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Abstract-- This paper presents a new area efficient, bit-level 
pipelined, linear systolic array architecture performing 
exponentiation over large Finite Field GF(2m).  It is based on one 
multiplier and implements the square-and-multiply algorithm. 
The architecture is regular, expendable to any field order and 
programmable with respect to field-generating polynomial P(x). 
It allows the input elements to enter a linear systolic array in the 
same order and the system only requires one pipelined control 
signal. The operations are overlapped at higher system frequency 
in order to reduce the total delay of the exponentiation 
computation. A systematic approach is applied for implementing 
a digit-serial architecture in order to reduce power consumption. 
The resulting circuit is highly regular and programmable with 
respect to P(x). An analysis of the performance comparison is 
described as function of the digit-size. A comparison is made with 
the bit serial architecture based on the performance improvement 
with respect to computation delay and power/energy consumption 
of one exponentiation.  Thus, the factor of merit, which could be a 
measure of performance, is defined as the product of energy times 
the delay and it is computed. The experimental results on gate 
level implementations shows that the resulting circuit is low-
energy. 
 

Index Terms--Galois fields, Systolic arrays, Switching power, 
Energy-Delay product, High performance circuits. 
 

I. INTRODUCTION 

 
any popular public-key schemes including ElGamel 
encryption and signature schemes [2], Diffie-Hellman 

key-distribution Scheme [3] and other variant of discrete log 
based cryptosystems [4] relies on exponentiation in finite field, 
either over integers modulo a prime odd p (implementation 
over GF(p)), or a polynomial field (implementation over 
GF(2m)). When first introduced as underlying finite field, 
GF(2m) was the preferred implementation, basically because it 
is easier to implement in hardware [5], [8]. Further, all 
practical public-key schemes require operations in relatively 
large finite fields; e.g., 500m >  including in particular 
schemes based on the intractable discrete logarithm in finite 
fields [6][7]. 
 

The GF(2m) exponentiation is a difficult task to carry out 
efficiently in software for large finite field since it is a time 
consuming operation. Furthermore, the VLSI architectures 
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exhibit in general a great activity and dissipate consequent 
shares of the power supply due to the long arithmetic 
operators. Reducing power consumption is equally important 
for non-portable applications as it reduces cooling and 
packaging costs and increases system reliability. Therefore, for 
physical security and performance reasons hardware 
implementations of area efficient, low-energy Galois field 
exponentiator are very attractive, especially for these 
architectures, which are programmable with respect to 
polynomial field-generator P(x) and expendable to any field 
order. 
 

The usual approach to reduce the time complexity and 
improve the performance is to use parallel architecture. 
However, the hardware complexity (area and energy 
consumption) of bit-parallel architectures increases 
dramatically as the field order m increase since large number 
of gates and registers are mapped. Digit-serial technique an 
alternative to the bit-parallel, process multiple bits (digit) of an 
entire word, referred to as the digit-size, in one clock-cycle. 
This technique is suitable for the implementation of moderate 
sample rate systems where, the area and power consumption 
are critical. In this paper, we demonstrate that highest gain can 
be achieved on the behavioral and architectural levels (up to 
90% saving of energy delay product) using digit-serial 
technique to implement partially parallel architecture and 
rearranging the gate topology from array-type to tree-type. 

 

II. FINITE FIELD FUNDAMENTALS 

 
Knowledge of basic Finite Field concepts and properties is 

assumed, as covered in [8], [14]. 
Finite Field GF(2m) contains 2m elements. It is an extension 
field of GF(2), which contains two elements {0,1}. The 
element of GF(2m) can be represented in several equivalent 
forms. Mainly, there are three common types of bases, 
Standard or Polynomial Basis (SB/PB), Normal Basis (NB) 
and Dual basis (DB). There are many polynomial bases and 
normal bases from which to choose. For efficient computation 
of the field arithmetic we generally use an optimal normal 
basis representation or a polynomial basis representation.  

