
ITS TECHNICAL REPORT 1

A generalized Rate-Distortion limit

for edge representation
Rosa M. Figueras i Ventura, Lorenzo Granai and Pierre Vandergheynst

Abstract

This paper presents a rate-distortion analysis for a simple horizon edge image model. A quadtree with anisotropy
and rotation is performed in this kind of image, giving a toy model for a non-linear adaptive coding technique, and its
rate-distortion behavior is studied. The effect of refining the quadtree decomposition in the Rate-Distortion decay is
also studied.

Keywords

Image coding, rate-distortion analysis, edge representation, wavelets, image analysis.

I. Introduction

It is known that the Rate-Distortion behavior of wavelets it is not optimal for natural images because they
are not capable of seeing the regularity of edges [1]. In fact the optimality of monodimensional wavelets is lost

when using 2D separable basis giving a rate-distortion decay of O
(
R− 1

2

)
[2]. This motivates a lot of research

in order to find a more efficient way for coding images [3], [4], [5].
The goal of this work is to try to find an efficient technique to represent edges. To compute the Rate-

Distortion behavior of the chosen technique, we will use the “Horizon” model for piece-wise smooth images
where the edge is also a smooth curve. For an image f(x1, x2) defined on the unit square [0, 1]2, the horizon
model defines the image as:

y(x1, x2) = 1x2≥y(x1) 0 ≤ x1, x2 ≤ 1, (1)

where y(x1) ∈ Cp is p-times continuously differentiable and has finite length inside the unit square.
A way to represent this image is through a quadtree decomposition, which is in fact a toy model for

wavelets. Do et al. [6] already demonstrated that the Rate-Distortion behavior of this model decays as R−1.
They introduced refinement in the isotropic quadtree technique to improve its distortion-rate behavior, as
further explained in section II.

In this paper we do another step towards the understanding of the behavior of edges in compression. For
this, anisotropy and rotation are directly introduced in the basic quadtree structure, obtaining a toy model for
an adaptive non-linear image representation tool. This anisotropic quadtree with rotations can be a good toy
model for bandelets [7]. The fact of introducing anisotropy shows that the first derivative of the edge function
appears in the rate-distortion expression. Furthermore, when rotation is also included in the scheme, rate-
distortion is affected by the curvature of the edge, showing that the rate needed to represent a given contour
is directly proportional to the geometrical complexity of this contour. The fact that geometrical complexity
needs higher bit-rate to achieve a given distortion is coherent with empirical and previous theoretical results.

II. Optimal quadtree based compression

In [6], Do et al. showed that, in terms of rate-distortion, the optimal quadtree based compression gives better
results than wavelets. This technique consists in employing a quadtree segmentation scheme and representing
each sub-image by performing a rate distortion optimization.

The quadtree is based on a dyadic division of the unity interval [0, 1]2 (see Fig. 1(a)). At each scale, the
algorithm will decide whether a given square is white, black, intermediate (there is an edge inside but the
finest resolution has not been achieve) or edge. If it is a white or black square, it will not be divided any more.
If it is an intermediate square, it will be further divided until the maximum number of iterations J has been

http://ltspc4.epfl.ch

ITS TECHNICAL REPORT 2

reached, when it will be labeled as edge square. The final division size will be 2−J × 2−J . Finally, when the
edge square is achieved, a refinement (coding with a certain number of bits where the edge crosses the square
edges) will be performed. Then the edge will be represented by the lines that join these refinement points (so
it will be represented as a piece-wise linear function). This approach gives a rate distortion decay of:

D(R) ∼
log R

R2
. (2)

(a) Isotropic (b) Rectangular

Fig. 1. Example of isotropic and rectangular quadtree decomposition.

