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Abstract

We consider a new combinatorial optimization problem related to linear systems (MIN PFS) that consists, given an in-

feasible system, in finding a partition into a minimum number of feasible subsystems. MIN PFS allows formalization of the

fundamental problem of piecewise linear model estimation, which is an attractive alternative when modeling a wide range

of nonlinear phenomena. Since MIN PFS turns out to be NP-hard to approximate within every factor strictly smaller than

��� and we are mainly interested in real-time applications, we propose a greedy strategy based on simple randomized and

thermal variants of the classical Agmon-Motzkin-Schoenberg relaxation method for solving systems of linear inequalities.

Our method provides good approximate solutions in a short amount of time. The potential of our approach and the per-

formance of our algorithm are demonstrated on two challenging problems from image and signal processing. The first one

is that of detecting line segments in digital images and the second one that of modeling time series using piecewise linear

autoregressive models. In both cases the MIN PFS-based approach presents various advantages with respect to classical

alternatives, including wider range of applicability, lower computational requirements and no need of a priori assumptions

regarding the underlying structure of the data.

�Part of this work was performed while E. A. was with the School of Operations Research and Theory Center, Cornell University, Ithaca, NY 14853,

USA.
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1 Introduction

Although linear models play an important role when modeling a wide range of physical phenomena or technical problems,

nonlinear models are often required due to the omnipresence of nonlinearities. Fitting linear models to a set of � data points

in �-dimensional space leads to formulations in terms of linear systems such as

� � � � (1)

where � is a � � � real matrix and � a �-dimensional real vector. The coefficients of each row of � correspond to a

data point and each variable �� , with � � � � �, to one of the linear model parameters to be estimated. These systems

are typically overdetermined, i.e., � is much larger than �. When linear models are too simple to account for the actual

complexity of the data, the resulting linear system (1) is infeasible and classical approximate solutions that minimize a least

mean square criterion are usually not meaningful. In such situations, piecewise linear models are attractive since they allow

approximation of complex nonlinear phenomena but are still simple enough due to local linearity. However, piecewise linear

model estimation turns out to be a challenging problem because it involves partitioning the data points into disjoint subsets

as well as fitting a linear submodel to each one of these subsets. The structure and parameter estimation appears as a chicken

and egg problem in the sense that if one of them is known the other one can be determined relatively easily.

Overdetermined infeasible systems are often tackled with robust regression techniques [35], which assume that most of

the data points can be fitted by a linear model and that the system (1) is infeasible due to spurious or noisy data. But these

methods have a limited range of applicability since they can cope with at most ��� of outliers, that is, a linear submodel

must fit at least half of the data points.

Two-phase approaches in which one first partitions the data using some clustering methods [21] and then estimates the

parameters of each submodel using robust regression techniques [35] have major drawbacks. In particular, the number of

linear submodels needs to be guessed in advance and the clustering problems, which are NP-hard, are difficult to solve.

Even more importantly, the partitions obtained during the clustering phase may lead to meaningless results. Indeed, standard

clustering methods, which minimize (maximize) some dissimilarity (similarity) measure, do not take into account the type of

submodels (linear) used to fit the data locally. For a survey of mathematical programming approaches to clustering problems

see [16] and the references herein.

In principle, the Hough Transform (HT) and its variants [18, 22] constitute a good alternative to the two-phase approach

because they can solve a wide range of linear and nonlinear model identification problems without requiring any a priori

assumption. Local information is used to accumulate evidence for some particular sets of parameter values of the model

under consideration. Being relatively insensitive to noise and partially incorrect data, HT variants have been applied to a

number of image and signal processing problems (see [22] and refereces herein). However, they have high computational
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requirements to guarantee a reasonable accuracy and they are quite sensitive with respect to threshold settings.

In this paper we present a new combinatorial optimization approach to simultaneously determine the structure and estimate

the parameters of piecewise linear models. In Section 2 we show that this problem can be formulated as that of Partitioning

linear systems into a MINimum number of Feasible Subsystems. This combinatorial optimization problem, which we refer

to as MIN PFS, is shown in Section 3 to be NP-hard to approximate within every constant factor � � ���. In Section 4 we

describe a simple greedy strategy which provides good approximate solutions in a short amount of time. The algorithm is

based on randomized and thermal variants [2, 3, 12] of the classical Agmon-Motzkin-Schoenberg relaxation method [1, 30]

for solving systems of linear inequalities. In Section 5 the performance of the MIN PFS-based method are demonstrated

by reporting some results for two challenging problems from image and signal processing. In particular, we focus here on

the fundamental problem of detecting line segments in digital images and that of time series analysis using piecewise linear

autoregressive models. Differences with respect to conventional alternatives such as robust regression, clustering methods

and the Hough transform are mentioned. Finally, Section 6 contains some concluding remarks.

2 From the MIN PFS problem to piecewise linear model estimation

To allow formalization of the fundamental problem of piecewise linear model estimation, we consider the following com-

binatorial optimization problem which, to the best of our knowledge, has not yet been introduced in the discrete mathematics

literature.

MIN PFS: Given a possibly infeasible linear system �� � � with � � ���� and � � ��, find a Partition of

this system into a MINimum number of Feasible Subsystems.

The MIN PFS problem, which is of interest in itself, is very attractive in this context because it provides a natural way

of addressing simultaneously the two fundamental issues: data partition and parameter estimation. Given any solution of

MIN PFS the partition of the equations indicates the data partition and a solution of each feasible subsystem provides a set

of parameter values for the corresponding submodel. Unlike in two-phase approaches, linearity of the submodel is here taken

into account in the partition process.

A unique feature of our MIN PFS formulation is that it aims at minimizing the number of submodels. According to the

well-known Occam razor principle [8], we look for the “simplest” piecewise linear model consistent with the data, which

is most likely to be the correct one. Here complexity is measured in terms of the number of linear submodels. The choice

of the objective function clearly tends to penalize irrelevant linear submodels that account for just a few (possibly spurious)

data points. Note that here the partition is not determined based on the distances between the data points in �-dimensional

space. Points are grouped together only if they can be fitted by the same linear submodel or equivalently if the corresponding
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equations in (1) form a feasible subsystem. It has also to be emphasized that no a priori assumptions are made concerning

the type of piecewise linear model. In particular, the corresponding linear submodels are not restricted to define a continuous

or single-valued function.