If a standard basis { }11, , , mα α −L is used, where the primitive 

elementα  is a root of an irreducible polynomial of degree m, 
1

1 1 0( ) ...m m
mP x x p x p x p−

−= + + + + over GF(2), then each 

element can be represented as a polynomial inα  with a degree 
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less then m, or 

 { }1

0
F(2 ) , F(2), 0 1

m
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i

G A A a a G i mα
−

=
= = ∈ ≤ ≤ −∑  

In addition, the operation results of additions, multiplications 
and exponentiation of element α  are still polynomials of α  
with degree less than m. In this base, addition is defined as 
integer addition modulo-2 (logical XOR) and multiplication is 
defined as integer multiplication modulo-2 (logical AND). 
Element of the field represented by a normal basis 

{ }12 4 2, , ,...,
m

α α α α
−

, are expressed as polynomials of degree 

2m-1 or less, or 

 { }1
2

0
(2 ) , (2), 0 1

im
m

i i
i

GF A A a a GF i mα
−

=
= = ∈ ≤ ≤ −∑  

Since elements in one representation can be efficiently 
converted to elements in the other representation by using an 
appropriate change-of-basis matrix, the intractability of the 
DLP isn’t affected by the choice of representation. 

 
Unlike addition and multiplication, exponentiation in 

GF(2m) is similar to the operation for ordinary integers. Given 

an arbitrary element 
1

0
F(2 )

m
i m

i
i

A a x G
−

=
= ∈∑ , and Y a nonzero 

element in GF(2m) the exponentiation function is defined as 
 

, 0 2 1E mY A E= ≤ ≤ −  (1) 

  
A popular algorithm for computing this operation, and the 

one that appears to be most suitable for hardware 
implementation, is the square-and-multiply (S&M) algorithm 
as described below, 

 
Let ( 0 1 2 1, , , ,m me e e e− −L ) be the binary representation of the 

exponent E such that 
1

0
2

m
i

i
i

E e
−

=
= ∑ . Then, by eq. (1) we have 

 

( )1 1
2

0 0

ii
em m

i
i i

Y A U
− −

= =
= =∏ ∏  (2) 

where 
2 if 1

1 if 0

i

i
i

i

A e
U

e

 == 
=

 (3) 

 
Thus, the algorithm breaks the exponentiation operation into 
series of squaring and multiplication operations in GF(2m) and 
can be expressed as follow:  

 
S&M algorithm 
 

Let iU  be the square term and iM  the product term. 

1

1 1

for 0, , 1

U A

M

i = m

−

−

=
=

−L

 

[ ]2

1i iU U −=  (4) 

1

1 1

1 if 0

if 1
i i

i
i i i

M e
M

U M e
−

− −

⋅ =
=  ⋅ =

 (5) 

The final result is 1
E

mY A M −= =  

 
Let sT  be the setup time of the exponentiator (i.e. time 

corresponding to serial data transfers) and N the number of 
multiplication operations (including squaring operations) per 
exponentiation. The exponentiation time eT  can be expressed 

as 1
e s clkT T NR T−= + , where R is the throughput rate of the 

multiplier(s) and clkT  is the clock period. In terms of 

computation effort, assuming a random input, the number of 
ones in the exponent is / 2m , so N can be expressed as 

( 1) / 2 3 / 2N m m m= − + ≈  for large m. However, using 

synchronous exponentiator N becomes ( 1) 2m m m+ + ≈ since 

the multiplication in eq. (5) for 0ie =  has to be carried out.  

III. L OW POWER ARCHITECTURES FOR LARGE GF(2M) 
EXPONENTIATION   

 
One new method for computing GF(2m) exponentiation is 

presented in [9]. It is based on pattern matching and 
recognition technique. The resulting circuit is a multistage 
linear static pipeline and it can produce one result every clock 
cycle. However it has latency of O(2m). The area and 
complexity increase systematically when large field is used. 
This technique is more suitable for small field-size (m≤ 8) as 
mentioned in the paper. Instead, S&M algorithm also called 
the binary method [10] breaks the exponentiation operation 
into a series of squaring and multiplication operations in 
GF(2m). It is the most adopted technique to design large finite 
field exponentiation.  

