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Abstract: Human-Computer Interaction research for motor impaired people has led to design of various Brain 
Computer Interfaces (BCI) based on the analysis of electroencephalographic signals (EEG). In this paper we propose a 
flexible and modular BCI system to allow subjects to interact with a computer based on EEG classification in the 
ambiguity domain. 
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1. INTRODUCTION 

Automatic systems capable of understanding different 
facets of human communication will be at the heart of 
Human Computer Interfaces (HCI) in the near future. 
Nowadays, HCIs based on speech, facial and gesture 
recognition are the subject of intensive research [1].  

In the case of motor impaired subjects, special HCIs 
have been designed based on pattern recognition in 
electroencephalographic (EEG) [2] or 
electromyographic (EMG) signals [3].  

An HCI which uses the brain activity as 
communication support is called a Brain Computer 
Interface (BCI). If the brain activity is monitored with 
EEG we have an EEG-based BCI. In the sequel we will 
simply call BCI an EEG-based BCI. 

The non-invasive EEG signals used in current BCIs 
can be divided in three categories [4]: Event Related 
Potentials (ERP), Slow Cortical Potential Shifts (SCPS) 
and Spontaneous Signals (SS). In this paper we focus 
on the analysis of SS. 

The advantage of SS in BCI is that the 
communication is continuous rather than discrete (as in 
ERP-BCIs) and faster than with SCPS-BCIs 

 
2. THE PROPOSED BCI SYSTEM 

This section presents the overall architecture of a BCI 
system which was designed at EPFL to carry out 
research and development in man-machine interfaces 
for multimedia applications. The system has been 
designed to be very modular and flexible, in order to 
exploit it in a large number of BCI applications. In a 
typical application of this system, the resulting EEG 
pattern of a specific brain activity is first learned by the 
computer in an initial training session. 

The training process is mutual as both the human 
subject and the computer learn how to produce and how 
to recognize a given EEG corresponding to a mental 
task. 

Real-time interaction between the subject and the 
computer is therefore an essential part of the system. 

For reasons of efficiency, the BCI system has been 
designed to allow subjects to perform various 
experiments from simple to more sophisticated, namely: 

Visualization experiment (VIS): Where the user can 
see a visual representation of her/his EEG activity in 
real-time. In this experiment, particular features 
associated with EEG signals, such as the power values 
in the typical frequency bands (δ, θ. α. β), inter-
electrode coherences, and total power at a given 
electrode are mapped to a 3D virtual environment, and 
regularly updated. The objectives of this experiment are 
calibration and familiarization of the subject with the 
system. In this study, each session was preceded by a 
short VIS experiment. 

Training without feedback experiment (TNF): A set 
of visual and audio information (images and sounds) are 
presented to the subject. Such visual and audio cues will 
request the subject to perform a predefined mental task.  

Training with feedback experiment (TWF): The 
subject is asked to perform a mental task and a feedback 
is provided. The feedback is positive when the 
computer recognizes the mental activity and negative 
otherwise. This feedback is possible as a model of the 
mental task is calculated during a previous TNF session. 
This experiment allows for a simultaneous learning of 
the subject and the computer through training.  

Control experiment (COE): As the result of the 
previous experiments is a model of mental activity, the 
subject can start to control the system by producing the 
mental activities for which the system has been trained. 
In this experiment, visual or sound cues are no longer 
necessary.  

Multi-user simultaneous training experiment (MUT):  
This is a particular form of the TWF experiment. It 
consists in a multi-user game whose goal is to gain the 
control of an object by performing a mental task. This 
session was chosen because of its more stimulating 
effect when compared to a simple feedback.  

As said earlier, the above experiments required a 
carefully designed BCI system in terms of flexibility 



and speed, as a real-time processing of EEG signals is 
necessary. A solution fulfilling these requirements is a 
distributed system in which each component offers 
specific services to the others in an efficient and 
transparent way. Figure 1 depicts the general block 
diagram of our BCI system.  
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Figure 1. BCI-components overview. 

In this system, three types of components can be 
distinguished: 

 1- The signal production component whose 
responsibility is to digitize the recorded EEG signals 
and to transmit them to the processing units.  

2- The signal processing component that is in charge 
of the signal pre-processing, feature extraction, model 
building and classification.  

3- The rendering component which is used to display 
mental task cues for TNF and TWF, as well as the 
feedback for TWF. It also serves for rending in VIS, 
COE and MUT.  

