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ABSTRACT

We present an approach to directly study mutual relation-
ships between audio and video signals for multimedia ap-
plications. The presented approach is mathematically based
on information theory and is closely related to information
theoretic classification. We show that very simple features
of the audio- resp. video-channel can already contain lots
of mutual information between both modalities. The math-
ematical approach is very general though and not restricted
to the presented multimedia application.

1. INTRODUCTION

Classically digital signal processing has treated different sig-
nals as quasi-independent entities. The natural connection
of multi-modal signals coming from the same physical scene
has mostly been neglected. Lately though, several attempts
have been made to explore their relationship for signal pro-
cessing algorithms. Examples for multimedia applications
are shown in [1] and {2]. In [3], we have presented a very
general information theoretic approach to handle multi-modal
signals. There is a vast number of at first sight completely
unrelated applications that could benefit from our approach.

In this paper we want to apply this theory specifically to
multimedia signals. A general and widely applicable multi-
modal approach can have an impact on a broad range of
applications in this field. For example human-computer in-
terfaces [4], speaker recognition [5] or media conversion
could profit from exploring simultaneously the audio and
video signal. In particular, we show that our theory [3],
which also generalizes multi-modal medical image registra-
tion with mutual information [6], [7], is general enough to
enhance speaker detection in audio-video sequences.

First we shortly summarize the information theoretic ap-
proach of feature space mutual information for multi-modal
signal processing. Afterwards we show how it can be di-
rectly applied to speaker detection.

0-7803-7304-9/02/$17.00 C2002 IEEE

361

2. FEATURE SPACE MUTUAL INFORMATION

Speaker detection attempts to detect a speaker in a video se-
quence. The physical relation between the speaker’s mouth
motion and the resulting speech lets us expect to find a rela-
tionship between the corresponding digital signals. There-
fore we wanted to detect the pixels in the video that carry
most information about the audio signal. Intuitively one
might calculate directly the mutual information over time
between each video pixel and the audio signal. The maxi-
mum should lie at the speaker’s mouth and therefore detect
the region that is physically responsible for the formation
of the audio. Unfortunately it’s not obvious that simply the
image intensities of the mouth would carry this information.
In fact we will show that they do not. But we will determine
an other video feature that turned out to be very appropriate
for our task.

But first of all, we want to give a mathematical explana-
tion to use mutual information for speaker detection. Fur-
thermore we show that maximum mutual information natu-
rally incorporates optimal feature selection/extraction. We
called the resulting measure “Feature Space Mutual Infor-
mation”, reflecting the simple fact that we calculate this sta-
tistical pseudo-distance measure on features extracted from
the initial signals and not on the signals themselves.

2.1. Fano’s Inequality for Multi-modal Signals

Fig. 1 shows how it is possible to formally connect multi-
modal signals through a joint probability distribution of their
extracted features. We used joint histogramming for den-
sity estimation [8]. This lets us easily construct two related
Markov chains from the multi-modal signals:
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Figure 1: It’s possible to construct Markov chains from
multi-modal signals, where the joint histogram between the
final features (Fy and Fj4) is the connecting block between
the audio and video signal.

where S is a uniform random variable (RV) that generates
the sampling positions in the initially continuous signals. V'
and A are the RVs modeling the specific measurements at
the positions generated from S. What exactly is measured
is a feature selection step. The measured features V and A
can be multi-dimensional which might require next a fea-
ture extraction step. The output after feature extraction is
modeled by the RVs Fy and F4 respectively. Furthermore
we need a probability estimation to estimate the transition
probabilities from Fy to F§** and from F4 to F&®t. Both
probabilities can be estimated from the joint probability dis-
tribution of Fy and F4. We used joint histogramming to
approximate this probability density [8].

For both Markov chains, it’s possible to estimate a lower
bound of the error probability Pe; = Pr(S # S°¢°t) resp.
Py = Pr(S # Sest), that S°** does not equal the initial
input § to the chains. These bounds can be derived using
Fano’s inequality [9] and several times the data-processing
inequality [10]. As shown in [3], the lower bound of the
error probability P,; of the Markov chain of eq. 1 can be
derived as follows:
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Analogously, we have for the Markov chain of eq. 2:
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I{(.,.) stands for the Shannon mutual information and ||
is the number of possible measurement positions that can
be generated from the RV S. Eq. 5 and 10 follow directly
from Fano’s inequality and the definition of Shannon’s mu-
tual information. For eq. 6 and 11, we used the fact that S is
a uniform RV and therefore has entropy log |¥|. Using the
data-processing inequality, we find directly the weakened
bounds of eq. 7 and 12. By symmetry of mutual informa-
tion, the final lower bounds of P,; and P,y are equal.

2.2. Audio-video Signals

For audio-video signals we want to find the features in the
audio and video signal that minimize the presented lower
bounds on the error probabilities of eq. 7 and 12 in the re-
gion of the speaker’s mouth. From eq. 7 and 12 it follows
that this is equivalent to having a large feature space mu-
tual information I(Fy, F4) in this area. On the other hand
a large bound should result in the regions where the move-
ments are not caused by the speaker’s lips and are therefore
unrelated to the speech signal. So that’s where I(Fy, Fia)
should be small.