In practice, to cope with noisy data, a maximum noise tolerance threshold � 	 � is selected and each equation � �
� � 
�,

where �� denotes the �th row of � and 
� the �th component of � with � � � � �, is replaced with the two complementary

inequalities:

�
�
� � 
� � � �

�
� � 
� � � (2)

that have to be simultaneously satisfied. This standard appproach is widely used in the context of feasible linear systems, see

for instance [10]. If equations of the original system are expected to be affected by different noise levels, different thresholds

can of course be used.

Note that this variant of MIN PFS has a simple geometric interpretation in coefficient space. As shown in Figure 1, if


� � � for all � � � � � it amounts to finding the minimum number of hyperslabs of thickness �� (obtained by moving a

hyperplane �� � �
���� � �� defined by � � �� with ��� � � apart by � in both opposite directions) such that all the

points �� � �
� representing the coefficient vectors are contained in at least one hyperslab. The normal vectors defining

these hyperplanes clearly correspond to the solutions of the feasible subsystems in a minimum partition. In the general case

with arbitrary right-hand sides 
�, the hyperplanes are not required to go through the origin and the geometric interpretation

is slightly more involved.

Finally, it is worth pointing out the connection between MIN PFS and the classical problem of minimum node colouring

in graphs.

MIN GRAPH COLOURING: Given a graph 
 � ����	, colour the nodes with as few colours as possible so

that adjacent nodes have different colours.

Property: MIN PFS with equations and ��� ��-variables admits MIN GRAPH COLOURING as a particular case.

Given any instance of the latter problem defined by 
 � ����	 we construct the following special instance of MIN PFS.

For each �� � � of 
 � ����	, we consider the equation

�� �
�

�������� ���

�� � ��

If � 	� 
, the resulting system is infeasible. Since feasible subsystems are in one to one correspondence with independent

sets, partitions into � feasible subsytems are in one to one correspondence with colourings using � different colours.

Thus MIN PFS with real variables is of particular interest from the piecewise linear model point of view, while the version

with binary variables generalizes a well-known problem on graphs.
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3 Worst-case complexity of MIN PFS

Suppose, without loss of generality, that there are no pairs of contradictory equations, e.g., equations with the same

coefficient vectors �� and a different 
�. If the �� are in general position1, the problem is trivial since any subsystem with

up to � equations is feasible and all larger subsystems are infeasible. However, the problem turns out to be harder in general.

We say that MIN PFS can be approximated within a factor � � � if there exists an algorithm that is guaranteed to deliver for

any instance a partition into feasible subsystems with at most � times more subsystems than in a minimum size partition.

Theorem 1 MIN PFS is NP-hard and cannot be approximated within any constant factor � � ���, unless P � NP.

PROOF We show that it is NP-complete to decide whether infeasible systems can be partitioned into two feasible subsystems.

The proof is by reduction from the following classical NP-complete problem, see [13].

PARTITION: Given a finite set � � ��� � � � � �� and a size �� for each � � �, does there exist a subset � � � �

such that
�

���� �� �
�

������ ��?

Since linear system feasibility can be tested in polynomial time, the decision version of MIN PFS in which one ask

whether any given instance ����	 is partitionable into two feasible systems is clearly in NP.

Let ��� ���� � � � � ���	 be an arbitrary instance of the PARTITION problem. We construct a particular instance ����	 of

MIN PFS such that the answer to the former one is affirmative (i.e. there exists a subset such that
�

���� �� �
�

������ ��)

if and only if the answer to the latter one is also affirmative (i.e. it is possible to find a partition into two feasible subsystems).

The idea is to construct an infeasible system containing one variable � � for each � � �. The system is composed of the

equation

��
���

���� � � (3)

as well as of the �� equations

�� � � for � � �� � � � � �� (4)

�� � �� for � � �� � � � � �� (5)

Since for each �, � � � � �, the equations of types (4) and (5) are contradictory, the overall system with ���� is infeasible.

Clearly, such a system can always be partitioned in at most three feasible subsystems: one for equation (3), one for the

equations of type (4) and one for those of type (5).

1A set of points in�� is in general position if no subset of � � � points is contained into an affine space of dimension � � �.
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If the considered instance of PARTITION has a positive answer and �� �� � � ��	 is any bipartition of � such that
�

���� �� �
�

������ �� , the vector � defined by

�� �

���
��

� if � � ��

�� otherwise

satisfies equation (3) and exactly � equations of types (4) and (5). The other � equations of types (4) and (5) are obviously

feasible. The overall system can thus be partitioned into two feasible subsystems, one containing � � � equations and the

other one � equations.

Conversely, suppose that the system (3)–(5) can be partitioned into two feasible subsystems and that � � and �� are two

corresponding solutions. By construction, each of them satisfies exactly � equations of types (4)–(5) and hence has �� or �

components. If �� denotes the solution which satisfies also equation (3), the bipartition of � defined by � � � � if and only if

��� � � satisfies the relation
�

���� �� �
�

������ �� .

It is easy to see that this reduction also implies that it is NP-hard to find near-optimal solutions within the above-mentioned

factor. Suppose there exists a polynomial time algorithm that is guaranteed to yield for every instance a partition with a num-

ber of feasible subsystems which exceeds the minimum one by a multiplicative factor � � ���. Then for any bipartitionable

instance it would yield a solution of size strictly less than ��� � � � �, that is, with � feasible subsystems. Hence the

contradiction since such an algorithm would solve an NP-complete problem in polynomial time.

Although this worst-case result provides insight into the inherent difficulty of MIN PFS, it does not rule out the existence

of efficient heuristics with a good average-case behavior. Now, in a number of applications, including the two discussed in

Section 5, finding reasonably good approximate solutions in a short amount of time is of great practical value.

Note that MIN PFS is trivial for infeasible systems of inequalities since any such system can be partitioned into two

feasible subsystems. This fact is obvious for homogeneous systems and is easily verified for inhomogeneous ones [36]. But

the above reduction can be extended to the case of systems of complementary inequalities like (2) in which such pairs must

belong to the same feasible subsystem.

Thus estimating piecewise linear models turns out to be more difficult than estimating linear models which can be done in

polynomial time using least mean square methods.

