
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract-- This paper presents a new area efficient, bit-level
pipelined, linear systolic array architecture performing
exponentiation over large Finite Field GF(2m). It is based on one
multiplier and implements the square-and-multiply algorithm.
The architecture is regular, expendable to any field order and
programmable with respect to field-generating polynomial P(x).
It allows the input elements to enter a linear systolic array in the
same order and the system only requires one pipelined control
signal. The operations are overlapped at higher system frequency
in order to reduce the total delay of the exponentiation
computation. A systematic approach is applied for implementing
a digit-serial architecture in order to reduce power consumption.
The resulting circuit is highly regular and programmable with
respect to P(x). An analysis of the performance comparison is
described as function of the digit-size. A comparison is made with
the bit serial architecture based on the performance improvement
with respect to computation delay and power/energy consumption
of one exponentiation. Thus, the factor of merit, which could be a
measure of performance, is defined as the product of energy times
the delay and it is computed. The experimental results on gate
level implementations shows that the resulting circuit is low-
energy.

Index Terms--Galois fields, Systolic arrays, Switching power,
Energy-Delay product, High performance circuits.

I. INTRODUCTION

any popular public-key schemes including ElGamel
encryption and signature schemes [2], Diffie-Hellman

key-distribution Scheme [3] and other variant of discrete log
based cryptosystems [4] relies on exponentiation in finite field,
either over integers modulo a prime odd p (implementation
over GF(p)), or a polynomial field (implementation over
GF(2m)). When first introduced as underlying finite field,
GF(2m) was the preferred implementation, basically because it
is easier to implement in hardware [5], [8]. Further, all
practical public-key schemes require operations in relatively
large finite fields; e.g., 500m > including in particular
schemes based on the intractable discrete logarithm in finite
fields [6][7].

The GF(2m) exponentiation is a difficult task to carry out
efficiently in software for large finite field since it is a time
consuming operation. Furthermore, the VLSI architectures

Manuscript received August 2nd, 2000.
The authors are with the Electrical Engineering Department, Swiss Federal
Institute of Technology, Lausanne, CH-1015 Switerland (e-mails: Feth-
Allah.Cherigui@epfl.ch, Daniel.Mlynek@epfl.ch).

exhibit in general a great activity and dissipate consequent
shares of the power supply due to the long arithmetic
operators. Reducing power consumption is equally important
for non-portable applications as it reduces cooling and
packaging costs and increases system reliability. Therefore, for
physical security and performance reasons hardware
implementations of area efficient, low-energy Galois field
exponentiator are very attractive, especially for these
architectures, which are programmable with respect to
polynomial field-generator P(x) and expendable to any field
order.

The usual approach to reduce the time complexity and
improve the performance is to use parallel architecture.
However, the hardware complexity (area and energy
consumption) of bit-parallel architectures increases
dramatically as the field order m increase since large number
of gates and registers are mapped. Digit-serial technique an
alternative to the bit-parallel, process multiple bits (digit) of an
entire word, referred to as the digit-size, in one clock-cycle.
This technique is suitable for the implementation of moderate
sample rate systems where, the area and power consumption
are critical. In this paper, we demonstrate that highest gain can
be achieved on the behavioral and architectural levels (up to
90% saving of energy delay product) using digit-serial
technique to implement partially parallel architecture and
rearranging the gate topology from array-type to tree-type.

II. FINITE FIELD FUNDAMENTALS

Knowledge of basic Finite Field concepts and properties is

assumed, as covered in [8], [14].
Finite Field GF(2m) contains 2m elements. It is an extension
field of GF(2), which contains two elements {0,1}. The
element of GF(2m) can be represented in several equivalent
forms. Mainly, there are three common types of bases,
Standard or Polynomial Basis (SB/PB), Normal Basis (NB)
and Dual basis (DB). There are many polynomial bases and
normal bases from which to choose. For efficient computation
of the field arithmetic we generally use an optimal normal
basis representation or a polynomial basis representation.