A. Reducing number of operations 

Some interesting approaches have been proposed in [15] 
and [16] in order to reduce substantially the average number of 

multiplications involved in the computation of EA  and thus 
reducing the power consumption using the canonical bit 
recording technique (or signed digit SD number 
representation). Technique in [15] can be easily applied to the 

exponentiation over GF(2m). Efficient implementation of Eα  
over GF(2m) using SD technique and based on bi-directional 
linear feedback shift registers is proposed in [16]. However, 
the algorithm is limited to the exponentiation of a Primitive 
Root α  and generally the SD technique require the 
construction of canonical signed-digit vector of the exponent E 
which, introduce much extra power and area cost since one 
additional bit is required for each scanned exponent bit. Also, 
both techniques described in [15] and [16] require the 

availability of the inverse 1A− . The cost of this operation far 
exceeds the time gained by the use of the SD technique.  
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B. Speeding up the computation 

The conventional approach for speeding up the 
exponentiation over GF(2m) and reducing the number of 
operations uses a lookup table (LUT). This method consist of 

precomputing the field elements 2i

A  (A conjugates) in eq.(2) 
and storing them in circulating registers or in a RAM (area 
complexity ~ m2) and multiplied together according to the 
exponent using fully parallel multiplication tree [8][20]. For 
large m the multiplication have to be performed using bit-serial 
multiplier (area complexity ~ m for both PB and NB). 
Furthermore, setup times corresponding to serial data transfers 
of the exponent and A’s conjugates bits have to be considered 
which increase the latency to less than one exponentiation per 
m2 clock cycles.  Thus, no area and timing gain is obtained 
using this approach even when m is moderately large. Another 
approach relies on the Montgomery multiplication in GF(2m) 
[17] as a fast method for multiplying two polynomials. 
However, the algorithm includes some similar operations as 
the bit-serial SB multiplication algorithm [8] or digit-serial one 
[12] with more processing steps. This approach is more 
suitable for implementation in software as claimed in the paper 
and do not offer any obvious advantages for hardware 
implementation.  

C. Bases choice 

Since the exponentiation algorithm relies on polynomial 
multiplication in GF(2m), the design of area efficient low-
energy finite field multipliers can lead to dramatic 
improvement on the overall performance of GF(2m) 
exponentiator. Table 1 shows some key parameters for 
different architectures of serial GF(2m) multipliers using 
different bases. 

 
It is well known that squaring operation in normal basis NB 
can be achieved by a cyclic-shift circuit [8][18]. However 
multiplication in NB requires the computation of the f function 
described in [18] which must be found by computer and 
hardwired. The complexity of this function grows dramatically 
as the order of the field goes up. Massey and Omura have 
developed a NB multiplication algorithm, which has been 
implemented in a pipelined architecture by Wang et al. [18] 
based on an AND-XOR PLA and has a throughput rate of one 
multiplication per m clock cycles. As m increases, the signal 
propagation delay across the PLA also increases which 
increase the critical path. So, the area and total delay may 
actually be larger owing to the slower clock rate.  
From Table 1, it is clear that normal basis multiplication using 
the serial Massey-Omura multiplier in [8] requires the least 
number of gates, unfortunately this is for optimal normal basis 
multipliers which can be realized for only ~23% of the fields 
GF(2m), 2≤ m < 1200 [21]. Another point to consider is that the 
NB multiplier is not highly modular and expendable and is not 
programmable with respect to the P(x) due to the f  function 
which depends on the choice of normal basis thus, on the 
choice of P(x). 

TABLE 1. KEY PARAMETERS FOR DIFFERENT ARCHITECTURES OF SERIAL GF(2M) 
MULTIPLIERS USING DIFFERENT BASES 

Multiplier/Basis Complexity Length of CP Latency

min/max

Regularity Easy to

expand

MSR/SB [8][19]

LSA/SB [11]

6m/4m

17m

3✼

5

m/2m

3m/3m

High

High

Yes

Berlekamp/DB [23] ≥ ≥

LowMO/NB [18] ≥ ≥

Low No

No

Yes

2
log m  6m/4m

5m

2+

2
log m  3+

m/m

m/m
 

* Critical path in term of gates but in fact it is determined by the driving 
capability of heavily loaded signals that are distributed through the 
architecture. 