4 A greedy algorithm

Since in various practical applications we are interested in finding approximate solutions of MIN PFS rapidly, we adopt

a simple greedy approach and subdivide the overall partition problem into a sequence of subproblems. Starting with the

infeasible system composed of pairs of complementary Inequalities (2) corresponding to a single linear model that is not
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powerful enough to model the data at hand, we iteratively extract close-to-maximum feasible subsystems, i.e., feasible sub-

systems containing a close-to-maximum number of pairs of complementary inequalities. Clearly, iterating the process until

the remaining subsystem is feasible yields a partition into feasible subsystems. As we shall see in Section 4.2, this greedy

strategy is well motivated from the application point of view and it turns out to be experimentally effective, among others, in

the applications discussed in Section 5.

4.1 Extraction of close-to-maximum feasible subsystems

At each step of the greedy strategy, the subproblem to deal with is that of, given the current system �� � � and a tolerance

threshold � 	 �, seeking an � � �
� that satisfies as many pairs of complementary inequalities ��� � 
� � � and ��� �


� � � as possible. This problem is an extension to the setting with pairs of inequalities of the combinatorial optimization

problem of finding a Maximum Feasible Subsystem of infeasible linear inequality system, which is known in the literature

as MAX FS [6]. Weighted and unweighted versions of MAX FS have a number of interesting applications in various fields

such as computational geometry, operations research, radiation therapy and machine learning (see e.g. [2, 11, 23, 24, 33]

and the included references). As shown in [4] MAX FS can be approximated within a factor of � but it does not admit a

polynomial-time approximation scheme, unless P = NP.

Given the suboptimality of the greedy strategy, it is neither necessary nor desirable to look at each step for an optimal

solution of the corresponding subproblem, see the discussion in Subsection 4.2. We are interested in algorithms that provide

good solutions in a reasonably short amount of computation time. In this paper we propose to tackle the above extension

of MAX FS using randomized and thermal variants of the classical Agmon-Motzkin-Schoenberg (AMS) relaxation method

for solving systems of linear inequalities [1, 30]. Variants of the AMS procedure have been investigated since the 60’s in the

machine learning literature under the name of percetron-like methods, see e.g. [29]. The randomized and thermal relaxation

method used here is a variant of those studied in [2, 3], which extend the thermal perceptron procedure [12] 2. In spite of

the inherent computational complexity of MAX FS these methods perform very well in practice. Deterministic AMS-like

relaxation methods have also been extensively studied in the mathematical programming literature, often as special cases

of subgradient algorithms, see e.g. [10, 14]. The adavantages of randomization for a similar relaxation method for feasible

systems of convex inequalities have also been investigated in [34].

Given a feasible system �� � �, the AMS method is a simple iterative procedure that generates a sequence of estimates.

Starting with an arbitrary initial guess �� � �
�, at each iteration an inequality is selected according to a prescribed rule

(e.g., cyclical choice, inequality with maximum violation or uniformly at random among the � ones) while all the others are

relaxed. Suppose that at iteration � the �th inequality ��� � 
� is considered. Then the current estimate �� is updated as

2The adjective “thermal” refers to the fact that a temperature parameter is used like in simulated annealing.
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follows:

�
��� � �

� � Æ��
� (6)

where Æ� � 
����� ������� � 
�	� and �� 	 �. In other words, the current estimate is updated only if it violates the

inequality at hand.

Geometrically, the current estimate �� can be viewed in parameter space as a point in �� and the �th inequality defines a

hyperplane �� � �� � ������ � 
��. If �� lies on the negative side of �� (�th inequality is satisfied) then it is unchanged.

Otherwise, ���� is obtained by making a step along the line defined by the extremity of � � and that of its orthogonal projection

onto ��. The steplength clearly depends on the value of � �, see Figure 2.

For any feasible system, if the increment sequence �Æ �	� satisfies certain conditions then the AMS method is guaranteed

to yield a solution that satisfies all inequalities in a finite number of iterations but in the worst-case exponential number of

iterations, see e.g. [14, 37]. Although more sophisticated stopping criteria have been proposed [37], in practice one usually

stops after a predefined maximum number of cycles � through the � inequalities. For infeasible systems, the procedure never

terminates (violated inequalities always trigger updates) and in a worst-case scenario it can even lead in a single iteration

from an estimate that satisfies a maximum number of inequalities to a worst possible one.

Based on [2, 12], we propose to look for maximum feasible subsystems of �� � � using a Thermal variant of the

above Randomized AMS Relaxation method, referred to as TRR method. To make the procedure well behaved for infeasible

systems, the basic idea is to favor updates of the current estimate � � which aim at correcting unsatisfied inequalities with

a relatively small violation ��� � �
�
�
� � 
� if ���� 	 
� and � otherwise. Indeed, the large modifications that would be

required to correct unsatisfied inequalities with large � �� are likely to corrupt other inequalities that � � satisfies. As in [12], it is

appropriate to pay decreasing attention to unsatisfied inequalities with large violations, namely, to perform at the beginning all

updates prescribed by the standard AMS procedure and then only those which aim at correcting unsatisfied inequalities with

progressively smaller and smaller ��� . This can be achieved by letting the magnitude of the updates Æ � decrease exponentially

with ��� and by introducing a control parameter � with which the � �
� are compared. More specifically, Æ� � 	�

	�
� 
��

�
� ���� �

	�

�

where �� is the temperature value at the �th iteration and the sequence �� �	� is reduced (asymptotically or over a finite

number of iterations) from an initial value �� to �. The approximate solution provided by the algorithm is the best estimate

�
� generated during the process, i.e., the one that satisfies the largest number of inequalities.

As pointed out in [3], TRR versions are fully specified by: the selection rule which indicates the way the inequalities

are selected (e.g. uniformly at random with or without replacement), the increment rule specifying how the Æ � are computed

(e.g. Æ� � � or linearly/exponentially reduced over a prescribed number of iterations) and the decision rule characterized

by the probability �� with which the update (6) is performed at the �th iteration. While in the basic version generalizing

the thermal perceptron �� � � for all unsatisfied inequalities, in the doubly randomized thermal variants [3] an update is
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performed with a given probability � � that depends on the degree of violation of the inequality at hand. For instance, we

may take �� �
	�
	�
� 
��

�
� �����

	�

�
or �� � 
��

�
� ���� �

	�

�
and, respectively, Æ� 
 � or Æ� � �����. Instead of updating �� by

small rapidly decreasing amounts with probability � � � � for all unsatisfied inequalities, the idea is to use a constant or more

slowly decreasing increment Æ�, but to perform the updates with rapidly decreasing probability.