If a standard basis { }11, , , mα α −L is used, where the primitive

elementα is a root of an irreducible polynomial of degree m,
1

1 1 0() ...m m
mP x x p x p x p−

−= + + + + over GF(2), then each

element can be represented as a polynomial inα with a degree

Efficient Low-Energy, Digit-Serial
Exponentiator for large Finite Field GF(2m)

F. A. Cherigui, D. Mlynek, Member, IEEE

M

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

less then m, or

 { }1

0
F(2) , F(2), 0 1

m
m i

i i
i

G A A a a G i mα
−

=
= = ∈ ≤ ≤ −∑

In addition, the operation results of additions, multiplications
and exponentiation of element α are still polynomials of α
with degree less than m. In this base, addition is defined as
integer addition modulo-2 (logical XOR) and multiplication is
defined as integer multiplication modulo-2 (logical AND).
Element of the field represented by a normal basis

{ }12 4 2, , ,...,
m

α α α α
−

, are expressed as polynomials of degree

2m-1 or less, or

 { }1
2

0
(2) , (2), 0 1

im
m

i i
i

GF A A a a GF i mα
−

=
= = ∈ ≤ ≤ −∑

Since elements in one representation can be efficiently
converted to elements in the other representation by using an
appropriate change-of-basis matrix, the intractability of the
DLP isn’t affected by the choice of representation.

Unlike addition and multiplication, exponentiation in

GF(2m) is similar to the operation for ordinary integers. Given

an arbitrary element
1

0
F(2)

m
i m

i
i

A a x G
−

=
= ∈∑ , and Y a nonzero

element in GF(2m) the exponentiation function is defined as

, 0 2 1E mY A E= ≤ ≤ − (1)

A popular algorithm for computing this operation, and the

one that appears to be most suitable for hardware
implementation, is the square-and-multiply (S&M) algorithm
as described below,

Let (0 1 2 1, , , ,m me e e e− −L) be the binary representation of the

exponent E such that
1

0
2

m
i

i
i

E e
−

=
= ∑ . Then, by eq. (1) we have

()1 1
2

0 0

ii
em m

i
i i

Y A U
− −

= =
= =∏ ∏ (2)

where
2 if 1

1 if 0

i

i
i

i

A e
U

e

 == 
=

 (3)

Thus, the algorithm breaks the exponentiation operation into
series of squaring and multiplication operations in GF(2m) and
can be expressed as follow:

S&M algorithm

Let iU be the square term and iM the product term.

1

1 1

for 0, , 1

U A

M

i = m

−

−

=
=

−L

[]2

1i iU U −= (4)

1

1 1

1 if 0

if 1
i i

i
i i i

M e
M

U M e
−

− −

⋅ =
=  ⋅ =

 (5)

The final result is 1
E

mY A M −= =

Let sT be the setup time of the exponentiator (i.e. time

corresponding to serial data transfers) and N the number of
multiplication operations (including squaring operations) per
exponentiation. The exponentiation time eT can be expressed

as 1
e s clkT T NR T−= + , where R is the throughput rate of the

multiplier(s) and clkT is the clock period. In terms of

computation effort, assuming a random input, the number of
ones in the exponent is / 2m , so N can be expressed as

(1) / 2 3 / 2N m m m= − + ≈ for large m. However, using

synchronous exponentiator N becomes (1) 2m m m+ + ≈ since

the multiplication in eq. (5) for 0ie = has to be carried out.

III. L OW POWER ARCHITECTURES FOR LARGE GF(2M)
EXPONENTIATION

One new method for computing GF(2m) exponentiation is

presented in [9]. It is based on pattern matching and
recognition technique. The resulting circuit is a multistage
linear static pipeline and it can produce one result every clock
cycle. However it has latency of O(2m). The area and
complexity increase systematically when large field is used.
This technique is more suitable for small field-size (m≤ 8) as
mentioned in the paper. Instead, S&M algorithm also called
the binary method [10] breaks the exponentiation operation
into a series of squaring and multiplication operations in
GF(2m). It is the most adopted technique to design large finite
field exponentiation.

