Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Segmentation of Natural Images Using Scale-Space Representations: A Linear and a Non-Linear Approach
 
conference paper

Segmentation of Natural Images Using Scale-Space Representations: A Linear and a Non-Linear Approach

Divorra Escoda, O.  
•
Petrovic, A.
•
Vandergheynst, P.  
2002
Proceedings of EUSIPCO

In general purpose computer vision systems, unsupervised image analysis is mandatory in order to achieve an automatic operation. In this paper a different approach to image segmentation for natural scenes is presented. Scale-Space representation is used to extract the structure from meaningful objects in the image. Two different scale-spaces are analysed in the paper. On one hand Isotropic Diffusion (linear scale-space) is presented as the basis for an uncommitted front end, not relying on any special feature of the image. On the other hand the Total Variation Diffusion (non-linear scale-space) which makes a special emphasis on edges is also analysed. A hierarchical decomposition of the image is performed on the basis of the special characteristics of each scale-space. Iso-intensity paths will be tracked in the case of linear scale-space, whereas in the case of non-linear scale-space the evolution of level sets through scale will be tracked. In the framework of linear scale-space, the use of additional information to improve the robustness in the structure extraction is introduced. Appart from the set of several diffused versions of the image, a representation of edges through scale is included to supervise the generation of the hierarchical tree that represents the image.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Divorra Escoda2002_483.pdf

Access type

openaccess

Size

186.97 KB

Format

Adobe PDF

Checksum (MD5)

c14040338041473794f5b2ca74ee681d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés