-6936978, e-mail: massimo.ravasi@epfl.ch).

L. Tenze is with the D.E.E.I. of the University of Trieste, I-34100 Trieste,
Italy (telephone: +39-40-6767147, e-mail: tenze@ipl.univ.trieste.it).

Because the iterative sub-band decomposition is the core

process of wavelet transforms, the coding/decoding stage has
to be performed on several layers as shown in Fig. 1 in the
case of 1-D Mallat tree decomposition where only
approximation signals (Lx) are recursively split into two sub-
signals. Along the tree decomposition it can be noticed that in
intermediate layers some data are just temporary. For instance,
in layer 1 represented in Fig. 1, L1 signal data is produced
while coding input signal and is successively split into L2 and
H2. Similarly, such temporary data can be found also in the
reconstruction process.

Fig. 1. 1D DWT with Mallat tree decomposition. The number of samples of
the encoded signal is equal to the one of the input signal.

2D DWT coding is usually based on separable basic scaling
functions and wavelet bases so that it can be performed
iterating two orthogonal 1-D DWT. This fact implies the
presence of additional temporary samples between horizontal
and vertical processing. As shown in Fig. 2 for the 2-D DWT
reconstruction, not only the temporary signal LL1 is needed,
produced by decoding layer 2, but also temporary signals L1
and H1, produced as result of horizontal processing of layer 1
and required as input to vertical processing of the same layer
are necessary.

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Fig. 2. 2D DWT with Mallat tree decomposition. The size of intermediate
layers decreases twice faster than in 1D case and the amount of data to be
filtered tends asymptotically to 4/3 of the size of the input signal. Since data
must be filtered both horizontally and vertically, the total amount of filtered
samples tends to 8/3 of the size of input signal.

Practical system limitation and requirements encountered
by the designer include memory size and bandwidth for the
storage of the temporary data, and the efficient use of both on-
chip and off-chip storage [1]-[7]. Therefore redesigning the
data processing scheduling and the memory storage scheme
allows a joint optimization of the algorithmic and architectural
features according to specific system requirements. The
optimum choice of these factors can be achieved by analyzing
different strategies. Each of these strategies corresponds to an
implementation characterized in parametric form in terms of
generic architectural features such as on-chip memory size,
on-chip data-path bandwidths, overall filter complexity,
external memory size and external data-path bandwidths [1]-
[3]. This paper presents the implementation of an hardware
DWT decoder based on “Sliding Windows Layer-by-Layer”
architecture (SW-LbL) [1], [2]. Among the different
approaches studied in literature, the SW-LbL approach [1], [2]
offers a good trade-off between system performance and
complexity. The main result is a sensible reduction of the
bandwidth and of the size of external memory, at the price of
a small increase of implementation complexity.

This paper is organized as follows: Section II presents the
“Sliding-Windows Layer-by-Layer” architecture [1], [2]
chosen to implement the DWT decoder, comparing it with the
classical architecture. Section III describes the VHDL
implementation of the decoder. Section IV reports the results
of the synthesis in terms of performance and system
requirements. Section V concludes the paper summarizing the
main results achieved.

II. “SLIDING-WINDOWS LAYER-BY-LAYER” DWT DECODER

A. Classical approach
The classical approach to 2D DWT decoding (see Fig. 2) is

to process each layer in the tree decomposition separately and
to process the vertical and horizontal layers successively one
after the other. The performance of this approach is strongly
limited by the management of temporary data required
between two successive layers and between horizontal and

vertical filtering.
Let’s consider an input image with resolution of W H⋅

samples encoded on L layers with Mallat tree decomposition.
As shown in Fig. 2, while processing layer 1 the amount of
temporary data between horizontal and vertical filtering is
equal to the size of the image to be decoded. Even with
relatively small image resolutions, the memory required to
store these temporary data might be in general too large to be
implemented on-chip, therefore an external memory (EM)
must be used and its size, measured in samples, is

EM WHs Classical, = . (1)

The amount of data to be filtered on each layer decreases by

a factor of 4 from one layer to the next one and the total
amount of processed data along the whole tree reconstruction
process is given by:

WHWHWHD L

LL

l
l 3

4
43

14
4 1

1
1 ≈

⋅
−

==
−

=
−∑ . (2)

The last term of the expression 2 approximates in excess the

exact result with an error smaller than 0.4% already
for , hence, the approximated value for D will be used
in the following expressions. Because of horizontal and
vertical filtering, these data must be read and written twice on
each layer, thus:

L ≥ 4

WHDDD ClassicalwClassicalr 3
82,, === . (3)

Assuming that the compressed image bitstream is read by

the decoder from the outside and that the decoded image is
sent outside as the decoder output signal, the external memory
is used only to store temporary data and the total amount of
samples exchanged with the external memory is:

,,,

,,

WHDEM
WHDEM

ClassicalwClassicalw

ClassicalrClassicalr

−=

−=
 (4)

that is equivalent to:

EM EM WHr Classical w Classical, ,= =
5
3

. (5)

The implementation of the decoder consists mainly of two

1-D linear filters with a small support interval (e.g., DWT
kernels suggested in JPEG 2000 are not longer than 18
samples). These filters can be used both for vertical and
horizontal processing because these two operations never
occur at the same time. Thus, the implementation of a decoder
according to the Classical approach is rather simple and its

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

main disadvantage is the need of a large external memory and,
above all, of a large data exchange with it. Indeed external
memory is less efficient than on-chip cache memory both in
terms of available bandwidth, power consumption and overall
system complexity. The management of temporary data is thus
the main bottleneck of the Classical approach.

B. Sliding-Windows Layer-by-Layer approach
A redesigning of the DWT algorithm, in order to change the

operation scheduling, allows to reduce the temporary data
lifetime and to optimize the overall system performance [1]-
[3]. The SW-LbL approach [1], [2] allows to significantly
reduce both external memory size and bandwidth at the price
of a slightly more complex implementation and the need of a
small on-chip memory. The main idea behind this approach is
to exploit data dependencies between horizontal and vertical
processing in order to try to use temporary samples as soon as
they are available.

The scheme of Fig. 3 shows how to manage temporary
samples between horizontal and vertical filtering in order to
reduce their lifetime. Let’s suppose that the horizontal filters
are applied first. Horizontal filters produce samples along
rows, while vertical filters need input samples along columns.
To generate these columns of samples with horizontal filters, a
set of horizontal filters could be used, with a couple of p-q
filters for each line. In this way, scheduling the horizontal
filters line by line, columns of temporary data capable of
feeding vertical filters are generated. Actually it is not needed
to implement a couple of filters for each line because they
never work in parallel, only one line is active at a time. It is
just needed to store 2 columns of samples necessary as input
by all the virtual horizontal filters and read them line by line
to load them in parallel in a true real couple of horizontal p-q
filters. These two columns behave like two windows sliding
over the input image, because they cache successive columns
of input samples. This is the origin of the name for this
approach. Supposing to put the sliding-windows memory on
chip, to reconstruct layer n it is necessary to exchange with
external memory only input layer data (layer n-1 coded
signals) and output layer data (reconstructed layer n), while all
the temporary samples between horizontal and vertical
filtering are managed by on-chip memory.

Fig. 3. “Sliding-Windows Layer-by-Layer” DWT decoder. The lifetime of
temporary data between horizontal and vertical filtering is minimized by using
them as soon as possible after their creation. The two columns of coupled

horizontal filters are virtually implemented by means of a cache memory and
of one couple only of real filters working line by line.

In general the memory required to store temporary data
between two successive layers is still too large to be
implemented on-chip. Looking at Fig. 2 and keeping in mind
that temporary data between horizontal and vertical filtering
no longer need to be stored on external memory, it can be
noticed that the maximum amount of temporary data to be
managed is given by LL1 signal storage that can be expressed
as:

EM WHs SW LbL, − = 4 . (6)

Concerning data exchange with external memory, it can be

observed that with respect to the Classical approach it is no
longer needed to read and write temporary data between
horizontal and vertical filtering. That is, in previous
expression 5, instead of considering samples (because of
expression 3) only samples must be considered:

2D
D

EM EM

EM D WH D

r SW LbL w SW LbL

r Classical

, ,

, ,

− −=

= − =
5
3

−
 (7)

that , according to equation 2, results in:

EM EM WHr SW LbL w SW LbL, ,− −= =
1
3

. (8)

Considering Fig. 3 it can be observed that the size of the

memory required to store the two columns of samples hp and
hq depends on the size of the reconstruction filters. Such size
depends on the chosen DWT kernel, and on the height of the
highest layer to reconstruct, that is on the height H of the
image. Let be the kernel size: sK

qpK s += , (9)

and let be the maximum supported kernel size, it

results that:
MAXsK ,

MAXMAXMAXs qpK +=, . (10)

According to the DWT reconstruction process, input data

must be up-sampled before being processed by reconstruction
filters p and q. Therefore p and q filters may be replaced by
two couples of filters pe-qe and po-qo, whose length is half of
that of the original filters, working alternately on the same
input data to produce respectively output samples in even and
odd positions. Therefore, the total size of the inter-layer
temporary memory is given by:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

H
K

IM MAXs
LbLSWs 2

,
, =− , (11)

and considering that typical kernel lengths range up to 20

samples [8], this memory, referred here as Internal Memory
(IM), can be conveniently and efficiently implemented on-
chip.

Every line of the Sliding-Windows memory holds the input
data of the corresponding horizontal virtual filter, thus
emulating the functionalities of a FIFO. For each L-H couple
of input samples, two output samples are produced, and this
implies that for each output sample a new input sample has to
be stored in virtual filter’s FIFO, according to expression:

IM
WH

WHw SW LbL l
l

L

, − −
=

= ≈∑ 4
4
31

1
. (12)

Having to work along columns, whole lines of data in

Sliding-Windows memory have to be reloaded, line by line,
into the horizontal filter to produce each column of output
data. Consequently, the amount of data read from Sliding-
Windows memory is larger than the amount of written data:

IM
WH K

WH Kr SW LbL l
s

l

L

s, − −
=

= ⋅ ≈ ⋅∑ 4 2
2
31

1
. (13)

This relatively high bandwidth requirement can be easily

satisfied by the high-speed performances provided by
available on-chip memory cores.

By means of a small on-chip cache, the SW-LbL approach
achieves a reduction of the external memory size to a quarter
of that of the Classical approach and the memory bandwidth
to a fifth. In the following section the most significant issues
about the hardware implementation of the SW-LbL decoder
are discussed. Moreover, the main results achieved and
performances related to system requirements are presented.

III. SW-LBL DECODER IMPLEMENTATION
The architecture of a SW-LbL decoder is composed by four

main blocks: the horizontal filters block (HOR_FIL), the
vertical filters block (VER_FIL), the state machine that
synchronizes all the operations at layer level
(FIR_CONTROL) and the state machine ruling the whole
system functionalities at high level, from parameters setup to
decoding along all layers (SCHEDULE). It will be shown that
the most complex part of this implementation is the
FIR_CONTROL, because the synchronization of all the
operations (mainly the synchronization of vertical and
horizontal filtering, in steady state as well as at the borders) is
not a simple task.

At the synthesis stage, the SW-LbL decoder can be scaled
in terms of maximum image sizes, maximum kernel length,
samples word-size and kernel coefficients word-size. At run-

time, the decoder can be programmed to process any image
size within the maximum image size, with any kernel of any
length within the maximum kernel length.

While it has been shown that DWT kernel filters can be
efficiently implemented using the Lifting Scheme [8], [9], it is
chosen here to implement the filters with the classical filters
scheme. Despite the fact that the classical filter scheme needs
a larger Sliding-Windows memory than the Lifting Scheme
(the total number of taps of Lifting-Scheme’s filters is about
half of that of the corresponding classical scheme), the
classical scheme presents several advantages that make it
preferable for several reasons:

 Both in the classical scheme and in the Lifting-Scheme,
the filters are typically non-causal. Having to implement
the whole kernel system as a causal system, the lifting
scheme presents some obvious problems because not
only each filter must be “delayed” to make it become
causal but also an extra delay must be introduced on the
line to which the filter’s output is added in order to
preserve the correct synchronization. This extra delay
can either be implemented reusing the FIFO line of the
previous step’s filter, when available and with enough
taps, or introducing another ad-hoc FIFO line. In the
classical scheme both filters just need to be delayed of
the same number of samples, which needs no extra
delays and does not give any further synchronization
problem. The same does not apply for the Lifting-
Scheme.