III. Anisotropic Quadtree

A. Algorithm

Let us now release the assumption of the original quadtree decomposition in order to bring adaptivity in the
scheme. The difference between the dyadic quadtree and the anisotropic quadtree is the size of the partitions.
The x axis will maintain the dyadic partition, but the y axis partition will depend mainly on the edge. As can
be seen in Fig. 1(b), the size of the partition height will be always chosen so that the superior or inferior limits
of the partition are located as close to the edge as possible but without crossing it. After the first partition,
the dyadic rectangle containing the edge will be divided into two along the x axis. The partitions will be
refined and further divided. This process will be repeated until the desired accuracy or bit-rate is reached (i.e.
until the height or the width of the rectangle has the size 2−J). In addition, a certain number of bits can be
assigned to code the edge position in the division border, so that a straight line can approximate it.

B. R-D behavior

Let J be the number of bits used for quantizing each of the two axes. If Naj
is the number of all the

rectangles at iteration j and Ne the number of edge-rectangles, we have:

Naj
∼ 2j , (3)

Ne ≤ 2J+dlog2 y′

maxe, (4)

where J is the maximum number of decomposition levels allowed. As next iteration rectangle will be inside
the previous iteration one, the number of bits needed to code the size of each rectangle will decrease with the
iteration number as:

Nbits ≤ J − (j − 1) + dlog2 y′maxe. (5)

Taking into account the bits needed to code whether a rectangle is black, white, edge or intermediate and the
size and position, the total bit-rate needed to code the anisotropic quadtree will be given by:

R = (2 + Nbits)Na + 2M · Ne, (6)

where M is the number of bits used to code the position where the edge crosses the dyadic rectangle. The
first term counts the bits needed to describe the tree partition position and whether the partition is black,

ITS TECHNICAL REPORT 3

white, intermediate or edge, and the second term represents the bits needed to code the edge position in the
finest partition. Merging Eq. (3), (4) and (5) with Eq. (6) we obtain:

R ≤

J+dlog2 y′

maxe∑

j=0

[(2 + J − (j − 1) + dlog2 y′maxe)2
j] + 2M · 2J+dlog2 y′

maxe. (7)

By developing the sums as arithmetic series, previous equation turns to:

R ≤ (2 + J + dlog2 y′e)(2J+dlog2 y′e+1 − 1) − [2J+1+dlog2 y′e(J + dlog2 y′e − 1) + 2] + 2J+1+dlog2 y′eM. (8)

Simplifying, Eq. (8) gives:
R ≤ 2(3 + M)2J+dlog2 y′e − J − log2 y′ − 4, (9)

and so:
R ≤ 2(M + 3)2J + dlog2 y′e, (10)

which, when considering M=J and high bit-rate turns to:

R ∼ J · 2J+dlog2 y′e. (11)

This result is equivalent to the quadtree result, but with a term 2dlog2 y′e which comes from the fact of using
irregular y axis division. In terms of distortion, as the final resolution is 2J (exactly as the regular quadtree)
the situation basically is the same:

D(R, F) =

∫

[0,1]2
(f − f̂)2 ≤ max

x1∈[0,1]
|y(x1) − yJ,K(x1)| ≤ C2−J−M , (12)

which again, when considering M=J gives:

D(R, f) ≤ C2−2J . (13)

And from the previous expression and Eq. (11) we obtain:

D ∼
22dlog2 y′e log2 R

R2
. (14)

In the above expression we see that the rate-distortion of the irregular quadtree is similar to the one of the
regular quadtree but with a factor 22dlog2 y′e that comes from using anisotropy. The use of rectangles when
dividing gives already a factor 2dlog2 y′e and the coding of the position where the edge crosses the border of
the rectangle gives the other 2dlog2 y′e.

IV. Introducing Rotation

The anisotropic quadtree shows that the edge representation can be improved, in a rate-distortion sense, if
partitions follow the behavior of the edge. Developing this idea it is possible to use not only rectangular, but
even rotated boxes. Let’s take a curve in the unit interval [0, 1]2 and join the two extreme points with a line
that represents its average slope. This line can be then moved up and down such that it does not cross the
edge anymore in order to create the box. This procedure is repeated iteratively continuing to split the x axis
inside the previous box in a dyadic way. As in the anisotropic quadtree algorithm, the y axis partition will
basically depend on the edge. Fig. 2(b) represents this edge analysis.