The communication rules between these components 
were designed according to CORBA [5] specifications 
and implemented in JAVA, C and MATLAB.  

In this paper we report the results obtained from our 
experiments with VIS, TNF and TWF. 

 
3. EXPERIMENTAL CONDITIONS AND 

PROTOCOLS 

Two male and healthy subjects (S1 and S2) aged 27 
and 23 participated in five sessions of 20 minute long 
experiments. The VIS experiment was carried out 
during the first 10 minutes of every session. An initial 
mental model was then computed after the first session 
using TNF, while the following sessions were carried 
out with feedback (TFW).  

The EEG signals from subjects were recorded with 
reference to digitally linked ears [6] and from electrodes 
Fp1, Fp2, C3, C4, P3, P4, O1 and O2 of the 10/20 
international system, at a rate of 256 Hz per channel.  

The subjects were asked to perform the following 
imagined mental tasks: Left arm movement (T1), Right 

arm movement (T2) and an arithmetic task (T3) 
consisting in a multiplication between two 2-digit 
numbers.  

Our training protocol was designed in a way similar 
to that reported in [7]. The main reasons for such a 
choice were the good results reported, the need for a 
calibration and the necessity of a basis for comparison.  

The protocol of the TNF experiment is illustrated in 
the upper part of Fig. 2. At the beginning of the 
recording a warning image is displayed for three 
seconds, followed by a visual indication to perform a 
particular mental task (randomly chosen among T1, T2 
and T3). This indication is displayed for one second on 
a computer screen. Six seconds later, another visual 
signal indicates the end of the trial and after a ten 
second break, this procedure is repeated. For the 
analysis of the EEG signals, only the last five seconds 
of each trial were used, in order to eliminate a possible 
evoked response to the visual indication requesting 
completion of a mental task.  

The protocol of the TWF is illustrated in the lower 
part of Fig. 2. At the end of each trial, a visual feedback 
is displayed. If the trial is correctly identified, an object 
moving to the left or to the right is displayed (in the 
case of motor tasks T1 and T2 respectively) or the 
correct result of the multiplication (in the case of 
arithmetic task T3). In case of wrong identification, a 
failure image is displayed.  

For each session, 30 trials were recorded resulting in 
150 seconds of analyzed mental activity (50 seconds for 
each task). These signals were band-pass filtered 
between 0 and 40 Hz, and then divided in half-second 
segments (epochs). The epochs contaminated by eye 
blink artifacts [8] were rejected. These artifacts were 
detected by tracking the abrupt changes in amplitude at 
electrodes Fp1 and Fp2. An abrupt change was detected 
by comparing the current amplitude to the average of 
the last 128 samples; if this amplitude was larger than a 
“threshold” times the standard deviation of the 
precedent samples, the epoch was marked as 
contaminated by an eye artifact and thus rejected. The 
threshold was empirically set. 

For the analysis of results, the signals recorded at 
electrodes: C3, C4, P3, P4, O1 and O2 were examined. 
Therefore each epoch contained 6 channels of 128 
samples.  

The mental task models were updated after each 
training session in order to provide an “updated 
feedback” in the next session. 
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Figure 2. TNF experiment protocol (top) and TWF 

experiment protocol (bottom).  

 
4. CLASSIFICATION OF EEG SIGNALS IN THE 

AMBIGUITY DOMAIN 

Time-frequency representations of a signal can be 
divided in two groups according to the nature of their 
transformations: linear (Short-time Fourier Transform), 
and quadratic (based on the Wigner-Ville distribution). 
Here we focus on the quadratic representation. 

The cross Wigner-Ville distribution of two signals 
( )x t and ( )y t  is defined as [9]. 

2( , ) ( ) *( )
2 2

j f
xyW t f y t x t e dπ ττ τ τ

+∞
−

−∞

= + −∫             (1) 

It can be shown that all cross time-frequency 
representations which are time-frequency covariant can 
be written as:  

( , ) ( , ) ( , )xy xyC t f s t v f W s v dsdvφ φ= − −∫∫              (2) 

where the function ( , )s vφ is the kernel of the 
distribution. The kernel design is motivated by the 
desire to have a time-frequency representation 
satisfying some established properties with regard to the 
application. Here, we designed a kernel with the 
objective of efficient signal classification.  