Although the thermal perceptron procedure is contrasted in [12] with gradient-type methods, there is a closely related

interpretation of the TRR method [3]. For any fixed value of the temperature � , consider the function � 	 � � � � that takes

the value �� 
������� 	 for nonegative � � � and is zero on the negative half-line. � 	 approximates the indicator function

of the positive half-line. The function

�	
�
�
	
�

�
������
���������

�	
�
�
�
�� 
�

	
(7)

is thus a piecewise smooth approximation to the objective function � � that counts the number of misclassified inequalities,

and �	 converges pointwise to �� when � � �. Note that

���	
�
�
	
��

�
������
���������

�

�

��

�
������ 
�	��

	
�
� (8)

is a subgradient of �	 , and that the expected update of the TRR variant that selects each inequality with equal probability

� � ��� at each iteration is equal to the dampened subgradient step

�


��
�
� �

� �

���
���	

�
�
	

(9)

with the damping factor ��	 �

	�
. The TRR method may thus be interpreted as a randomized subgradient homotopy method.

For large values of � , �	 is a coarse approximation of the actual objective function � � we would like to minimize. When �

approaches �, the approximation quality progressively increases and strong damping is needed in order to avoid instabilities.

This suggests that the value of �� as well as the way the � is reduced may affect the quality of the final solutions as it is, for

instance, the case in simulated annealing.

In [3] we establish almost sure finite convergence guarantees to an optimal solution of MAX FS for several variants of

the TRR procedures. For instance, for the doubly randomized TRR method with � � � ����� 
��
�
��������

	
and

�
Æ�
	
�

 �,

we prove that when applied to any given strictly feasible linear inequality system then for a large enough constant � 	 �

(which depends on �� and on the system coefficients) and a temperature schedule that asymptotically decreases no faster

than �� � �� �� �, for � � �, then there exists some index �� � � such that with probability 1 the best solution found up to

iteration �� is optimal.

From a practical point of view, it is worth emphasizing, as it is done in [10] for feasibile linear systems, that our AMS

variants are inherently parallel and hence well-suited to handle even extremely large (infeasible) systems.
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The TRR method is easily adapted to the case with pairs of complementary Inequalities (2). Starting with an arbitrary

initial �� � �
�, at each iteration a pair of inequalities is selected according to a prescribed rule (e.g., uniformly at random

without replacement). If the current estimate � � does not satify both them, the violation is defined as follows:

��� �

������
�����

�
�
�
� � 
� � � if ���� � 
� � �


� � �� �
�
�
� if ���� � 
� � �

� otherwise.

(10)

The proposed algorithm is described below. � is the temperature parameter which is linearly (or exponentially) decreased

from an initial value �� to � in the predefined maximum number of cycles �. For instance, at the beginning of the � 
� cycle

� � ��� with � � �� �
�

. See the Appendix for more details on this annealing schedule, including an appropriate choice of

��.

Algorithm 1

Initialization: Pick any �� � ��, set cycle counter � � �, select maximum number of cycles

� and initial ��

while � � � do

Initialize set of indices  � ��� � � � � ��

repeat —cycle through all pairs of inequalities—

Pick index �� equiprobably and without replacement from  

Compute violation ���� for the ��th pair of inequalities

Set � � ��� �
�
	 � �� and Æ� �

	
	�


��

�
��

��
�

	




if ����� � 
�� � � then �
��� � �

� � Æ� �
��

else if ����� � 
�� � � then �
��� � �

� � Æ� �
��

else ���� � �
�

Set  �  � ����

until  � 


Update �� and set � � �� �

end

return ����

Ideally one would like to return as an approximate solution the best estimate generated during the � cycles. However, it is

very time consuming to check for each new estimate � ��� whether it satisfies a larger number of pairs of inequalities (2) than

the best one generated so far. Therefore this explicit test is only performed when the number of consecutive randomly picked
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pairs of inequalities that have been satisfied by the current estimate is larger than the number of those correctly satisfied by

the best solution encountered so far before it was updated.

Note that, unlike in regression methods, inequalities with a large violation with respect to the current temperature � yield

small modifications of the current estimate and those that are satisfied do not yield any modification. For very high values of

� , any violated inequality yields a significant update, while for low values, only those with small violations with respect to

� yield significant updates.

4.2 Properties of the greedy strategy

In principle, implicit enumeration methods, like the general technique for maximizing functions of linear relations pre-

sented in [15], could be adapted to find optimal solutions in a finite but in the worst-case exponential amount of time.

However, given the suboptimality of the greedy strategy, it is neither necessary nor desirable to look at each step for a largest

feasible subsystem. The following simple example shows that even if maximum feasible subsystems are available at each

step, the greedy strategy is not guaranteed to yield minimum partitions. The cardinality of the resulting partitions may even

depend on the order in which the maximum feasible subsystems are extracted since some equations may be assigned to

different feasible subsystems.

Example 1 Consider the system:

�� � �� � � (11)

�� � �� � � (12)

�� � � (13)

�� � � (14)

whose largest feasible subsystems include two equations. Clearly, there are five corresponding solutions: ��� �	 satisfies

equations (11-12), ��� �	 equations (12-13), ��� �	 equations (12) and (14), ���� �	 equations (11) and (13) and ���� �	

equations (11) and (14). If one starts with the maximum feasible subsystem composed of equations (11-12), then two

additional subsystems are needed in the partition because the two remaining equations are infeasibble. Now a minimum

partition includes only two feasible subsystems, for instance equations (12) and (14) on one side and equations (11) and (13)

on the other side.

In practice this kind of ambiguity, which is inherent to the data (some data points may be consistent with several submodels),

can be resolved through an appropriate postprocessing stage based on additional application specific information. In this

work, each data point is assigned to the submodel which gives rise to the minimum equation violation.
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The idea of breaking down the original problem into that of determining a sequence of close-to-maximum feasible sub-

systems is particularly attractive in applications such as image and signal processing where the ultimate goal is to achieve

one-line processing at the lowest possible implementation costs.

From an application point of view it really makes sense to look first for the dominant submodels, i.e., those which account

for the largest fraction of the data points. This corresponds to the sequential paradigm mentioned in [16] for clustering

problems. Clearly the size of the feasible subsystems corresponding to actual submodels is typically much larger than the

number of variables �. In the presence of noisy or spurious data, once the actual structure has been extracted the points

that are left are usually in general position and they can be partitioned into feasible subsystems of size at most �. Such

feasible subsystems can be clearly discarded since they do not contain any significant modeling information. Thus, the exact

minimum partition is not required and a greedy heuristic which looks first for the largest feasible subsystems is appropriate.