As in the previous case, it is imposed that the edge function y(x) ∈ Cp, with p ≥ 2 inside the unitary
interval. At each iteration j (0 ≤ j ≤ J) and for each box k the distortion is limited by the area of the box
that encloses the edge (see figure 2(a)):

Dk
j ≤ Sk

j H ′k
j = Sk

j Hk
j cosθ = 2−jHk

j . (15)

ITS TECHNICAL REPORT 4

y
l0

H

θ

H’
S

(a) Scheme

50 100 150 200 250

50

100

150

200

250

(b) Final resolution

Fig. 2. Anisotropic quadtree with rotation.

Inside every box the edge function will be approximated by its second order Taylor expansion at the central
point of the partition, taking as initial partition the unitary interval:

y(x) = y (x0) + y′(x0) (x − x0) + 1
2y′′(x0) (x − x0)

2 + O
(
(x − x0)

3
)
. (16)

Defining x− as the lowest point in the x axis which is inside the interval to analyse and x+ as the highest
one, the coordinates of the two extreme points of the curve will be (x−,y(x−)) and (x+, y(x+)). Let yL be
the line that joins these two points:

yL(x) = y(x−) +
y(x+) − y(x−)

x+ − x−
(x − x−). (17)

The above expression does not take into account quantization. Considering that the vertices of the partitions
must be on a dyadic grid, the real line will actually joint the points (x−,Q[y(x−)]) and (x+, Q[y(x+)]), where
Q[·] stands for uniform quantization. Therefore, the new line is:

yLQ(x) = Q[y(x−)] +
Q[y(x+]) − Q[y(x−)]

x+ − x−
(x − x−). (18)

The parallelogram cannot cross the edge, therefore its superior and inferior distances to the line are bounded
by:

d+ = max {0, sup(y − yLQ)} ≥ 0

d− = max {0, sup(yLQ − y)} ≥ 0. (19)

Then the height of the parallelogram confining the edge will be:

H = Q [d+ + d−] . (20)

Three cases have to be considered: d+ and d− are both bigger than zero, one of them is equal to zero, and
finally d+ = d− = 0. In the three cases, the distortion will be smaller or equal to the area of the parallelogram
that contains the edge, as already shown in Eq. (15). So, when the evolution of H with the number of bits is
found, the evolution of the distortion as a function of the iteration number will be known as well.

A. Case d+ > 0 and d− > 0

A.1 Distortion

Let’s first compute the distances d+ and d− in order to find out H and so the distortion. If xd+
is the point

in the x axis where yLQ − y is maximum, and approximating the curve by its second order Taylor expansion

ITS TECHNICAL REPORT 5

in the middle point of the interval being analysed, we get:

d+ = y(xd+
) − yLQ(xd+

) =

= y
(

x++x−

2

)
+ y′

(
x++x−

2

) (
xd+

− x++x−

2

)
+

+ 1
2y′′

(
x++x−

2

) (
xd+

− x++x−

2

)2
−

− yLQ(x−) −
yLQ(x+)−yLQ(x−)

x+−x−

(
xd+

− x−

)
+

+ O

((
xd+

− x++x−

2

)3
)

.

(21)

The above expression, when substituting y(x−) by its Taylor expansion in the interval’s middle point, turns
to:

d+ =
[
y′

(
x++x−

2

)
− y(x+)−y(x−)

x+−x−

] (
xd+

−x−

)
± 2−J

(
xd+−x−

x+−x−

)
+

+ 1
2y′′

(
x++x−

2

) [(
xd+

− x++x−

2

)2
−

(
x+−x−

2

)2
]
±

± 2−J

2 + O

((
xd+

− x++x−

2

)3
)

+ O

((
x−−x+

2

)3
)

,

(22)

It is possible to show that: ∣∣∣∣y
′

(
x+ + x−

2

)
−

y(x+) − y(x−)

x+ − x−

∣∣∣∣ ≤ 2−2j (23)

and so [
y′

(
x+ + x−

2

)
−

y(x+) − y(x−)

x+ − x−

](
xd+

− x−

)
∼ O

(
2−3j

)
. (24)