 The programmability of the kernel is drastically more
complex in Lifting-Scheme. In the classical scheme it is
just needed to store the kernel’s coefficients, store the
divisor at the end of each filter and synchronize the
output in order to take into account the delay introduced
to make filters causal. In Lifting-Scheme such operations
must be performed at each step, in addition it is required
to synchronize any step in order to respect the delay
introduced by the previous step. As explained above,
depending on the kernel either the FIFO line of previous
step’s filter can be reused or another FIFO line can be
used, implying the need of more multiplexers and
making the overall set-up by far more complex than the
classical filter scheme.

 According to JPEG-2000 specifications, samples at
signal borders must be mirrored. Depending on the
filter’s impulse response, samples may be mirrored with
respect either to first (last) sample or to half sampling
interval before (after) first (last) sample. While with the
classical scheme we can easily reuse the taps of the
filters to implement this feature, with the Lifting-Scheme
this implementation is not straightforward.

 As shown with equation 12, for each processed sample,
it is necessary to write one sample only in the Internal
Memory. With the Lifting-Scheme, one sample has to be
written for any step with impulse response of more than
one sample as well as for all the extra delay lines.
Besides increasing the bandwidth to write on Internal
Memory, the complexity of the management of the data
to be written would increase as well.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

All the filtering operations are based on integer arithmetic.

Experimental results with floating point kernels of JPEG-2000
showed that the PSNR loss of decoded image can be kept
smaller than 2 dB by storing processed samples on 15 bits
integers and scaling floating point coefficients in order to map
them on 9 bits integers.

So as to manage the different timing requirements among
the inputs of the filters and their outputs, and among the speed
of the internal memory and the external one, it has been
chosen to use two clocks: the first clock (CLK) controls the
output of the filters and the load and store operations of the
external memory, whereas the second clock (CLK’), 20 times
faster than CLK, controls the input of the horizontal filter and
the load and store of the internal cache.

The main blocks of the decoder are the horizontal and the
vertical filtering blocks: every block implements the low-pass
and a high-pass filter for DWT reconstruction. The filters
have been implemented using a poly-phase approach as shown
in Fig. 4.

Fig. 4. Poly-phase implementation of kernel filters.

For every input sample two results are obtained. These
results correspond to the two steps of a classical filtering
process using the original data interlaced with zeros. The two
outputs of both filters have to be appropriately added, as
shown in Fig. 5, in order to produce samples in even and odd
positions.

Fig. 5. Output data in even and odd positions (respectively data_out1 and
data_out2) according to poly-phase implementation of kernel’s low-pass and
high-pass filters.

The input samples for the horizontal filters are stored in the
internal cache while a whole line of samples has to be loaded
at every CLK clock cycle to let both the horizontal filters
produce an output value. Samples are loaded from internal
cache at CLK' rate, in order to load all required samples
within the available time according to CLK. The vertical
filtering block is clocked just by CLK clock, to synchronize
both the initialization process and the outputs.

Both horizontal and vertical borders of input signal must be
mirrored in the same way but, because of the different
implementations of horizontal and vertical filters, the
mirroring operations are implemented in two completely

different manners. For horizontal filtering, the border
mirroring is implemented reading data twice from internal
cache, first backward then forward for the beginning border,
first forward than backward for the ending border. The
number of memory accesses to the internal cache is not
affected by mirroring, because the number of written and read
samples is exactly the same like in the steady state. Within the
vertical filtering block a set of multiplexers is in charge of
carrying the input sample to the output of any register of the
FIFO line (beginning border, multiplexers “B” in Fig. 6) or to
reuse samples already in the FIFO line itself as input value
(ending border, multiplexer “E” in Fig. 6). In both horizontal
and vertical blocks, all the mirroring operations depend on
parameters to be set during system initialization in order to
correctly mirror input data according to the chosen kernel and
image sizes.