A. Reducing number of operations

Some interesting approaches have been proposed in [15]
and [16] in order to reduce substantially the average number of

multiplications involved in the computation of EA and thus
reducing the power consumption using the canonical bit
recording technique (or signed digit SD number
representation). Technique in [15] can be easily applied to the

exponentiation over GF(2m). Efficient implementation of Eα
over GF(2m) using SD technique and based on bi-directional
linear feedback shift registers is proposed in [16]. However,
the algorithm is limited to the exponentiation of a Primitive
Root α and generally the SD technique require the
construction of canonical signed-digit vector of the exponent E
which, introduce much extra power and area cost since one
additional bit is required for each scanned exponent bit. Also,
both techniques described in [15] and [16] require the

availability of the inverse 1A− . The cost of this operation far
exceeds the time gained by the use of the SD technique.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

B. Speeding up the computation

The conventional approach for speeding up the
exponentiation over GF(2m) and reducing the number of
operations uses a lookup table (LUT). This method consist of

precomputing the field elements 2i

A (A conjugates) in eq.(2)
and storing them in circulating registers or in a RAM (area
complexity ~ m2) and multiplied together according to the
exponent using fully parallel multiplication tree [8][20]. For
large m the multiplication have to be performed using bit-serial
multiplier (area complexity ~ m for both PB and NB).
Furthermore, setup times corresponding to serial data transfers
of the exponent and A’s conjugates bits have to be considered
which increase the latency to less than one exponentiation per
m2 clock cycles. Thus, no area and timing gain is obtained
using this approach even when m is moderately large. Another
approach relies on the Montgomery multiplication in GF(2m)
[17] as a fast method for multiplying two polynomials.
However, the algorithm includes some similar operations as
the bit-serial SB multiplication algorithm [8] or digit-serial one
[12] with more processing steps. This approach is more
suitable for implementation in software as claimed in the paper
and do not offer any obvious advantages for hardware
implementation.

C. Bases choice

Since the exponentiation algorithm relies on polynomial
multiplication in GF(2m), the design of area efficient low-
energy finite field multipliers can lead to dramatic
improvement on the overall performance of GF(2m)
exponentiator. Table 1 shows some key parameters for
different architectures of serial GF(2m) multipliers using
different bases.

It is well known that squaring operation in normal basis NB
can be achieved by a cyclic-shift circuit [8][18]. However
multiplication in NB requires the computation of the f function
described in [18] which must be found by computer and
hardwired. The complexity of this function grows dramatically
as the order of the field goes up. Massey and Omura have
developed a NB multiplication algorithm, which has been
implemented in a pipelined architecture by Wang et al. [18]
based on an AND-XOR PLA and has a throughput rate of one
multiplication per m clock cycles. As m increases, the signal
propagation delay across the PLA also increases which
increase the critical path. So, the area and total delay may
actually be larger owing to the slower clock rate.
From Table 1, it is clear that normal basis multiplication using
the serial Massey-Omura multiplier in [8] requires the least
number of gates, unfortunately this is for optimal normal basis
multipliers which can be realized for only ~23% of the fields
GF(2m), 2≤ m < 1200 [21]. Another point to consider is that the
NB multiplier is not highly modular and expendable and is not
programmable with respect to the P(x) due to the f function
which depends on the choice of normal basis thus, on the
choice of P(x).

TABLE 1. KEY PARAMETERS FOR DIFFERENT ARCHITECTURES OF SERIAL GF(2M)
MULTIPLIERS USING DIFFERENT BASES

Multiplier/Basis Complexity Length of CP Latency

min/max

Regularity Easy to

expand

MSR/SB [8][19]

LSA/SB [11]

6m/4m

17m

3✼

5

m/2m

3m/3m

High

High

Yes

Berlekamp/DB [23] ≥ ≥

LowMO/NB [18] ≥ ≥

Low No

No

Yes

2
log m  6m/4m

5m

2+

2
log m  3+

m/m

m/m

* Critical path in term of gates but in fact it is determined by the driving
capability of heavily loaded signals that are distributed through the
architecture.

On the other hand, the DB multiplier requires basis
conversion, which requires extra gates. Although the
Berlekamp DB multiplier [23] has a simple and regular
structure it is not trivial to adapt it to different choice of P(x)
or to expand it to different field order because of the presence
of two different bases dual and polynomial. Also the critical
path depends on the logic for computing the inner product,
which is, depends strongly on the field order and P(x). This
means that the speed decreases, although slowly, with m.
Even the PB multipliers have the most favourable properties
for purpose of VLSI implementation, the critical path of the
MSR multiplier described in [8] is limited by the driving
capabilities of heavily loaded signals which degrades the
performance as demonstrated in [12]. On the other hand, the
linear systolic array (LSA) multiplier described in [11] and
[12] shares some interesting characteristics with the MSR
multiplier. It has the advantage of efficient implementation
time at the cost of increased complexity in term of gates.