An important feature of our approach is that it provides an estimate of the number of linear submodels needed to fit the

data. Once this information is available other formulations and techniques can be used to further improve the quality of fit.

For instance, to achieve higher robustness for noisy data, a least mean square solution can be determined for each subsystem

of the partition provided by our algorithm. As an alternative one may also try to minimize the sum of squares of the 2-norm

distances between each data point and the nearest hyperplane among those associated to the given number of submodels, see

the heuristic in [9] for minimizing a concave function formulation on a polyhedral set.

5 Two applications in image and signal processing

To demonstrate the wide applicability of our MIN PFS-based approach and the performance of our greedy algorithm, we

describe how they can be adapted to tackle two challenging problems from image and signal processing. The first one is

the fundamental problem of detecting line segments in digital images and the second one that of modeling time series using

piecewise linear autoregressive models. Here we focus on the distinctive features of our method and report some typical

results, more details can be found in the application-oriented papers [26, 27, 28, 41].

5.1 Line detection in digital images

Suppose we are given a !� " digital image with a grey level for each pixel and suitable procedures are used to extract the

contour points. A central problem in image processing that has been extensively studied in the literature is that of detecting

line segments in contour point images, where pixels take value � or � depending on whether they correspond to contour points

(see for instance [43] and references herein).

The problem of classifying a set of contour points ��#�� � #
�
�	������ of an image into line segments can be naturally

formulated in terms of MIN PFS. Since the coordinates of all contour points �# �
� � #

�
�	 lying on a same straight line satisfy a

12



linear equation

#���� � #���� � �� � �� (15)

where �� , � � � � �, are the line parameters and only two of them are actually independent, it suffices to construct a linear

system �� � � with a row for each contour point and two variables corresponding to the two parameters needed to define a

line in 2-D. More specifically, #�� and #�� correspond to the first and, respectively, the second coordinates of the �th contour

point. Note that deleting the third parameter �� and including the right hand side � amounts to exclude only the lines that

exactly go through the origin. In the presence of several line segments and noise in the image or from the contour point

extraction process, the resulting linear system is infeasible. Conversely, any feasible subsystem corresponds to a subset of

contour points that lie on the same straight line, and any partition into � feasible subsystems amounts to a partition of all

contour points into � line segments. The solution of each subsystem provides the parameters of the corresponding line. Given

the objective function of MIN PFS, we look for the smallest set of line segments that account for all contour points. To cope

with noise and quantization errors, it suffices to replace each equation by the two complementary Inequalities (2). An appro-

priate value of the parameter � 	 � can be determined by applying the experimental procedure described in Subsection 5.2.1.

The resulting value clearly depends on the image resolution and the desired line detection accuracy.

Although this simple application of the MIN PFS-based approach to line detection is quite elegant and powerful, the TRR

procedure tends to converge slowly for special lines with close to infinite slope �� ���� or lying within a small distance from

the origin. Significant speedup can, however, be obtained by applying the same type of procedure to an extended variable

space. In [27], for instance, a three dimensional space over the variables � � , � � � � �, of the equations #�����#������� � �

is considered. To avoid convergence to the all zeroes trivial solution of the homogenous system�� � �, the current solution

�
� is projected, at each relaxation iteration, on a 3-D surface (e.g., a cylinder or a sphere) that does not contain the trivial

solution (the origin) but that contains at least one of the infinite solutions � � , � � � � �, corresponding to the same solution

in the 2-D parameter space. More details on this convergence issue and application can be found in [26, 27, 28]. Notice that

regardless of whether it is applied to the natural or extended solution space the greedy MIN PFS-based approach is the same

except for the above-mentioned projections in the TRR procedure.

5.1.1 Differences with respect to the Hough Transform approach

Before presenting some typical results, we point out the main differences between our approach and the variants of the Hough

Transform (HT) that are extensively used in the literature [20, 43].

In the classical HT, each contour point (feature in general) is mapped onto a line (hyperplane) in the parameter space

corresponding to all combinations of the parameter values consistent with it, i.e., all straight line segments passing through

that contour point. Attention is restricted to a limited region of the parameter space which is subdivided into 2-D cells
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(hypercells). The goal is then to identify a cell (hypercell) in this accumulation array that is hit by the largest number of lines

(hyperplanes), i.e., sets of parameter values that account for the largest number of contour points. Such peaks are detected

by using exhaustive (see Figure 3) or reduced search strategies. The parameter estimation accuracy clearly depends on the

quantization, namely, the size of the cells (hypercells). In principle, the HT enables estimation of piecewise linear models

without any a priori assumption. However, the fine resolution needed to guarantee a reasonable accuracy usually requires

very large amounts of memory and computation time.

A number of variants, including the hierarchical, probabilistic, robust and randomized HT [31], have been developed to

try to overcome these major drawbacks. But unfortunately these refined search strategies (see [18, 22]) which consider-

ably reduce in some cases the computational requirements are not appropriate when several models (line segments) have

to be simultaneously identified (e.g., the submodels of a piecewise linear model) or when there is a relatively high level of

noise. [20, 43]. In the Randomized HT [42] (RHT), for instance, one may have to sample a much larger number of subsets of

contour points in order to achieve the ad-hoc threshold indicating the presence of a probable peak. In coarse to fine strategies

such as the adaptive HT [17], the initial stages where a coarse quantization is considered may fail to detect some of the peaks

corresponding to the submodels to be identified. Indeed, relatively small peaks may be hidden in a noisy background. In

general, selecting small threshold values may yield erroneous solutions, while larger values may substantially increase the

computational load and, therefore, jeopardize the reduced time complexity and lower memory requirements. Thus, when

several line segments have to be detected, there is a very delicate trade-off between time/memory requirements and solution

quality.

It is interesting to note that our TRR procedures can be viewed as an algorithm to search for peaks in a continuous

accumulation space. Although continuous kernels can be used in HT variants [32], they just allow to refine the accuracy of

the parameter estimation after the standard accumulation and search stages.

Our MIN PFS-based method and the HT variants differ considerably in terms of computational complexity. The former

has negligible memory requirements (it just stores contour points and their assignment to subsystems) and its computational

complexity is entirely characterized by arithmetic processing. On the contrary, HT variants are based on simpler processing

steps (counting operations) but they have very heavy memory requirements, since they require storing the accumulation array

that needs to be scanned (hypercell by hypercell) for each data point. For isotropic quantizations, the number of hypercells is

given by $�, where $ is the number of intervals along each parameter space dimension and � is the number of parameters [25].