 

On the other hand, the DB multiplier requires basis 
conversion, which requires extra gates. Although the 
Berlekamp DB multiplier [23] has a simple and regular 
structure it is not trivial to adapt it to different choice of P(x) 
or to expand it to different field order because of the presence 
of two different bases dual and polynomial. Also the critical 
path depends on the logic for computing the inner product, 
which is, depends strongly on the field order and P(x). This 
means that the speed decreases, although slowly, with m.   
Even the PB multipliers have the most favourable properties 
for purpose of VLSI implementation, the critical path of the 
MSR multiplier described in [8] is limited by the driving 
capabilities of heavily loaded signals which degrades the 
performance as demonstrated in [12]. On the other hand, the 
linear systolic array (LSA) multiplier described in [11] and 
[12] shares some interesting characteristics with the MSR 
multiplier. It has the advantage of efficient implementation 
time at the cost of increased complexity in term of gates. 

D. Power optimization    

The total power dissipated in a CMOS gate with a 
capacitive load Cload is given by  
 

21

2 load DD sc DD leak DDP C V f N Q V f N I V= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅  (6) 

 
Where VDD denotes the voltage swing, and f is the frequency of 
operation, N the activity factor, i.e., the number of gate output 
transitions per clock cycle. The factor Qsc represents the 
quantity of charge carried by the short circuit current per 
transition and Ileak is the leakage current. 

 
In traditional design the average power consumption of a 

CMOS gate is dominated by the switching activity (dynamic 
power) and contributes to more than 90% of the total power 
consumption [23], but this may change for future 
developments of high-scaled integration [24]. As the device 
size and threshold voltage continue to decrease, the short 
circuit power dissipation is no longer a negligible factor since 
the delay increases.  
Reducing the power consumption amounts to the reduction of 
one or more of these factors. In energy-efficient design, we 
seek to minimize the energy consumed per operation or the 
power-delay product of the circuit, which is the factor of merit 
for high performance architectures.  
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Lower supply voltage can achieve extremely low power 
consumption eq. (6). However, the delay time is proportional 
to 1/VDD as expressed by the propagation delay equation of a 
CMOS circuit given by [25], 
 

2( )
load DD

delay
DD t

C V
T

k V V

⋅
=

⋅ −
 (7) 

  
Where k depends on the transistors aspect ratio (W/L) and 
other device parameters, Vt is the transistor threshold voltage. 
Lowering supply voltage leads to performance degradation 
since delays drastically increase as VDD approaches the 
threshold voltages Vt of the device. The supply voltage can be 
reduced to a certain value, so that the chosen frequency 
matches with the longest critical path thus, when the 
propagation delay delayT  is less than the clock period clkT  by a 

factor δ, we can reduce the supply voltage by a factor β such 
that clkT  is equal to delayT . Hence, 

 

2
. ( ) ( )

( )
load DD

clk delay DD delay DD
DD t

C V
T T V T V

k V V

βδ β
β

⋅ ⋅
= = ⋅ =

⋅ ⋅ −
  (8) 

 
Parallelism and pipelining can be exploited to improve the 

performance (to compensate for the increased gate delays) of 
low-voltage circuits [23]. Also, much higher reductions in 
power consumption are possible when using clock-gating 
technique in order to reduce the activity factor N in eq. (6).  

 

IV. LSA BASED ARCHITECTURE FOR GF(2M) EXPONENTIATION 

 
In this section we present a new exponentiator circuit based 

on a linear systolic array multiplier LSA over GF(2m) and 
implements S&M Algorithm. The successive SB squaring and 
multiplication operations are performed at high system 
frequency a using only one multiplier in order to reduce the 
area complexity of the exponentiator. For VLSI 
implementation of high performance architecture, a digit-serial 
technique is applied on the multiplier in order to reduce both 
the switching activity and total power thus, reducing the 
energy-delay products of the exponentiator at the expense of 
increased area. 