Fig. 6. Border mirroring in vertical filter block. The multiplexers “B”
implement mirroring operations at the beginning of the column, by allowing
carrying the input sample to any register’s output, while the multiplexer “E”
implements the mirroring operations at the end of the column, by allowing
reusing as input sample the value stored in any register.

The most critical issue during the decoding process is the
synchronization of operations between HOR_FIL and
VER_FIL. To describe how these two blocks interact, it is
necessary to distinguish between columns in even and odd
position. In order to produce two decoded samples along a
column, the filter blocks are fed with 4 samples, as shown in
Fig. 7. HOR_FIL block produces two samples at the same
time, the first in an even column and the second on the same
row in the following odd column. Since the vertical block
have to process one column at a time, the first sample
produced by horizontal block can be passed immediately to
vertical block while the other sample has to be stored in the
internal cache in order to delay its use after current column
has been completely processed. Seemingly VER_FIL needs
two consecutive input samples on a column before being able
to compute two output samples, therefore it has to wait for
HOR_FIL to process a “square” of 4 samples on two rows
before producing two output samples.

While producing an even column of output samples,
HOR_FIL and VER_FIL work together. Each clock cycle
HOR_FIL produces 2 temporary samples on even and odd
columns and the two of them on the even column are
immediately processed by VER_FIL. Producing the
successive odd column, only VER_FIL works, using for input
the samples previously produced by HOR_FIL and stored in
the internal cache. In both cases, VER_FIL produces two
samples at the same time each two clock cycles. The first

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

sample is passed immediately to the output while the second
one is delayed of one clock cycle, in order to produce, in
steady state, one output sample at each clock cycle.

Fig. 7. Basic data flow in the decoding process. Horizontal filters (H_FIR)
produce at the same time two columns of (temporary) output data while these
columns have to be fed one after the other into vertical filters (V_FIR).

The FIR_CONTROL block is basically a state machine in
charge of synchronizing all the steps to decode one layer. First
it resets the filtering blocks, initializing them to process a new
layer, then it controls the behavior of HOR_FIL and
VER_FIL in order to synchronize the two blocks to decode a
layer, take care of border mirroring, take into account the
delay introduced by causal kernel filters and manage the
accesses to internal cache.

The SCHEDULE block controls the whole decoding
process interacting with FIR_CONTROL. Its main tasks are
initializing FIR_CONTROL to start decoding a layer,
controlling input and output operations and managing the
transition from one layer to the next one when
FIR_CONTROL notifies that a layer has been completely
processed.

IV. PERFORMANCE AND REQUIREMENTS
This section presents the results obtained with a VHDL

implementation of the SW-LbL DWT decoder. The decoder
has been synthesized and validated in 0.35 µm CMOS
technology.

The parameters chosen to customize the implementation of
the decoder and the tables of the corresponding results
obtained after synthesis are reported below:

 Maximum image size: 768x512 pixels.
 Maximum kernel length: 10 taps both for high pass and

low pass channel.
 Data samples’ word-size: 16 bits.
 Kernel coefficients’ word-size: 16 bits.

TABLE 1
HOR_FIL

Description Value Unit
Ports 101 #
Multipliers (16x16 bits) 20 #
Adders (32 bits) 4 #
Data registers (16 bits) 8 #
Kernel coefficient registers (16 bits) 20 #
Combinatorial area 2.54 mm2

Noncombinatorial area 0.25 mm2

Net Interconnect area 0.42 mm2

Total area 3.20 mm2

TABLE 2

VER_FIL
Description Value Unit
Number of ports 102 #
Multipliers (16x16 bits) 20 #
Adders (32 bits) 4 #
Data registers (16 bits) 8 #
Kernel coefficient registers (16 bits) 20 #
Combinatorial area 2.52 mm2