In the 2-D line detection case, if the image and accumulation array resolutions are increased accordingly, both memory

requirements and time complexity increase with the square of the resolution increase factor. In contrast, the time complexity

of the MIN PFS-based method only depends on the number of contour points and the number of feasible subsystems to

be extracted. Notice that the number of contour points on a line increases linearly with the image resolution. Since line
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segments are detected in an sequential way, starting from the dominant one, our algorithm can be clearly stopped as soon

as the relevant features are detected. In applications such as object tracking, this can lead to an additional substantial time

complexity reduction while the HT variants need to compute the entire Hough transform before providing the desired results.

It is worth emphasizing that the MIN PFS-based approach can also be generalized to detect higher order curves or sur-

faces, e.g., circles and ellipses. In such cases the advantages versus the HT become dramatic. For circles and ellipses, for

instance, HT complexity increases with the power of �, where � is the number of free parameters defining a circle (� � �) or

an ellipse (� � �).

To conclude, our MIN PFS-based approach is particularly suited for efficient implementation on simple floating point

Digital Signal Processors (DSPs). Moreover, given the general trend in the progress of hardware performance (much faster

increase in processing capabilities than in memory access speed or memory capacity), its considerable computational advan-

tages with respect to HT variants should become even more substantial in the future.

5.1.2 Some typical results

We report here some comparative results obtained with our MIN PFS method and with the standard as well as randomized

HT (RHT) [20] for synthetic and natural images at different levels of noise. See [26, 27, 28] for more details. Figure 4 shows

the results for images without noise and with �� of the overall image pixels or equivalently ���� of all contour points as

randomly distributed noise. The same images have been processed by HT and RHT with ���� ��� accumulator arrays that

are thus equivalent to the image resolution. Table 1 summarizes the results of a profiling analysis of the core HT, RHT and

MIN PFS algorithms on a SUN UltraSparc WS. All results are normalized to ���� seconds. The lower part of the Table

indicates the (subjective) result quality.

As confirmed by all our experiments [26, 27, 28], the MIN PFS approach provides the higher quality results for all noise

conditions. Moreover, its computation time requirements are much lower with respect to HT for low levels of noise and

comparable for higher noise levels, while yielding much higher quality results. Notice that HT and RHT fail to provide

any result for, respectively, high and medium level of noise. It has to be pointed out that the above comparison would turn

out to be much more favorable for larger image sizes. For instance, considering the same image but at a double resolution

(������� pixels instead of �������) HT memory requirements and processing time would increase by a factor of �, while

the time and space complexity of our algorithm would remain the same.

Another example that demonstrates the very good performance and robustness versus noise of our approach is reported

in Fig. 5. The image contains ��� points generated by adding a Gaussian noise of % � �� pixels to two original segments.

For various noise levels, it always recovers the two original segments within ���� seconds of processing time. As shown in

Fig. 5, RHT never provides a correct result and ��� of the segments determined by the HT (in ���� seconds) are not correctly
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grouped or do not have the correct parameters values.

Noise % (*) 0 1 2 5 10

(**) 0 59 118 295 590

HT 1 1.16 1.29 1.77 4.79

RHT 0.08 0.13 0.14 0.46 3.30

MIN-PFS 0.06 0.49 0.93 2.19 11.2

HT ++ ++ ++ - -

RHT ++ ++ + - /

MIN-PFS ++ ++ ++ + +

Table 1 : Comparison of normalized CPU times (in seconds) and quality of results obtained with HT, RHT and MIN PFS-

based algorithms for the image of Figure 4 at different levels of noise. (*) The noise % refers to the overall image points

����� ���	. (**) The noise % refers to the total contour points. ���� all the information is correctly detected, ��� all the

information can be extracted by a simple postprocessing, ��� information is missing, ��� no results can be obtained.

A third typical example is reported in Figure 6. The images under consideration contain �� randomly distributed segments

with additional speckle noise corresponding to ��� of the line points. The MIN PFS-based approach always provides the

correct results. Since in average each subsystem corresponding to a line segment only contains �� �� of the total number of

contour points, no method based on robust regression techniques can yield any useful result. The breakdown point of robust

regression techniques is far above such values.

5.2 Piecewise linear modeling of time series

Nonlinear signal models have been the object of an increasing interest over the past few years. A number of applications

can be found in different fields such as, for instance, economic system modeling and biomedical signal analysis. The idea

of breaking a global linear model into a number of submodels, gave rise to the so-called threshold autoregressive (TAR)

models [38, 39], in which the choice of the model at time � is based on the comparison of the signal value at time �� � with

pre-defined thresholds. This scheme allows one to model and reproduce phenomena such as jumps and limit cycles, but its

inherent limitation derives from the selection of the thresholds, for which no general method exists. The principle, called

piecewise linear modeling [40], consists of partitioning the state space into a certain number of regions and estimating a linear

autoregressive submodel for each one of them. A piecewise linear autoregressive model can be described as follows [40]:

&
 �
��

���

���'
	 &
�� � (
 (16)
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where the coefficients ���'
	, � � � � �, at time � depend on the position of the vector ' 
 � �&
��� � � � � &
��	 with respect

to a given partition of the state space ��, and �(
� is an i.i.d. sequence. Note that here the &’s are the observations and the

coefficients ��’s as well as the partition of the state space have to be estimated.

Although piecewise autoregressive models are more attractive than TAR ones, the number of submodels must be selected

a priori and an appropriate state-space partition needs to be determined. In [40] a two-stage strategy is suggested. First one

determines a state-space decomposition using a Kohonen feature map [19] and then one estimates the parameters of each

submodel using robust regression techniques. The idea behind such a unsupervised clustering phase is to avoid guessing the

number of submodels in advance. However, besides the delicate convergence issue, it is unclear how a state-space partition

can be actually derived from a given feature map. Even more importantly, the clustering process does not take into account

the type of submodels to be used.

According to our general approach, we consider the problem of estimating such piecewise linear models in terms of

MIN PFS. Clearly, any sequence of observations �&�� � � � � &�� which cannot be modeled (approximated) by a simple

autoregressive model, leads to an overdetermined infeasible system �� � � where

� �

�
��������

&� &��� � � � &�

&��� &� � � � &�
...

...
. . .

...