A. Linear Systolic Array Exponentiator 

The LSA multiplier architecture described in [11] and [12] 
is bit-level pipelined and has a longest delay path independent 
of m. It is most suited to applications where m is large or 
where high clock frequencies are required. Further, it allows 
the input elements to enter a linear systolic array in the same 
order and the system only requires one pipelined control 
signal. The architecture is also highly regular, expendable to 
any field order and programmable with respect to the primitive 
polynomial P(x).  

 

Furthermore, the input operands (MSB-first), the control 
signal as well as the primitive polynomial coefficients are 
outputted at each pipelined stage. These signals with the result 
(MSB-first) could be feed-backed into the multiplier in order 
to perform successive multiplication and squaring operations 
according to S&M algorithm. In fact, LSA multiplier cells 
contain registers configured in master slave manner in which, 
internal data registers are used to give one more time unit 
delay to the operands at each cell [11]. The first output bit of 
the multiplication result is available after 2m clock cycles.  
After m clock cycles the multiplier operands are completely 
loaded into the architecture allowing the load of the operands 
for the next operation (squaring or multiplication) while 
performing the computation of the current operation. Thus, 
using the LSA multiplier, operations in eq. (4) and (5) could 
be overlapped targeting to reduce the latency and thus the 
exponentiation time eT . The general structure of the LSA 

based exponentiator is depicted in Fig. 1 where, ip  for 

0 1i m≤ ≤ −  are the primitive polynomial coefficients and S is 
a control signal (only the first bit among the m bits contains the 
value one). 

 
The circuit diagram of the multiplier cells is shown in Fig.2. 

Two internal registers b and c are used to hold the MSB inputs 
of B and C operands along the operation using ins signal, 

which mark the start of the multiplication when 1ins = . These 

coefficients are then used to compute the cell output at the next 
clock cycle when 0ins = . Therefore, three registers ,a p and 

s  are used to give one time unit delay to the input bit 
coefficients ,in ina p  and ins  at each cell and the output 

coefficients are then triggered using a next register output 
stage in master slave manner as shown in Fig. 2. For more 
details about the algorithm please refer to [11] and [12]. 

 
The m-bit multiplication time takes 3m-1 clock cycles. At 

2m clock cycles after -1ma  and -1mb  enter the leftmost cell the 

results outC  in Fig. 1 will start coming out from the rightmost 

cell at the rate of one coefficient (MSB-first) every clock 
cycle. 

 
 
 

N 0

D0D1...DP�-1
H0H1...HP�-1
S0S1...SP-1

0 0 ... 1

A
B
C
P
S

N 1

\0\1...\P�-1

Multiplier

N P-11
2

−



=
m

k

EXPO.
CTRL

Aout

Cout

Pout

Sout

M-1=Smida

Amid
Pmid
Smid

 
Fig. 1. LSA multiplier based architecture for exponentiation in GF(2m) when 
m is odd. 
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Fig. 4. Overlapping the squaring and multiplication operations. 
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Fig. 2. LSA basic processing cell and its algorithm. 

 

 
Fig. 3. The exponentiator operation modes. 

 
The squaring is performed continuously using circuit shown 

in Fig. 1. The feedback signal outputted at CELL- / 2 1m −    

contains the square term (operand) midA , which is used for 

computing the product 1 1i iU M− −⋅  in eq. (5) according to the 

primitive polynomial coefficients midP and control signal 
mids . 

If m is odd, these feedback signals are outputted from the 
internal registers of CELL- / 2 1m −    as shown in Fig. 1., 

otherwise, they are taken at the output of this cell. The 
squaring and multiplication results outC  are outputted 

iteratively from the last cell and used for computing the 
expression in eq. (4) and (5) according to the primitive 
polynomial coefficients outP  and control signal outS . The 

signal midaS  in Fig. 1 is the multiplier control signal S  that 

defines the operating modes of the exponentiator, it generate 
two internal control signals, load and square, which defines 4 
different operating modes as shown in Fig. 3. If m is even then 

midaS is outputted from the internal register s of CELL-

/ 2 1m −   . It is also used as GF(2m) unit operand 1M −  for the 

computation of the 1 1U M− −⋅  in eq. (5). A transition in this 

signal at the input of CELL- / 2 1m −    means that the LSB of 

the inputs operands are fed into the multiplier allowing the 

load of next operands. Note that the multiplication 11 iM −⋅  

(1 1i m≤ ≤ − ) in eq. (5) is not performed. We can cope with 
this using the feedback operand outA  as the product term 1iM − . 