D. Power optimization

The total power dissipated in a CMOS gate with a
capacitive load Cload is given by

21

2 load DD sc DD leak DDP C V f N Q V f N I V= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ (6)

Where VDD denotes the voltage swing, and f is the frequency of
operation, N the activity factor, i.e., the number of gate output
transitions per clock cycle. The factor Qsc represents the
quantity of charge carried by the short circuit current per
transition and Ileak is the leakage current.

In traditional design the average power consumption of a

CMOS gate is dominated by the switching activity (dynamic
power) and contributes to more than 90% of the total power
consumption [23], but this may change for future
developments of high-scaled integration [24]. As the device
size and threshold voltage continue to decrease, the short
circuit power dissipation is no longer a negligible factor since
the delay increases.
Reducing the power consumption amounts to the reduction of
one or more of these factors. In energy-efficient design, we
seek to minimize the energy consumed per operation or the
power-delay product of the circuit, which is the factor of merit
for high performance architectures.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Lower supply voltage can achieve extremely low power
consumption eq. (6). However, the delay time is proportional
to 1/VDD as expressed by the propagation delay equation of a
CMOS circuit given by [25],

2()
load DD

delay
DD t

C V
T

k V V

⋅
=

⋅ −
 (7)

Where k depends on the transistors aspect ratio (W/L) and
other device parameters, Vt is the transistor threshold voltage.
Lowering supply voltage leads to performance degradation
since delays drastically increase as VDD approaches the
threshold voltages Vt of the device. The supply voltage can be
reduced to a certain value, so that the chosen frequency
matches with the longest critical path thus, when the
propagation delay delayT is less than the clock period clkT by a

factor δ, we can reduce the supply voltage by a factor β such
that clkT is equal to delayT . Hence,

2
. () ()

()
load DD

clk delay DD delay DD
DD t

C V
T T V T V

k V V

βδ β
β

⋅ ⋅
= = ⋅ =

⋅ ⋅ −
 (8)

Parallelism and pipelining can be exploited to improve the

performance (to compensate for the increased gate delays) of
low-voltage circuits [23]. Also, much higher reductions in
power consumption are possible when using clock-gating
technique in order to reduce the activity factor N in eq. (6).

IV. LSA BASED ARCHITECTURE FOR GF(2M) EXPONENTIATION

In this section we present a new exponentiator circuit based

on a linear systolic array multiplier LSA over GF(2m) and
implements S&M Algorithm. The successive SB squaring and
multiplication operations are performed at high system
frequency a using only one multiplier in order to reduce the
area complexity of the exponentiator. For VLSI
implementation of high performance architecture, a digit-serial
technique is applied on the multiplier in order to reduce both
the switching activity and total power thus, reducing the
energy-delay products of the exponentiator at the expense of
increased area.

A. Linear Systolic Array Exponentiator

The LSA multiplier architecture described in [11] and [12]
is bit-level pipelined and has a longest delay path independent
of m. It is most suited to applications where m is large or
where high clock frequencies are required. Further, it allows
the input elements to enter a linear systolic array in the same
order and the system only requires one pipelined control
signal. The architecture is also highly regular, expendable to
any field order and programmable with respect to the primitive
polynomial P(x).

Furthermore, the input operands (MSB-first), the control
signal as well as the primitive polynomial coefficients are
outputted at each pipelined stage. These signals with the result
(MSB-first) could be feed-backed into the multiplier in order
to perform successive multiplication and squaring operations
according to S&M algorithm. In fact, LSA multiplier cells
contain registers configured in master slave manner in which,
internal data registers are used to give one more time unit
delay to the operands at each cell [11]. The first output bit of
the multiplication result is available after 2m clock cycles.
After m clock cycles the multiplier operands are completely
loaded into the architecture allowing the load of the operands
for the next operation (squaring or multiplication) while
performing the computation of the current operation. Thus,
using the LSA multiplier, operations in eq. (4) and (5) could
be overlapped targeting to reduce the latency and thus the
exponentiation time eT . The general structure of the LSA

based exponentiator is depicted in Fig. 1 where, ip for

0 1i m≤ ≤ − are the primitive polynomial coefficients and S is
a control signal (only the first bit among the m bits contains the
value one).