It can be shown that the convolution product (2) is 
equivalent to: 
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where ( , )ξ τΦ  is the 2-D Fourier transform of 
( , )s vφ and ( , )xyA ξ τ is the cross-ambiguity function of 
( )x t and ( )y t defined in Eq. 4. 
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Equation 4 allows us to interpret the ambiguity 
function as a measure of the joint time-frequency 
correlation between ( )x t and ( )y t . 

The simple product in Eq. 3 is more convenient in 
terms of computation cost, when compared to the 

convolution product in Eq. 2. Therefore the kernel is 
designed in the ξ τ−  (doppler-delay) domain, 
commonly called ambiguity domain.  

The 2-D function ( , )ξ τΦ  can be seen as a mask in 
the ambiguity domain. In this paper, the goal of such a 
mask is to enhance the ξ τ− regions that better 
discriminate signals to be classified.  

We chose a binary form for the discrete 
function ( , )k nΦ . The points of Φ that are set to 1 are 
chosen to be those of maximum contrast between the 
classes. 

In this study, the signals coming from the following 
pairs of electrodes: C3-C4, P3-P4 and O1-O2, were 
used to compute three cross ambiguity functions per 
epoch. The use of lateral symmetric pairs was motivated 
by studies reporting efficient characterization of mental 
task based on inter-hemispheric correlations [6]. 
Optimization was performed separately on each pair.  

The classification procedure consisted in calculating 
the Mahalanobis distance in the ambiguity domain at a 
given number of points of maximum Fisher contrast, 
and to choose the most likely class to the epoch under 
analysis. 

The Fisher contrast is defined as: 
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where j denotes the electrode-pair: {C3-C4, P3-P4, O1-
O2}, and i the mental task: {T1, T2, T3}.  

Furthermore,
2

( , ) and ( , )j j
i iA Aξ τ ξ τ respectively 

represent the mean and the variance, of the cross 
ambiguity function corresponding to the thi class and 
the thj pair. 

The number of points of maximum contrast per 
electrode-pair jN  should be chosen so as to minimize 
the classification error. This can be achieved by 
increasing the value of jN  until a minimal 
classification error is obtained.  

We define jM  as the set containing the coordinates 
of the jN  points. 

The electrode-pair distance between the epoch under 
analysis (noted X) and the cross ambiguity function 
associated to the class i and electrode-pair j is defined 
as: 
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where j
XA  is the cross ambiguity function between the 

signals corresponding to the electrode-pair j and 
( )

jM
A is the column vector consisting of the elements in 

the matrix A whose coordinates are in the set jM . 

Since we compare the epoch X with three classes on 
the basis of three electrode-pairs, nine distances per 
epoch are computed.  

For the classification of X we can compare the 
distances associated to each electrode-pair separately 
and assign X to the class that obtained the majority of 
favorable results. Another way consists in designing a 
weighted strategy in which each distance has a given 
weight in the final decision. The last strategy was 
adopted and is detailed below. 

We define the vector Xd
G

formed by the distances: j
id . 

The elements of Xd
G

 are fed into a three-neuron 
single-layer neural network whose outputs are set to 
(1,0,0), (0,1,0) or (0,0,1) for an epoch belonging to the 
first, second or third class respectively (Fig. 3). 
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Figure 3. Classification of an epoch X. 

In the case of a trial classification, as in the feedback 
sessions, the trial distances are the averages epochs 
distances and the classification is performed by feeding 
them to the neural network.  
 

5. RESULTS AND DISCUSSIONS 

In this section, we report the results obtained and the 
performance achieved by the BCI system discussed in 
this paper.  

As said before, 300 epochs (100 epochs per task) per 
session were recorded. 

Table 1 summarizes the number of epochs (per task, 
per session and per subject) that have been retained 
after artifact elimination. The empirical threshold 
mentioned in Sec. 2 was set to three. As can be seen, a 
large portion of the trials are retained. 

Session

Subject

S1

S2

1 2 3 4 5

86 78 94 72 82

75 7378 8281
 

Table 1. Number of retained epochs per task, per 

session and per subject after artifact elimination. 

Figure 4 shows the classification error of the five 
experiments discussed. The error rate decreases for both 
subjects over the feedback sessions except for the last. 
This trend was already reported in other studies [4]. 
Another factor that may have influenced the error 
reduction was the fact that the subjects became 
increasingly familiar with the system as the sessions 
progressed. 

 The increase of the error in the fifth session elicits the 
need of more measures in order to determine if the 
minimum error reached at the fourth session is the limit 
performance for both subjects. 