 
We start the computation in load-square mode. In this mode 
we perform a squaring operation on the value of the base A. 
Once the coefficients are loaded into the multiplier after m 
clock cycles, we switch the exponentiator to the load-multiply 
mode. In this mode we perform the multiplication operation 

1 1U M− −⋅ . Once the 1M −  coefficients are loaded into the 

multiplier after m clock cycles, we switch to the squaring 
mode. In this mode we perform the computation in eq. (4), 
then we switch to the multiplication mode in which we 
perform the computation in eq. (5). We repeat successively 
these two last operating modes until the end of operation.  
This is described in the diagram reported in Fig. 4.  
For signals stability, different clock edges are used to handle 
the feedback signals in Fig. 1. Control states are then 
generated within the clock pulse and feedback signals are 
triggered by the inverted clock at the exponentiator controller. 
The exponent E is fed into a LIFO stack (buffer) of size m. 
The buffer content is shifted one time when a test in eq. (5) is 
performed. Hence, the buffer is completely empty after the 
output of the final result. 
 

The setup time sT  of the exponentiator is equal to m clock 

cycles corresponding to serial data transfers of the inputs. The 
throughput rate R of the multiplier is equal to one 
multiplication operation per m clock cycles. Thus, at m clock 
cycles, after the LSB of the inputs A, E, P and S enter the 
exponentiator architecture, the exponentiation result Y will 
start coming out from the rightmost cell after 2m m⋅  clock 
cycles at the rate of one bit per clock cycle. Hence, the 
exponentiation time eT  becomes 2( 1) clkm m T+ ⋅ ⋅ . Compared 

with the MSR based exponentiator described in [8], witch 
perform the computation in ( 2)m m+ ⋅  clock cycles from the 

first-in bit to the last-out bit, the latency of the LSA based 

exponentiator is increased by 2m clock cycles. However, the 
MSR based multiplier presents long heavily loaded signals 
that increase the critical path and the total delay for one 
multiplication operation becomes 96% higher compared to 
LSA multiplier [12]. Thus, the latency gain of the MSR based 
exponentiator is counterbalanced by the clock period. 
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Furthermore, the area complexity of both exponentiators is 
almost the same ~17m. 

A. Digit-Serial Linear Systolic Array Exponentiator 

The generated digit-serial architecture is obtained from the 
LSA digit-serial multiplier. The resulting exponentiator circuit 
is linear array-type at the digit-level based on the parallel 
multiplication algorithm inside of each digit cells. The 
corresponding algorithm is obtained by grouping each set of D 
cells from the LSA multiplier in Fig. 1, then computing the 
outputs of each of these grouped cells after D steps (clock 
cycles). The algorithm of the LSA digit-serial multiplier have 
been detailed in [12].  

  
The successive squaring and multiplication operation are 

then implemented in digit-serial manner using the architecture 
depicted in Fig. 5. The operands are digit-word inputs. Thus, 
the inputs bit ai , ei and pi  for 0 1i m≤ ≤ −  in Fig.1., are replaced 
by digits forms Ai, Pi, and Ei for 0 1i d≤ ≤ −  where 

 

 

1

0

1 ( 1)

0

( , , ) , 0 1
( , , )

( , , ) , 1

D
j

Di j Di j Di j
j

i i i m D d
j

Di j Di j Di j
j

a p e x i d

A P E
a p e x i d

−

+ + +
=

− − −

+ + +
=

 ⋅ ≤ < −∑= 
 ⋅ = −∑

 (6) 

and 
1 1

0 0
( , , ) ( , , ) ( , , )

m d
i Di

i i i i i i
i i

A P E a p e x A P E x
− −

= =
= ⋅ = ⋅∑ ∑       (7) 

 
where, D denotes the digit-size and d the total number of 
digits /d m D=    . 