The circuit diagram of the multiplier cells is shown in Fig.2.

Two internal registers b and c are used to hold the MSB inputs
of B and C operands along the operation using ins signal,

which mark the start of the multiplication when 1ins = . These

coefficients are then used to compute the cell output at the next
clock cycle when 0ins = . Therefore, three registers ,a p and

s are used to give one time unit delay to the input bit
coefficients ,in ina p and ins at each cell and the output

coefficients are then triggered using a next register output
stage in master slave manner as shown in Fig. 2. For more
details about the algorithm please refer to [11] and [12].

The m-bit multiplication time takes 3m-1 clock cycles. At

2m clock cycles after -1ma and -1mb enter the leftmost cell the

results outC in Fig. 1 will start coming out from the rightmost

cell at the rate of one coefficient (MSB-first) every clock
cycle.

N 0

D0D1...DP�-1
H0H1...HP�-1
S0S1...SP-1

0 0 ... 1

A
B
C
P
S

N 1

\0\1...\P�-1

Multiplier

N P-11
2

−



=
m

k

EXPO.
CTRL

Aout

Cout

Pout

Sout

M-1=Smida

Amid
Pmid
Smid

Fig. 1. LSA multiplier based architecture for exponentiation in GF(2m) when
m is odd.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig. 4. Overlapping the squaring and multiplication operations.

a

b

s

p

cout

pout

aout

bout

sout

Din

bin

sin

cin

pin

Dout

bout

sout

cout

pout

c

1

0

0

1

if then

 begin

 : ;c: c ;

;

: ;

: ;

: ; : ;

: ; : ;

: ; : ;

in

in in

out in in

out in in

in out

in out

in out

s

b b

end

b b s

c c s c p b a

a a a a

p p p p

s s s s

= =

= ⋅
= ⋅ + ⋅ + ⋅

= =
= =
= =

Fig. 2. LSA basic processing cell and its algorithm.

Fig. 3. The exponentiator operation modes.

The squaring is performed continuously using circuit shown

in Fig. 1. The feedback signal outputted at CELL- / 2 1m −  

contains the square term (operand) midA , which is used for

computing the product 1 1i iU M− −⋅ in eq. (5) according to the

primitive polynomial coefficients midP and control signal
mids .

If m is odd, these feedback signals are outputted from the
internal registers of CELL- / 2 1m −   as shown in Fig. 1.,

otherwise, they are taken at the output of this cell. The
squaring and multiplication results outC are outputted

iteratively from the last cell and used for computing the
expression in eq. (4) and (5) according to the primitive
polynomial coefficients outP and control signal outS . The

signal midaS in Fig. 1 is the multiplier control signal S that

defines the operating modes of the exponentiator, it generate
two internal control signals, load and square, which defines 4
different operating modes as shown in Fig. 3. If m is even then

midaS is outputted from the internal register s of CELL-

/ 2 1m −   . It is also used as GF(2m) unit operand 1M − for the

computation of the 1 1U M− −⋅ in eq. (5). A transition in this

signal at the input of CELL- / 2 1m −   means that the LSB of

the inputs operands are fed into the multiplier allowing the

load of next operands. Note that the multiplication 11 iM −⋅

(1 1i m≤ ≤ −) in eq. (5) is not performed. We can cope with
this using the feedback operand outA as the product term 1iM − .

We start the computation in load-square mode. In this mode
we perform a squaring operation on the value of the base A.
Once the coefficients are loaded into the multiplier after m
clock cycles, we switch the exponentiator to the load-multiply
mode. In this mode we perform the multiplication operation

1 1U M− −⋅ . Once the 1M − coefficients are loaded into the

multiplier after m clock cycles, we switch to the squaring
mode. In this mode we perform the computation in eq. (4),
then we switch to the multiplication mode in which we
perform the computation in eq. (5). We repeat successively
these two last operating modes until the end of operation.
This is described in the diagram reported in Fig. 4.
For signals stability, different clock edges are used to handle
the feedback signals in Fig. 1. Control states are then
generated within the clock pulse and feedback signals are
triggered by the inverted clock at the exponentiator controller.
The exponent E is fed into a LIFO stack (buffer) of size m.
The buffer content is shifted one time when a test in eq. (5) is
performed. Hence, the buffer is completely empty after the
output of the final result.

