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ABSTRACT 

In the framework of the research on Brain-Computer In-
terface systems, the classification of single EEG trials 
occupies a central place. In this paper we propose a tech-
nique of classification consisting on the analysis of EEG 
from a joint time-frequency and space point of view. 

1. INTRODUCTION 

Research on Human-Computer Interfaces (HCI) for dis-
abled people has lead to the so called Brain-Computer 
Interface (BCI) systems that use brain activity for com-
munication purposes [1]. When the brain activity is 
monitored through electroencephalogram measurements 
(EEG) one has an EEG-based BCI, henceforth called 
simply BCI.  

In this research, the EEG signals are measured at the 
scalp by affixing an array of electrodes according to the 
10-20 international system and with reference to digi-
tally linked ears [9][2]. An EEG signal is therefore mul-
tivariate.  

Among the commonly used EEG signals in BCI sys-
tems, we focused our attention in the spontaneous sig-
nals [3]. These signals are spontaneous because they do 
not constitute the response to a particular stimulus. 

A BCI system involves two entities: a human subject 
and a machine. The subject performs a mental activity 
(MA) to control a machine action. The MAs are 
uniquely characterized by the presence of patterns in the 
EEG signals. A time segment of EEG (EEG-trial) is 
therefore classified in order to determine the MA that 
originated it. 

The classification method for EEG-trials constitutes 
a very important part of a BCI system. In this paper, we 
present a classification algorithm relying on the analysis 
of the joint time, frequency and space correlations. 

The application that motivated our research was the 
design of an immersive 3D environment where people 
could interact, between themselves and the environment, 
by merely thinking. 

2 CLASSIFICATION METHOD 

The single EEG-trial classification problem can be stated 
as follows.  

Given a training set ϒ  of labeled EEG-trials 
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class kw . We wish to characterize each class by a model 
so that we can compare an unknown trial ( )S t  to each 
class-model and assign ( )S t  to its most likely class. 

In order to build such a model we chose to analyze 
the EEG trials with respect to their correlative time-
frequency representation (CTFR).  

The CTFRs can provide a measure of the interaction 
strength between groups of neurons as a function of the 
time and frequency. Precedent studies emphasized the 
importance of these parameters for characterizing the 
brain activity [4]. The CFTRS are commonly character-
ized by the ambiguity function [5].  

The ambiguity function of a multivariate sig-
nal [ ]1 2( ) ( ) ( ) ... ( ) t

NS t s t s t s t=  is defined in Equa-
tion 1. The signals 1 2( ), ( ), ... ( )Ns t s t s t  are the uni-
variate components (also called spatial components) 
of ( )S t . 
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In Equation 1, H stands for the conjugate transpose 
and.θ ,τ  are the frequency and time lags respectively. 
The Equation 1 can be written in a matrix form (Eq. 2). 
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The diagonal terms of ( , )SA θ τ are called the auto 
ambiguity functions and the off diagonal terms are the 
cross-ambiguity functions. 

In [6] L. Cohen defined the characteristic function in 
the univariate case as the product between the ambiguity 
function and a two-dimensional function called the ker-
nel. In an analog way we can define the multivariate 
characteristic function in a matrix form as follows. 

[ ]( , ) ( , ) ( , )       1 ,S kl klM A k l Nθ τ φ θ τ θ τ= ≤ ≤    (3) 



The two-dimensional functions ( ),klφ θ τ are the ker-

nels and there are 2N of these kernels. 
The results in the univariate case [7] show that it is 

possible to design a kernel that is optimized for the clas-
sification in the θ τ− plane. The proposed kernel in [7] 
has a radially gaussian shape and can be written as 
shown in Eq. 4. 
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We generalized the results in [7] to the multivariate 
case by considering 2N radially gaussian kernels. The 
parameters of these kernels should be optimized for the 
classification. In order to reduce the complexity of this 
optimization we propose to decompose it in a space and 
a time-frequency optimizations. 