&��� &��� � � � &���

�
��������
� � �

�
��������

&���

&���

...

&�

�
��������

(17)

and � is the prediction order.

Given any partition into feasible subsystems, each feasible subsystem defines a group of vectors in state space and the

corresponding solution indicates the parameter values of the corresponding submodel. To deal with noise we introduce pairs

of complementary inequalities such as those of Equation (2).

5.2.1 Some typical results

A number of experiments have been carried out with various time series which have been extensively used as benchmark in

the literature, see [41]. We describe here two typical examples that illustrates some interesting features of our approach.

In the first example a time series admitting a true piecewise linear state-space representation is considered and results are

compared with those from a classical Vector Quantization approach [40]. In these experiments ���� samples �& 
���
�����

have been generated from a TAR model described by Equation (16), with � � � and �( 
� an i.i.d. Gaussian noise with

variance %� � ����. To have a true piecewise linear model, the coefficients ���'
	 and ���'
	 are defined as follows. Given

the three vectors �� � ��� �	, �� � �� �	 and �� � �� �	, the coefficient vector ����'
	 ���'
		 is taken as ����� ����	,

���� ���	 or ���� ���	 depending on whether '
 � �&
�� &
��	 is closest, respectively, to ��, �� or ��. Thus, as shown in
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Figure 7 (b), the state space is partitioned into three regions delimited by two vertical lines crossing the horizontal axis at

���� and ���

According to [40], a classical learning vector quantization (LVQ) [19] has been applied to the state vector set �' 
���
�����

in order to obtain three centers representative of its spatial distribution. It has to be emphasized that we here assume that the

correct number of submodels (centers) is known a priori while this is generally not the case. LVQ is a stochastic procedure, so

100 Monte Carlo runs which constantly produced three centers with approximate coordinates ������ ����	, ������ �����	,

������ � ����	 have been performed. The corresponding partition of the state vectors ' 
’s, obtained by grouping those

which are closest in Euclidian norm to each of these centers, is displayed in Figure 7 a). This partition differs considerably

from the one of the generating TAR model, see Figure 7 b). Since the resulting groups include state vectors corresponding

to differents original submodels, estimation of the submodel coefficients based on the given groups is bound to give poor or

even meaningless results.

As for instance in [10], when complementary inequalities such as (2) are considered to account for noisy data, an appro-

priate maximum noise tolerable error � 	 � needs to be selected. Intuitively, the value of � should correspond to a trade-off

between model accuracy and model complexity. For too large a value, very large subsystems of equations are considered as

feasible. In other words, the overall model is simpler since it contains very few linear submodels but the submodels do not

fit well the corresponding data points. Conversely, too small a value of � leads to a very large number of subsystems, i.e.,

too many submodels which do not capture the actual underlying structure. For data coming from an actual piecewise linear

model and an amplitude limited additive noise (e.g. quantization noise) a value of � slightly higher than the maximum noise

amplitude should be appropriate. Although it may seem that a priori information on the underlying model structure and noise

characteristics is needed, it suffices to run the method for a wide enough range of values of �. Given the low computational

requirements of our MIN PFS-based method, the curves expressing the number of subsystems (submodels) and the average

quadratic error as a function of � can be sketched even for very large data sets. Typically, when � increases starting from

a very small value, the number of feasible subsystems (linear submodels) first sharply decreases and then remains almost

constant on a wide range of values. An appropriate value of � should clearly be one close to the knee of this curve.

To find a good partition for the time series arising from the above TAR model, the algorithm is run for � ranging from

��� to �. Results are shown in Figure 8. For values of � below ��� the average quadratic error is small but the large number

of subsystems (submodels) clearly indicates overfitting of the data. For values of � between ��� and ���, the number of

selected subsystems remains constant and equal to the actual number of submodels (3), while the average quadratic error

grows moderately with �. For values of � beyond ���, only one linear submodel is detected for the whole dataset, and the

average quadratic error becomes approximately constant. This corresponds to the least mean square fit of a single linear

model. Since � � ��� coincide with a local minimum of the average quadratic error and a knee of the number of subsystems
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curve, the best trade-off between model accuracy and model complexity is achieved in the neighborhood of this value.

Figures 9 and 10 illustrate this � value selection process in more details. On the left we report the results of the greedy

strategy and on the right a reassignment of the data points based on the minimum average quadratic error criterion. Compar-

ison between these pairs of plots provides useful insight. In case the value of � is too large, as in Figure 9 (a) and (b), the

two plots differ substantially. The greedy algorithm assigns to the first subsystem all data points which fall within the too

loose error tolerance bound specified by �. By reassigning a posteriori each data point to the extracted subsystem with the

minimum average quadratic error, very different results are obtained. But for close-to-optimal values of �, as in Figure 9 (c)

and (d), the two results are very similar. For smaller values of � one starts to observe an overfitting of the data (see Figure 10

(a) and (b)), clearly detected by an assignment based on minimum average quadratic error which looses the spatial coherence

of the state-space partition. As shown in Figure 10 (c) and (d), when � is further decreased the results are dominated by the

underlying noise.

In the second example of nonlinear signal modeling we consider the time series generated from the classical Henon map

[7] defined by:

�
 � �� #��
�� � 
�
��� (18)

For parameters values # � ��� and 
 � ���, the dynamics of this system is chaotic and the points with coordinates �� 
�� �
���

evolve on a fractal strange attractor, see Figure 12 (a). While in the previous example the underlying dynamics was truly

piecewise linear, the goal here is to approximate the nonlinear dynamics described by Equation (18) by a suitable number of

linear submodels. In this sense, the modeling error in predicting� 
 with �
��� �
�� comes from the local linear approximation

of Equation (18) and not from the dynamical noise as for the TAR system.

We report the results obtained for an experiment on this map with a sequence of ���� consecutive samples, with a modeling

order of the autoregression � � � and a bias term included. The first task consisted in selecting an appropriate value of the

maximum tolerable error �. Therefore we applied the above procedure and performed a series of trials for � ranging from

���� to ���. Figures 11 a) and b) report the curves of the number of subsystems and average quadratic error versus the value

of parameter �. The situation is a less clear-cut than in the TAR model example, which is not surprising in the light of the

remark above. Since the system under study is not piecewise linear in essence, there is no threshold value of � above which

the number of subsystems is adequate, and increases sharply below it. Nevertheless, the two curves in Figure 11 indicate that

the average quadratic error tends to grow considerably above � � ��� and that the number of subsystems grows exceedingly

for � smaller than ���. As a consequence we selected the partition obtained with � � ���.