 
The exponent E is expressed in binary form and fed into a 

LIFO stack (buffer) of size /m D D   . The input digit-words 

Ai, Ei and Pi, are fed into the multiplier in the same order for 
i deceasing and from the MSB to the LSB. If m is not 
divisible per D, the zero padding is performed at the LSB 
positions for 0i =  for Ai, and Pi, and MSB positions for 

1i d= −  for the exponent Ei. The s signal is used to denote 
the start of a multiplication. 
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Fig. 5. Digit-Serial LSA multiplier based architecture for exponentiation in 
GF(2m) . 
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Fig. 6. LSA digit-serial basic processing cell and its algorithm. 

 
The exponentiator operates as the previously described bit-

serial LSA based where each CELL-k of the multiplier 
process one digit of an entire word in one clock-cycle.  Note 
that the architecture shown in Fig 5., is still programmable 
with respect to the primitive polynomial P(x). 
 

The basic processing element CELL-K of the multiplier is 
shown in Fig. 6. Two D-bit registers A, P and 1-bit s registers 
are used to give one time unit delay to the input data Ai, Pi and 
Si at each CELL-k. In Fig. 6, F denotes the function 
processing the state of the C internal register; its circuit 
diagram is shown in Fig. 7., where FF denotes a flip-flop. 
Note that the critical path is proportional to the digit-size and 
expressed as (D-1)(Txor-3+TNAND-2). The G function process the 
state of the output register Cout. The corresponding circuit 
diagram for one bit output coefficient is shown in Fig. 8. The 
critical path in this architecture becomes DTXOR-3+TXOR-

2+2TNAND-2. 
 
At d clock cycles after the least significant digit-words A0, E0, 
P0 and the LSB of s enter the exponentiator architecture 
shown in Fig. 5, the result Yi will start coming out after 2m d⋅  
at the rate of one digit every clock cycle. Thus, the 
exponentiation time eT  takes 2( 1)m d+ ⋅  clock cycles. 

 

V. MPLEMENTATION AND COMPARISON 

 
Clock gating technique can be used for power-efficient 

implementation of registers that are disabled during some 
clock cycles, when such registers maintain the same value 
through multiple cycles such as the internal slave registers c 
and b in Fig. 2 and C and B in the digit-serial cell shown in 
Fig. 6. These registers have their own load controlled by sin 
signal. This technique works well for data-flow logic, where 
clocking requirements can be predetermined at least one cycle 
ahead. Thus, the clock gating enable signal sin must be valid 
halfway into the cycle to gate off the capture clock. To 
overcome this problem, we require that these internal registers 
be triggered faster than the master registers cout and bout (Bout 
and Cout respectively) using different clock edges that is 
pipelining within the clock cycle. This requires one more 
clock pulse, resulting in 2-phase non-overlapping clocking 
scheme. 
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Fig. 7 Circuit diagram of the F function. 

 

 
Fig. 8. Circuit diagram of the G function for one bit output. 

The free and clock gating LSA exponentiator have been 
implemented at the gate level using different digit-size 
D=1,4,8 in order to perform a comparison in terms of delay, 
area and energy consumption for one exponentiation over 
GF(2607) with P(x)=1+x273+x607 as primitive polynomial. 
These architectures are mapped on TSMC CMOS 0.18µm 
technology at a targeted supply, VDD=1.8V and 0.9V. A low 
power design-flow has been validated using Synopsys tools 
for power analysis and optimization. Different types of 
power dissipation components are estimated using gate level 
simulations on a set of random stimulus. Since low-energy 
design is more important than low-power design, the energy 
and energy-delay product is computed. The performance 
characteristics including total delay, area in term of gates and 
energy-delay product are reported in Fig. 9, 10 and 12 
respectively. The cost function is reported in Fig. 13 and 
defined as the Energy-Delay-Area products versus the digit-
size. 
On the one hand, the critical path in the architecture shown in 
Fig. 2 is just the sum of one full-adder and one NAND gate 
delay. For larger digit-size the critical path is limited by the F 
function in Fig. 7 and increases linearly with the digit-size to 

(D-1)(TXOR-3+TNAND-2). In the same time, the latency decreases 
linearly with the digit-size in almost the same rate resulting in 
a constant total delay as shown in Fig. 9. 
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Fig. 9. Total Delay as function of the digit size for one LSA digit-serial 
GF(2607) exponentiation.  
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Fig. 10. Area in gates of the LSA digit-serial GF(2607) exponentiator as 
function of the digit size. 

