Wavelets on the sphere : Implementation and approximations

We continue the analysis of the continuous wavelet transform on the 2-sphere, introduced in a previous paper. After a brief review of the transform, we define and discuss the notion of directional spherical wavelet, i.e., wavelets on the sphere that are sensitive to directions. Then we present a calculation method for data given on a regular spherical grid . This technique, which uses the FFT, is based on the invariance of under discrete rotations around the z axis preserving the sampling. Next, a numerical criterion is given for controlling the scale interval where the spherical wavelet transform makes sense, and examples are given, both academic and realistic. In a second part, we establish conditions under which the reconstruction formula holds in strong Lp sense, for 1p<. This opens the door to techniques for approximating functions on the sphere, by use of an approximate identity, obtained by a suitable dilation of the mother wavelet.

Publié dans:
Applied and Computational Harmonic Analysis, 13, 3, 177-200
Autres identifiants:

 Notice créée le 2006-06-14, modifiée le 2019-03-16

Télécharger le document

Évaluer ce document:

Rate this document:
(Pas encore évalué)