The resulting partition consists of 6 feasible subsystems. The regions corresponding to the three largest subsystems are

shown in Figures 12 (b), (c), and (d). Interestingly, the regions corresponding to each linear submodel are well defined in

the state-space and span specific parts of the attractor, which make them valuable for modeling purposes. Depending on the
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region to which the point ��
�� �
��� belongs, the corresponding set of autoregressive coefficients provides an estimate of � 


within the predefined value of �. The fact that the regions associated to different subsystems appear as stripes parallel to the

horizontal axis, indicates that nonlinearity is present with respect to � 
�� only, which is of course confirmed by Equation (18).

6 Concluding remarks

We have proposed a general combinatorial optimization approach to fit piecewise linear models to data. The problem

of piecewise linear model estimation is formulated as that of partitioning infeasible linear systems into a minimum number

of feasible subsystems. Given the worst-case complexity of this MIN PFS problem and the type of applications we are

interested in, we have presented a simple greedy algorithm which provides good approximate solutions in a short amount of

computation time. The distinctive feature of our approach is that it enables simultaneous determination of the data partition

and estimation of the parameter values of each linear submodel without requiring any a priori assumption on the number of

submodels. By varying a single error tolerance parameter, one can guarantee different levels of accuracy.

The potential and performance of our MIN PFS-based method has been demonstrated on two challenging problems from

image and signal processing. The experimental results reported here and in [26, 27, 28, 41] indicate that it overcomes the

serious limitations of classical alternatives and compares favorably in terms of complexity and performance.

The new approach can be applied to a variety of other problems for which piecewise linear models are valuable. In [5, 25]

it has, for instance, been adapted to the problem of detecting and parameterizing �-D motion of multiple moving objects

from a sequence of images based on pre-computed optical flow fields. In [41] it has also been used to identify nonstationary

transfer functions.

Since higher degree polynomials can be viewed as linear functions with respect to their coefficients, the approach can also

be extended to the estimation of piecewise polynomial models with submodels of bounded degree.
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Appendix

As discussed in [12, 2] for the thermal perceptron procedure, the choice of the initial temperature � � and the annealing

schedule can significantly affect the quality of the solutions. Ideally, � � should be of the same order of magnitude as the

typical values of the violations ��. Clearly, the average �� � �	�
��

��� � �� � �� provides a reasonable estimate of
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the typical value of the �� for a given �. Since the ��’s and therefore the ��’s can vary considerably during the relaxation

procedure, �� must be updated accordingly. To try to keep �� close to �� � �	 and to attenuate oscillations, one starts with

�� � ) �� � �	, where the average is evaluated for the initial guess ��, and at the beginning of each random cycle one sets

�� � *�� � �� � *	 �� � �	, where the average is for the current � �. Updating �� at the beginning of each random cycle

corresponds to rescaling � with respect to the current �� � �	 without affecting the decrease of � given by �. In practice, � �

is randomly generated, typical values of ) and * are respectively � and ���, and if � is linearly decreased from � � to � over

the � cycles then � � �� �
�

. See [2, 25] for more details.
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Figure 1. Geometric interpretation in coefficient space of the MIN PFS problem with pairs of complementary inequalities where

�� � � for � � � � � and ��� � �. For arbitrary �� the hyperslabs do not necessarily contain the origin.
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Figure 2. Geometric interpretation in parameter space of the AMS relaxation method for inequalities with �� � � and ���� � �,
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Figure 3. 2-D representation of the HT and MIN PFS-based strategies in parameter space. a) In the standard HT applied to line

detection, each data point defines a line in parameter space. Cells are then scanned to find a peak of the counter values, i.e., a cell

consistent with a maximum number of lines. b) In our method, for each data point the slab defined by the pair of corresponding

complementary inequalities (2) is considered. Starting from an arbitrary ��, the current estimate is updated according to the thermal

AMS procedure (similar to Figure 2) so as to look for an � contained in the largest number of slabs (see grey region).
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Figure 4. Top left: original grey scale test image. Top right: binary image resulting from basic edge detection. Bottom left: results

of MIN PFS-based line detection algorithm. Bottom right: results obtained with 295% of the contour points as random noise (i.e.,

5% of the total number of image points)

.
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Figure 5. Top left: Points obtained from two line segments by adding a Gaussian noise of � � �� pixels. Top right: MIN PFS-

based solution obtained in the presence of 250% of additional randomly distributed noise (w.r.t. original image points). Bottom left

to right: results obtained with the HT and RHT.

Figure 6. Left: Synthetic image composed of 10 randomly distributed lines. Right: MIN PFS-based solution when 50% are the

original image points and 50% are noise (randomly distributed points).

28



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b)

Figure 7. (a) State-vector partition otained using LVQ. The points labeled by (.), (+) and (o) correspond to the three groups induced

by the three LVQ centers. (b) Actual partition induced by the TAR model under consideration.
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Figure 8. TAR model: (a) Number of feasible subsystems and (b) average quadratic error versus the maximum tolerable error

(threshold) �.
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Figure 9. State-space vector partition provided by MIN PFS method. In (a) and (b) � � ���, in (c) and (d) � � ���. On the

left, the partition is obtained by iteratively extracting the feasible subsystems of close-to-maximum size and by assigning at each

iteration the selected state vectors to the corresponding linear submodel. On the right, the final partition is obtained by reassigning

at the end of the MIN PFS greedy algorithm each state vector to the submodel providing the smallest quadratic error among all

extracted subsystem solutions. As shown in (c) and (d) the two plots are very similar for an appropriate value of �.
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Figure 10. Figure 9 with lower values of the maximum tolerable error (� � ��� in (a) and (b), � � ��� in (c) and (d)). Figures

(a) and (b): the differences between left and right plots shows the presence of an initial overfitting of the data. For too small values

of the maximum tolerable error (Figures (c) and (d)) � � ���� the number of subsystems required in the partition increases and the

partition looses its spatial coherence. This situation clearly corresponds to an overfitting of the data.
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Figure 11. Henon map: (a) Number of feasible subsystems and (b) average quadratic error versus the maximum tolerable error �.
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Figure 12. State-space representation of the Henon time series. Each point at time � is mapped into the point �	���
 	����.

� � ���� samples (a) and points corresponding to first (b), second (c), and third (d) largest feasible subsystems.
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