000086889 001__ 86889
000086889 005__ 20190316233743.0
000086889 0247_ $$2doi$$a10.1109/TIP.2002.999670
000086889 02470 $$2DAR$$a429
000086889 02470 $$2ISI$$a000175398300003
000086889 037__ $$aARTICLE
000086889 245__ $$aDirectional dyadic wavelet transforms: design and algorithms
000086889 269__ $$a2002
000086889 260__ $$c2002
000086889 336__ $$aJournal Articles
000086889 520__ $$aWe propose a simple and efficient technique for designing translation invariant dyadic wavelet transforms (DWTs) in two dimensions. Our technique relies on an extension of the work of Duval-Destin et al. (1993) where dyadic decompositions are constructed starting from the continuous wavelet transform. The main advantage of this framework is that it allows for a lot of freedom in designing two-dimensional (2-D) dyadic wavelets. We use this property to construct directional wavelets, whose orientation filtering capabilities are very important in image processing. We address the efficient implementation of these decompositions by constructing approximate QMFs through an L 2 optimization. We also propose and study an efficient implementation in the Fourier domain for dealing with large filters
000086889 6531_ $$aLTS2
000086889 700__ $$0240428$$g120906$$aVandergheynst, P.
000086889 700__ $$aGobbers, J.
000086889 773__ $$j11$$tIEEE Transactions on Image Processing$$k4$$q1057-7149
000086889 8564_ $$uhttps://infoscience.epfl.ch/record/86889/files/Vandergheynst2002_40.pdf$$zn/a$$s425838
000086889 909C0 $$xU10380$$0252392$$pLTS2
000086889 909CO $$qGLOBAL_SET$$pSTI$$ooai:infoscience.tind.io:86889$$particle
000086889 937__ $$aEPFL-ARTICLE-86889
000086889 970__ $$aVandergheynst2002_40/LTS
000086889 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000086889 980__ $$aARTICLE