To represent the information of the audio signal, we first
converted it into a power-spectrum (fig. 2a).
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Figure 2: a) The power spectrum of the video sequence. At
each time point we have the power coefficients of several
frequencies. b) The alphas for which the weighted sum of
eq. 15 has maximum entropy.
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In order to deal with this multi-dimensional audio sig-
nal, we included a linear feature extraction step in the al-
gorithm. As for any couple of RVs X and Y, we have
H(X) > I(X,Y) and from eq. 7 and 12 we get a weakened
lower bound for the error probabilities P, ¢,}:
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Therefore we looked for the linear combination of the power
spectrum coefficients W(f;,t) (fig. 2a) that carries most
entropy:

&P =

arg e o1 (Xi: ai - W(fi,t))- (14)

Detailed information about the maximum entropy princi-
ple can be found in [11], [12]. The finally obtained audio-
feature is therefore defined by

Fa(t) = Y o -W(fi,1). (15)

In fig. 2b, we show for one sequence the weights o vt
that maximize the entropy of eq. 15 and therefore define the
audio-features F4 of the audio signal.

Several other audio-features could be imagined. In par-
ticular we could learn the features that have effectively the
highest mutual information with the video signal in the re-
gion of the speaker’s mouth. In that case we would directly
take profit from eq. 7 and 12 for the feature extraction step.

3. RESULTS

We want to show two important points about the presented
theory. First of all that there exist features that relate the
mouth movements of a speaker directly to the corresponding
speech signal. On the other hand we want to show that the
choice of a particular feature representation is very crucial
for the performance of the algorithm. There are features
that contain lots of information (have lots of entropy), but
are unrelated to the other signal. Other features represent
this dependency much better and result in very good results.

The straight forward approach to quantify the depen-
dency (in the sense of eq. 7 and 12) between an audio
and video signal of a speaker would be to calculate for each
pixel the mutual information between its intensities and the
audio-feature of eq. 15. In fig. 3 we show the corresponding
results.

We can see that this straight forward approach doesn’t
lead to the result we could have expected. It seems that the
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Figure 3: a) We show the intensity entropies for each pixel
of the sequence. It shows that our sequence contained lots
of motion in the background of the scene (people passing,
waving arms, etc.). b) The mutual information between the
pixel intensities and the audio-feature has been calculated.
We see that there is not a particularly high mutual informa-
tion in the region of the speaker’s mouth.

pixel intensities of the speaker’s mouth don’t carry much
information about the audio signal. Instead we propose a
local feature that is more related to intensity changes than
to the intensities themselves:

1
Fy(i,5,t) = Z ge+1(6+L, j+m) —ge—1(i+1,j+m),
lym=-1
(16)
where g;(%, j) stands for the intensity of a pixel at coordi-
nates (%, 7) in the frame at time ¢.

Thereafter we calculated for each pixel in the scene the
mutual information between the resulting audio- and video-
feature I(Fy, F4). As shown in fig. 4 a clear relationship
between the speech and the speaker’s mouth is obtained.

4. DISCUSSION

In fig. 4 we showed that the proposed approach, which es-
timates for each pixel in the sequence the feature space mu-
tual information between the video-feature Fy (eq. 16) and
the audio-feature F4 (eq. 15), nicely detects the speaker’s
mouth in the video scene.

The feature selection/extraction itself teaches us several
interesting facts about the presented audio-video signal. From
fig. 2b, we can see that just a very small band of the power
spectrum carries most of the information about the speech
signal. Furthermore the video features tell us that image in-
tensities are too sensitive to small illumination changes in
the sequence. If we use a more local feature such as the
presented intensity differences between consecutive frames
(eq. 16), we significantly improve the result. Furthermore
small camera movements (jitters) can be compensated by
averaging over a small region around the pixels.
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Figure 4: a) shows the entropy of the video-features Fy
for each pixel in the video scene. b) relates this video in-
formation to the extracted audio-features F'4 of eq. 15 by
calculating the feature space mutual information I(Fy, Fa)
for each pixel. c) shows a typical frame of the sequence. d)
is simply the thresholded image of b) super-posed on the
frame of c). It shows that the mutual information maxima
lie clearly at the speaker’s mouth.

5. CONCLUSION

We applied the general framework of feature space mutual
information to speech-based speaker detection. The choice
of the right features has shown to be very crucial for the
quality of the results. The theory is general enough to in-
corporate feature learning algorithms to optimize the per-
formance of information theoretic multimedia signal pro-
cessing. In particular feature selection and extraction from
the initial audio and video signal can be included easily in
the algorithms.

The resulting features can reveal important information
about how to handle particular multi-modal signals. For ex-
ample we have shown that local intensity changes in the
video sequence are more related to the resulting speech-
signal than the intensities themselves. This also re-confirms
the fact that lip motion carries very significant information
about the resulting speech signal.
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