It is also easy to see that:
∣∣∣∣∣

(
xd+

−
x+ + x−

2

)2

−

(
x+ − x−

2

)2
∣∣∣∣∣ ≤ 2−2(j+1), (25)

which brings the following bound for the 3rd term in Eq. (22):

1

2
y′′

(
x+ + x−

2

) [(
xd+

−
x+ + x−

2

)2

−

(
x+ − x−

2

)2
]
≤

1

2

∣∣∣∣y
′′

(
x+ + x−

2

)∣∣∣∣ 2−2(j+1). (26)

This expression is related to the second derivative computed in the middle point of each interval at each
iteration. From now on, to simplify the notation, it will be referred to as Kk

j , where k refers to the label of
the box and j to the iteration:

Kk
j =

∣∣∣∣y
′′

((
k +

1

2

)
2−j

)∣∣∣∣ , (27)

with 0 ≤ k ≤ 2j − 1. Since the curvature of a function is y′′(x)

(1+y′2)
3
2

, K can be considered as its approximation.

As the edge is considered to be a C2 curve, the set of Kk
j is bounded:

β = max
0≤k≤2J−1

∣∣∣∣y
′′

((
k +

1

2

)
2−J

)∣∣∣∣ < ∞. (28)

From equation (22) it follows that at iteration j and in box k the asymptotic behavior of d+ is given by:

d+ ∼
1

2
Kk

j 2−J−log2β +
3

2
2−J . (29)

In fact the other terms are O(2−3j) (one order of magnitude smaller), so they can be rejected when computing
the asymptotic behavior. Finally d− can be found with exactly the same method and has an identical behavior.

ITS TECHNICAL REPORT 6

The iterative algorithm is going to stop when the requested resolution is reached, i.e. when Hj = 2−J .
Substituting in (20), the number of iterations needed to reach this parallelogram height can be obtained as a
function of the resolution and of the curvature of the edge:

jstop = max

{
0,

1

2
(J + log2 β + 1)

}
. (30)

Now the parallelogram has width 2−jstop and height 2−J . Notice that this makes the relation width
height as:

width

height
=

2−jstop

2−J
= 2− log2 β 2−

J
2

2−J
∼

width

width2 , (31)

giving the a
a2 anisotropy present in curvelets [8].

The final distortion will be the distortion at the last resolution (j = jstop), and so it takes the following
form:

D =
2jstop−1∑

k=0

(d+ + d−) 2−jstop = (32)

=
2jstop−1∑

k=0

(
Kk

jstop + 3
)

2−3jstop =

= 2−2jstop

2jstop−1∑

k=0

Kk
jstop2

−jstop +
2jstop−1∑

k=0

3 · 2−jstop

.

In the right-hand side of equation (32), the second sum gives a constant, while the first, when jstop → ∞,
converges to the Riemann integral of the second derivative of the curve:

lim
j→∞

2jstop−1∑

k=0

Kk
jstop · 2−jstop =

∫ 1

0

∣∣y′′(x)
∣∣ dx, (33)

which can be seen as an approximation of the total variation TV of the edge (Riemann integral of the
curvature), with the only difference that we have a sum of Kk

j instead of the integral of the curvature. Calling

it T̃V the final expression for the distortion turns to:

D ∼
(
T̃V + 3

)
· 2−2jstop ∼

(
T̃V + 3

)
· 2−J−log2β. (34)

A.2 Rate

Each rotated box is coded by means of Hj and a left and a right vertex, so at the first iteration J bits are
needed to code H0 and J bits for the position of each vertex, which makes 3J bits. At iteration j, as at least
two of the vertices of the following parallelogram will be inside the previous one, the number of bits needed
to code one vertex of the box k depends on Hj−1 as follows:

Nk
bits V = log2

Hk′

j−1

2−J
= J − 2(j − 2) +

⌈
log2

(
Kk

j−1

)⌉
, (35)

where k′ is the index for the boxes of the previous iteration. As the number of bits needed to code all the
boxes at iteration j is given by the bits for the two vertices and the height multiplied by the number of
parallelograms, the total rate will be:

R =

jstop∑

j=0

(2Nbits V + Nbits H) × 2j , (36)

ITS TECHNICAL REPORT 7

where Nbits H is the number of bits needed to code the height of each box, which is the same as Nbits V. So
the final rate turns out to be:

R = 3J+2+

jstop∑

j=1

2j−1∑

k=0

((
J−2(j−1)+dlog2K

k
j−1e

)
·3+2

)
≤

≤ 3J+2 +

jstop∑

j=1

2j−1∑

k=0

((J−2(j−1)+dlog2βe)·3+2)=

= 3J+2 +

jstop∑

j=1

((J−2(j−1) + dlog2βe)·3+2)·2j .

(37)

This is an arithmetico-geometrical progression, whose sum is [9]:

R ≤ 28 · 2
1
2
(J+dlog2βe) − 3J − 26 − 6dlog2βe. (38)

Finally, for J big enough we find:

R ∼ 2
1
2
(J+dlog2βe). (39)

A.3 Rate-Distortion

Combining this equation with (34) we obtain the asymptotic Rate-Distortion behavior:

D(R) ∼
(
T̃V + 3

)
· 2−2log2R (40)

and so:
D(R) ∼

(
T̃V + 3

)
· R−2. (41)

B. Case d+ > 0, d− = 0 or viceversa

This case turns to have the same distortion rate than the previous one, because the evolution of the distortion
with the refinement does not change. Only some constants differ, but the general behavior is the same.

C. Case d− = d+ = 0

This case is very favorable to our coding scheme, because it means that with just one iteration the minimum
distortion requirement is reached. If d+ = d− = 0, the parallelogram height will be:

H = 2−J , (42)

and the rate will consist in the bits needed to code the two vertices and the box’s height:

R = 3J. (43)

This makes a Rate-Distortion behavior of:
D(R) = 2−

R
3 , (44)

which is coherent with the results obtained in [6].

V. Refinement in the anisotropic quadtree with rotation

The anisotropic quadtree with rotation has a good Rate-Distortion decay, but it has the drawback that the
reconstructed edge may loose its original continuity. The introduction of refinement solves this problem. This
refined version of the algorithm uses for iterations from 0 to jstop the same approach than in the previous case.
But with the difference that when the minimum resolution has been achieved, a refinement will be performed.
This refinement will be done inside the last resolution rectangle splitting the x axis into intervals of size 2−J .

ITS TECHNICAL REPORT 8

The effect of adding refinement in the anisotropic quadtree with rotations does not improve the Rate-
Distortion behavior, but it does improve the PSNR given a certain rate, as can be seen in the practical results
section. Following the same procedure that has been taken all over the paper, the distortion found for the
case d+ > 0 and d− > 0 is:

D = T̃V · 2−2J + 3 · 2−J−M ,

where J is, as usual, the number of bits allowed to code the vertices of the partitions and M are the number
of refinement bits.

The rate now has to take into account the number of refinements performed inside each parallelogram

(which is 2−jstop

2−J + 1), the number of parallelograms to refine (2jstop) and the number of bits to perform the
refinement (M). Adding this to the rate needed to code the vertices of the parallelograms from Eq. (39) and
taking M = J , we find:

R = 2
1
2
(J+log2 β) + M · 2J . (46)

And from (45) and (46) , it is easy to deduce the final Rate-distortion expression:

D(R) ∼ T̃V ·
log2 R

R2
. (47)

As in the previous section, the case where d+ > 0 or d− > 0 does not change from the case where both
distances are bigger than zero. For the case where both distances are 0 (the edge is a straight line), the
rate-distortion found is very similar to the one found in the case without refinement:

D(R) = 2−
R
2 . (48)

VI. Practical results

Some comparisons among the anisotropic quadtree with rotation, the isotropic quadtree with refinement
and wavelets (JPEG2000 [10]) are presented here (see Fig. 3). This results show that the anisotropic quadtree
with rotation gives better approximations than any other method. The fact that the slope for the anisotropic
quadtree with or without refinement is almost the same in the graph is probably because at such low bit-
rates the log factor has no influence. The JPEG2000 is far away to the right of the graph (it gives worse
approximation), but this is due to the fact that it is adapted to natural images and not to black and white
ones.