2.1. Optimization in the spatial domain 

The ambiguity function of a multivariate signal pro-
vides the information about the joint time, frequency and 
space correlations. In fact, the off diagonal terms of the 
matrix ( , )SM θ τ  (Eq. 2) represent the spatial correla-
tions. If we transform the multivariate signal so as to ob-
tain spatially decorrelated components we can concen-
trate on the optimization of the diagonal kernels of the 
transformed components. 

The decorrelating transformation is designed so as to 
obtain transformed components that are maximally sepa-
rated with respect to the classes being classified as ex-
plained in [8]. However the technique in [8]works only 
for the two class classification problem. In the case of W 
classes we should perform pair-wises classifications. 

The decorrelating transform in the case of two 
classes can be obtained as follows. 

Let 
1wR and 

2wR (Eq. 5) represent the correlation ma-
trices of the training trials corresponding to classes 

1w and 2w . 
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We note 12P  the linear transformation such that: 
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The matrix 12P  can therefore be expressed as 
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where iv are the eigenvectors and iλ are the eigenvalues 
of 

1 2w wR R+ . Generally 12P  does not diagonalize ei-

ther
1wR or

2wR . It does however transform the multivari-

ate signal ( )S t into [ ]1 2( ) ( ) ( ) ... ( ) t
NY t y t y t y t= (Eq. 

8). 
12( ) ( )tY t P S t= ⋅   (8) 

The transformation in Eq. 8 is applied to all the trials 
in the training set. The correlation matrices
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By virtue of Eq. 6 we have 

1 2

' '
w wR R I+ =      (10) 

The eigenvectors of
1

'
wR and

2

'
wR are identical. If e is 

an eigenvector of 
1

'
wR corresponding to an eigenvalue 

λ then e is also an eigenvector of 
2

'
wR corresponding to 

an eigenvalue (1 )λ− . As
1

'
wR and

2

'
wR are positive semide-

finite the eigenvalues must lie in the interval [0 ;  1] . As 
a result, the eigenvectors that are best for the representa-
tion of class 1w are worst for the representation of class 

2w and vice versa. 
From Eq. 10 and the above considerations it is clear 
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1

'
wR and 

2

'
wR can be simultaneously diagonalized by 

a matrix that we note 12T . Such a matrix transforms 
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where the ( )iz t ’s are decorrelated. 

12( ) ( )tZ t T Y t= ⋅     (11) 
Applying the Eq. 8 to Eq. 11 we have. 
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Therefore, the result of the spatial optimization is a 

set of transformation matrices ijK for each pair of 
classes. 

2.2. Optimization in the time-frequency 
domain 

From the optimization in the spatial domain (Sect. 
2.1) we know that we dispose of a set of transformed 
training trials whose components are decorrelated. 

Without loss of generality we consider the classifica-
tion between the classes 1 and 2. 
Let { }1 2
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The radially gaussian kernels (Eq. 4) are separately 

optimized for each component. The optimization proce-
dure for the kernel associated with the th component is 
summarized in Figure 1. 
We note 

max max0 1 1.. ..
t

p pa a a b bσ  =   the 
vector of the parameters associated with the th gaussian 
kernel (Eq. 4). 

The kernel optimization follows an iterative proce-
dure whose goal is to maximally separate the classes that 



we want to classify. The separation is measured using 
the distance between the time-frequency representations 
(TFR) as explained in Eqs. 13-15. 

( ) ( )
1 2

2

1, 2 , ,
k k

q q
k k w wd C t C t d dω ω θ τ= −∫∫    (13) 

where 1, 2
q
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Figure 1. Optimization procedure for the kernel 

associated with the th component. 

2.3. Classification of an unknown trial 

2.3.1. Classification into two classes 
When classifying an EEG trial ( )S t we first transform it 
using Eq. 12 and obtain a transformed multivariate sig-
nal [ ]1 2( ) ( ) ( ) ... ( ) t

NZ t z t z t z t= . We then compute 
the distances, with respect to each component to each of 
the classes. We therefore obtain 2N distances (Sections 
2.1 and 2.2). In order to provide a global classification 

result we combined these distances into a single measure 
D which is defined below. 
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where 
2

( , ) ( , )
k kw wd C t C t dtdω ω ω= −∫∫  and λ is 

the eigenvalue associated with the th component (Sect. 
2.1).  