Noncombinatorial area 0.26 mm2

Net Interconnect area 0.38 mm2

Total area 3.17 mm2

TABLE 3

FIR_CONTROL
Description Value Unit
Ports 100 #
Combinatorial area 0.93 mm2

Noncombinatorial area 0.14 mm2

Net Interconnect area 0.18 mm2

Total area 1.25 mm2

TABLE 4

SCHEDULE
Description Value Unit
Ports 84 #
Combinatorial area 0.26 mm2

Noncombinatorial area 0.16 mm2

Net Interconnect area 0.08 mm2

Total area 0.49 mm2

We tested the synthesized chip using JPEG2000’s 7x9

floating point kernel, with an image coded over 6 layers. The
steady state throughput of the decoder is one sample per clock
cycle and, according to equation 2, we find that the minimum
time required to decode an image is

[]min CLK cyclesT D= . (14)

Because of the delays introduced to make the kernel’s

filters causal and because of mirror operations at layers’
borders, the total simulated decoding time is slightly greater
than the theoretical minimum : minT

[]1.04 CLK cyclesT D= ⋅ . (15)

The bandwidth required between the external memory and

the chip and between the horizontal filters and internal cache
meet the theoretical values shown respectively in equations 5
and 12, 13. The Sliding Windows on-chip cache memory is
composed by two blocks of 2560 words of 16 bits.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. CONCLUSIONS
This paper presents the implementation of a JPEG 2000

compliant hardware DWT decoder for Mallat tree
decomposition. The decoder is capable of image decoding
applications, both with integer and floating-point kernels. The
customizable design allows setting the basic features of the
decoder, such as maximum image size, maximum kernel
length and computational precision. The synthesized decoder
may be programmed to process images with different sizes,
coded on a different numbers of layers and using different
kernels, while always guaranteeing the correct mirroring
operations at layers’ borders. By means of an on-chip cache
and of a specifically optimized scheduling of operations, the
decoder requires a minimum number of accesses to external
memory, making it suitable for low-power embedded
applications.

REFERENCES
[1] M. Ravasi, M. Mattavelli and D.J. Mlynek, “Scheduling strategies for

2D wavelet coding implementations,” Proceedings of X European Signal
Processing Conference, vol. II, pp. 969-972, Tampere, Finland,
September 2000.

[2] M. Ravasi, M. Mattavelli, D. J. Mlynek, A. Buttar and S. Soudagar,
“Wavelet image compression for mobile/portable applications,” IEEE
Trans. on Consumer Electronics, vol. 45, no. 3, pp. 794-803, August
1999.

[3] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels and I. Bolsens,
“Optimal memory organization for scalable texture codecs in MPEG-4,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no.
2, pp. 218 –243, March 1999.

[4] C. Chakrabarti, M. Vishwanath and R. Owens, “Architectures for
wavelet transforms,” VLSI Signal Processing VI, IEEE special
publications, NY, pp. 507-515, 1993.

[5] M. Vishwanath, “The recursive pyramid algorithm for the discrete
wavelet transform,” IEEE Transactions on Signal Processing, vol. 42,
no. 3, pp. 673-676, March 1994.

[6] T.C. Denk and K.K. Parhi, “Calculation of minimum number of
registers in 2-D discrete wavelet transforms using lapped block
processing,” IEEE Int. Symposium on Circuit and Systems, vol. 3, pp.
77-80, London, England, May 1994.

[7] G. Lafruit and J. Bormans, “Graceful degradation parameters for a
scalable wavelet codec,” ISO/IEC JTC1/SC29/WG11/MPEG97/M2655,
Fribourg, October 1997.

[8] TeraLogic, Inc. (C. Chui), “Integer Wavelet Transforms,” ISO/IEC
JTC1/SC29/WG1/N769, Geneva, March 1998.

[9] W. Sweldens and P. Schröder, “Building your own wavelets at home,” in
“Wavelets in Computer Graphics,” ACM SIGGRAPH Course Notes, pp.
15-87, 1996

[10] Y. Sheng, “Wavelet Transform,” Chapter 10 in “The Transforms and
Applications Handbook,” A.D. Poularikas, CRC Press, 1996.

	INTRODUCTION
	“Sliding-Windows Layer-by-Layer” DWT decoder
	Classical approach
	Sliding-Windows Layer-by-Layer approach

	SW-LbL Decoder implementation
	Performance and requirements
	Conclusions