0 1 2 3

x 10
−3

5

10

15

20

25

30

35

Rate (bpp)

P
S

N
R

isotropic quadtree with refinement
anisotropic quadtree
anisotropic quadtree with refinement
JPEG2000

Fig. 3. Comparison among JPEG2000, isotropic quadtree with refinement and anisotropic quadtree with rotation for
an image of 1024 × 1024 pixels.

Fig. 4 represents the rate distortion decay of four different curves with increasing Total Variation. It shows
that the practical results are coherent with the theoretical behavior found: the lower the TV, the better the
R-D. From left to right, the graph represents the rate-distortion of: a straight line (TV=0), a parabola with
TV=0.51, a cubic curve with TV=0.75 and a parabola with TV=0.89.

ITS TECHNICAL REPORT 9

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−3

10

15

20

25

30

35

Rate (bpp)

P
S

N
R

cubic TV=0.75 ~TV=1.1
parabola TV=0.89 ~TV=2
line TV=0
parabola2 TV=0.51 ~TV=0.6

increasing TV

Fig. 4. Comparison of the bit-rate of different curves with different Total Variation.

VII. Conclusions

The inclusion of anisotropy and rotation in the quadtree gives an improvement of the approximation rate.
The fact that an approximation of the TV appears at the R-D expression shows that geometrical complexity
affects the capacity of compressing a given curve. As this anisotropic quadtree with rotations is a toy model
for an adaptive non-linear image representation technique, it demonstrates that further research in adaptive
image representation, taking into account the geometry, has to be done. Furthermore, the a/a2 anisotropy
that appears in [8] is also present here, mainly because we are using the second order Taylor expansion
to approximate the edge. The theoretical results obtained here are coherent with existing ones, and the
experimental data do not differ from the theoretical model.

An interesting development of this work will be to perform refinement inside the boxes introducing basis
functions. This can allow us to extend the algorithm to natural images too. To insert the basis functions, the
algorithm has to be slightly modified in order to have nested partitions.

Acknowledgments

Many thanks to Diego Santa Cruz Ducci for his technical support.

References

[1] T. F. Chan and H. M. Zhou, “Adaptive ENO-wavelet transforms for discontinuous functions,” in 12th International Conference
on Domain Decomposition Methods, T. Chan, T. Kako, H. Kawarada, and O. Pironneau, Eds., 2001, pp. 93–100.

[2] S. Mallat, A wavelet tour of signal processing, Academic Press, 1998.
[3] D. Donoho, “Wedgelets: Nearly-minimax estimation of edges,” Tech. Rep., Dept. Of Statistics, Standford University, 1997.
[4] E. Candès and D. Donoho, “Curvelets: A surprisingly effective nonadaptive representation of objects with edges,” Tech.

Rep., Department of Statistics, Standford University, 1999.
[5] E. Candès and D. Donoho, “Ridgelets: a key to higher dimensional intermitency?,” in Phil Trans. R. Soc. Lond., 1999.
[6] Mihn N. Do, Pier Luigi Dragotti, Rahul Shukla, and Martin Vetterli, “On the compression of two dimensional piecewise

smooth functions,” in IEEE Internacional Conference on Image Processing (ICIP), 2001.
[7] E. Le Pennec and S. Mallat, “Bandelet representation for image compression,” in International Conference on Image

Processing. Proceedings, 2001, vol. 1, pp. 12–15.
[8] E. J. Candès and D. L. Donoho, “Curvelets - a surprisingly effective nonadaptive representation for objects with edges,” in

Curve and Surface Fitting, C.Rabut A.Cohen and L.L.Schmaker, Eds. Vanderbilt University Press., Saint-Malo, 1999.
[9] I. S. Gradshteyn and Ryzhik I.M., Table of Integrals, Series, and Products, Academic Press, Inc., fifth edition, 1994.
[10] ISO/IEC 15444-1:2000, “Information technology - JPEG2000 image coding system,” December 2000.