 
On the other hand, Fig. 10 shows that the area increases 
dramatically with the digit-size due to the large number of 
logical gates and latches used to temporary hold the internal 
and the output data in master-slave manner. This means that the 
level of parallelism is limited by the area constraints (digit-
size). 
 

Clock gating technique achives a substantial reduction in 
both the total delay and number of gates, for digit-size equal or 
larger then 4. It helps to eliminate the feedback loops and 
multiplexers used to feed the output of each internal storage 
elements back to the input for synchronous load-enable. Such 
feedback loops are replaced by only one integrated cell with 
latch based clock gating, thus the area is reduced in all cases 
but for the bit-serial architecture (D=1) these clock gating 
celles (latches) add a substential delays which increase the 
critical path. 
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Fig. 12. Different types of power dissipation components as function of the 
digit size of the LSA digit-serial GF(2607) exponentiator. 
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Fig. 12 Energy-Delay product as function of digit-size of the LSA digit-
serial GF(2607) exponentiator.     
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Fig. 13 Energy-Delay-Area product as function of the digit size of the LSA 
digit-serial GF(2607) exponentiator. 

 
If the switching power contributes to more then 90% 

(dominant factor) then the power consumption can be 
reduced by factor β2 when reducing the operating voltage by 
a factor β eq. (6). From eq. (7) the delay is increased by 
factor β assuming that VDD>>Vt. Therefore, the power saving 
is counterbalanced by the increased delay since the energy-
delay product is proportional to δ2. This is not the case for 
VDD=1.8V and β=2 since VDD is close to the threshold 
voltage Vt hence the delay increases and the short circuit 
power is no longer a negligible factor (switching power is no 
longer the dominant factor) as shown in Fig. 11.   

 
The most interesting result is obtained when comparing 

the Energy-Delay and the cost function versus the digit-size. 
The performance characteristic reported in Fig. 12, shows 
that Energy-Delay products are significantly reduced when 
digit-size increase. High gain is obtained for D=8 when 
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operating at 0.9V and more than 75% reduction is noticed (and 
more than 92% when gating the clock) since the power is 
significantly reduced when operating at lower voltage. 
However, when comparing the characteristic reported in Fig. 
13 (cost function), the optimum is obtained for D=4 when 
operating at both 1.8V and 0.9V due to the dramatic increase in 
circuit area for larger digit-size. The highest gain is obtained 
when gating the clock as the number of gates and delay are 
substantially reduced. 

I. CONCLUSION 

 
This paper presents a new area efficient (~17m) linear 

systolic array (LSA) architecture implementing exponentiation 
over large GF(2m) according to square-and-multiply algorithm 
in witch the operations are overlapped in order to reduce the 
latency to 2(m+1)m. The architecture relies on Standard Basis, 
bit-level pipelined multiplier that is expandable to any field 
order. Also, the exponentiator is programmable with respect to 
the primitive polynomial P(x). 
 

In order to reduce the energy, we extended the LSA bit serial 
exponentiator to a generalized digit-serial architecture obtained 
by unfolding the bit-serial multiplier. The resulting circuit is 
array-type at the digit-level using parallel multiplication 
algorithm inside of each digit cells. Consequently latency is 
reduced to 2(m+1)d where d is the  number of digits and the 
energy delay products are significantly reduced at the expanse 
of increasing area. The cost function defined as the energy-
delay-area product versus the digit-size D has an optimum for 
D=4 with up to 55% saving of energy-delay product and more 
94% when gating the clock.  
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