We chose to weight the distances associated with 
each component by their respective eigenvalues because 
they provide an indication about the importance of each 
component in the classification (Sect 2.1).  

Finally, ( )S t is classified into the class 1w if 
0D < and into the class 2w if 0D > . 

2.3.2. Classification into several classes 
An EEG-trial ( )S t is classified by performing pair-wise 
comparisons between all possible pairs of classes. 

Among all the classification results provided by each 
pair wise classifier, we chose the most represented class 
as the result of the classification. In the case that two or 
more classes are equally represented the classification is 
not defined. 

3 RESULTS AND DISCUSSIONS 

The EEG signals were gathered from electrodes Fp1, 
Fp2, C3, C4, P3, P4, O1 and O2 of the 10-20 interna-
tional system [9]. Among these signals we used the last 
six for the classification, i.e. 6N = .  

The signals coming from Fp1 and Fp2 were used for 
the detection and removal of perturbations in the EEG 
signals [3].  

We tested the classification method with respect to 
three types of mental activities: mental counting (MA1) 
imagined left and right index movement (MA2 and MA3 
respectively) recorded under different conditions. Three 
subjects (S1, S2 and S3) participated in the experiences. 
We recorded 200 half-second EEG trials corresponding 
to each mental activity. We divided them into 120 trials 
(training set) for the design of the transformation matri-
ces and kernels and 80 trials for testing (testing set).  

We determined the average rate of misclassification 
(error rate) per task over 40 different choices of the 
training and testing sets. The results of the classification, 
in terms of error rate, are reported in Figure 2. The ker-
nels were optimized after applying the spatial transfor-
mation as indicated in Sect. 2.1 

As it can be seen the radially gaussian kernel 
with max 3p =  performs better than any other kernel.  

We can also note that the unitary kernel, correspond-
ing to the case in which the characteristic function is 
equal to the ambiguity function, provides the worst clas-
sification result for subjects S1 and S3, and a non-
optimal result for subject S2. On other hand an increase 
of the parameter maxp implies an increase on the error 
rate, this is due to a more sensitivity to noise when 

maxp takes big values.  



In order to evaluate the utility of the spatial optimiza-
tion we computed the classification error obtained when 
the kernels are optimized on the original signals ( )S t . 
This is equivalent to the case when ijK I= in Eq. 12. 
The results are reported in Figure 3. As it can be easily 
noted, the results of the optimization on the transformed 
signals are much better then those obtained on the origi-
nal signals. 
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Figure 2. Classification error rate on the transformed 
components for different choices of the kernel and 

for each of the three tested subjects. 

4 CONCLUSIONS AND FUTURE 
WORK 

From the results obtained, it appears that the classifica-
tion strategy consisting in dividing the optimization in 
the spatial and time-frequency domain gives better re-
sults than a simple time-frequency on the original (un-
transformed) signals.  

The radially gaussian kernels with max 3p = provided 
the best results in terms of classification error. We also 
noted that an increase of maxp leaded to an increase in 
the classification error because of the sensitivity to noise 
that inevitably contaminates EEG signals. 

As the final goal of our research is to apply this clas-
sification strategy to a BCI system in which a feedback 
is usually provided to the user when training the system. 
It is necessary to design a method for the online updat-
ing of the kernels.  

On other hand, as the number of mental activities in a 
BCI system increases the number of pair-wises compari-
sons increases as well. We thus need to adapt our 
method and find a way to directly compare all the 
classes at the same time. This could be achieved by si-
multaneously diagonalizing the correlation matrices in 
Eq. 5. 

An extension of our work that we are currently ex-
ploring is the application of the Time-frequency and 
space analysis of EEG to the segmentation of sleep peri-
ods. 

Classification error rate on the original 
(untransformed) signals
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Figure 3. Classification error rate on the original 
signals for different choices of the kernel and for 

each of the three tested subjects. 
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