Error rate over five sessions

0

5

10

15

20

25

30

35

40

1 2 3 4 5
Session

Er
ro

r r
at

e 
%

Subject 1 Subject 2

 
Figure 4. Error rate over sessions. 

The general classification error for all sessions was 
obtained by taking into account all epochs i.e. 412 and 
389 per task for subject 1 and subject 2 respectively. 
The total number of epochs was then divided in ten 
groups and eight groups were used for training and the 
remaining two for testing. The average error over the 
( )2

10 45C =  possible combinations is the general error 
depicted in Fig. 5. This error was computed for the 
classification using each electrode-pair as well as for the 
weighted strategy.  

As it can be seen the optimal number of points is 
different for both subjects. This confirms the results 
obtained in an another study [10] which pointed out that 
a BCI should be personalized. 



Furthermore, the weighted strategy that we used was 
effective for subject 1. But for subject 2 the electrode-
pair O1-O2 provided better results for an optimal 
number of contrast points. This suggests that a simple 
weighting of the distances through a neural network is 
not sufficient for taking into account the influence of all 
electrode-pairs in the global decision. A better 
technique able to determine which subset of electrodes 
is sufficient for a given performance is therefore 
needed. A possible way to achieve this may be through 
simultaneous time, frequency and space correlation. 
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Figure 5. General classification error. 

 
6. CONCLUSIONS AND FUTURE WORK 

The error rate decreased over the first three sessions in 
which feedback was provided. More measures are 
necessary in order to assess the influence of different 
feedback strategies as well as the existence of a limit 
performance in terms of error rate. 

Based on the results of Fig. 5, we can conclude that the 
number of points of maximum contrast and the 
electrode-pair which give the minimal classification 
error are subject dependent. Then, a BCI should be 
personalized. 

The use of a simple strategy for combining the results 
given by each electrode-pair was not satisfactory for 
both subjects. Therefore, other ways of integration of 
the spatial information should be considered. That is 
why we will turn our attention to the study of joint time-
frequency-space correlations. Given the large 
dimensionality of this approach, it could be more 
interesting to perform spatial decorrelation strategy 
(PCA or ICA) as a preliminary step. 

ACKNOWLEDGEMENTS 

The authors wish to acknowledge Patrick Aebischer and 
Guy Courbebaisse for fruitful discussions and 
suggestions which allowed us to improve the 
performance of our system. We would also like to thank 
Jonathan Nieto and Lam Dang for their participation in 
the experimental sessions. 

REFERENCES 

[1] R. Cowie, et al, “Emotion recognition in Human-
Computer Interaction,” IEEE Signal processing 
Magazine, January 2001, pp. 32-53.  

[2] J. R. Wolpaw, et al, “Brain-Computer Interface 
Technology: A Review of the first international 
Meeting,” IEEE Trans. Rehab. Eng., vol. 8, pp. 164-
173, June 2000.  

[3] O. Alsayegh, “EMG-based Human-Machine 
Interface System," IEEE ICME, Vol. II, July-August 
2000, pp.925-928. 

[4] B. Obermaier, “Design and implementation of an 
EEG based Virtual Keyboard using Hidden Markov 
Models,” PhD Thesis TU Graz, Graz-Austria, May 
2001. 

[5] M. Henning and S. Vinoski, Advanced CORBA® 
Programming with C++, Addison-Wesley 
professional computing series, 1999. 

[6] P. L. Nunez, et al, “EEG coherency I: statistics, 
reference electrode, volume conduction, Laplacians, 
cortical imaging, and interpretation at multiple 
scales,” Electroenceph. Clin. Neurophysiol., 103, pp. 
499-953, 1997. 

[7] H. Ramoser, et al, “Optimal Spatial Filtering of 
Single Trial EEG During Imagined Hand 
Movement,” IEEE Trans. Rehab. Eng., Vol. 8, pp. 
441-446, December 2000. 

[8] Jung T-P, et al, “Removing Electroencephalographic 
Artifacts: Comparison between ICA and PCA”, 
Neural Networks for signal processing, Vol. VIII, 
pp. 63-72, August-September 1998.  

[9] L. Cohen, Time-Frequency analysis, Prentice Hall 
Signal Processing Series, New Jersey, 1995. 

[10] M. Pregenzer, G. Pfurtscheller, “Frequency 
Component Selection for an EEG-Based Brain to 
Computer Interface”, IEEE Trans. Rehab. Eng., vol. 7, 
pp. 413-419, December 1999. 
 

 