The setup time sT of the exponentiator is equal to m clock

cycles corresponding to serial data transfers of the inputs. The
throughput rate R of the multiplier is equal to one
multiplication operation per m clock cycles. Thus, at m clock
cycles, after the LSB of the inputs A, E, P and S enter the
exponentiator architecture, the exponentiation result Y will
start coming out from the rightmost cell after 2m m⋅ clock
cycles at the rate of one bit per clock cycle. Hence, the
exponentiation time eT becomes 2(1) clkm m T+ ⋅ ⋅ . Compared

with the MSR based exponentiator described in [8], witch
perform the computation in (2)m m+ ⋅ clock cycles from the

first-in bit to the last-out bit, the latency of the LSA based

exponentiator is increased by 2m clock cycles. However, the
MSR based multiplier presents long heavily loaded signals
that increase the critical path and the total delay for one
multiplication operation becomes 96% higher compared to
LSA multiplier [12]. Thus, the latency gain of the MSR based
exponentiator is counterbalanced by the clock period.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Furthermore, the area complexity of both exponentiators is
almost the same ~17m.

A. Digit-Serial Linear Systolic Array Exponentiator

The generated digit-serial architecture is obtained from the
LSA digit-serial multiplier. The resulting exponentiator circuit
is linear array-type at the digit-level based on the parallel
multiplication algorithm inside of each digit cells. The
corresponding algorithm is obtained by grouping each set of D
cells from the LSA multiplier in Fig. 1, then computing the
outputs of each of these grouped cells after D steps (clock
cycles). The algorithm of the LSA digit-serial multiplier have
been detailed in [12].

The successive squaring and multiplication operation are

then implemented in digit-serial manner using the architecture
depicted in Fig. 5. The operands are digit-word inputs. Thus,
the inputs bit ai , ei and pi for 0 1i m≤ ≤ − in Fig.1., are replaced
by digits forms Ai, Pi, and Ei for 0 1i d≤ ≤ − where

1

0

1 (1)

0

(, ,) , 0 1
(, ,)

(, ,) , 1

D
j

Di j Di j Di j
j

i i i m D d
j

Di j Di j Di j
j

a p e x i d

A P E
a p e x i d

−

+ + +
=

− − −

+ + +
=

 ⋅ ≤ < −∑= 
 ⋅ = −∑

 (6)

and
1 1

0 0
(, ,) (, ,) (, ,)

m d
i Di

i i i i i i
i i

A P E a p e x A P E x
− −

= =
= ⋅ = ⋅∑ ∑ (7)

where, D denotes the digit-size and d the total number of
digits /d m D=    .

The exponent E is expressed in binary form and fed into a

LIFO stack (buffer) of size /m D D   . The input digit-words

Ai, Ei and Pi, are fed into the multiplier in the same order for
i deceasing and from the MSB to the LSB. If m is not
divisible per D, the zero padding is performed at the LSB
positions for 0i = for Ai, and Pi, and MSB positions for

1i d= − for the exponent Ei. The s signal is used to denote
the start of a multiplication.

N 0

A0A1...Ad-1

E0E1...Ed-1

P0P1...Pd-1

0 0 ... 1

A
B
C
P
S

N 1

Y0Y1...Yd-1

Digit-Serial LSA Multiplier
Aout

Cout

Pout

Sout

N d-11
2

−



= d

k

EXPO.
CTRL

Smid

Pmid

M-1=Smida
Amid

Fig. 5. Digit-Serial LSA multiplier based architecture for exponentiation in
GF(2m) .

Ain

Bin

Cin

Pin

sin

Aout

Bout

Cout

Pout

sout

A B

C

P s

[D-1:0]

[D-1:0]

[D-1:0]

[D-1:0]

[D-1:0]

[D-1:0]

[D-1:0]

[D-1:0]

if then

 begin

 (0 to -1):= (-1 to 0);

for 0 to -1

():= (, , ,);

 end for;

end;

: ;

: ; : ;

: ; : ;

: ; : ;

for 0 to -1

() : (, , , , , ,

in

in

in in in in

out in

in out

in out

in out

out in in in in

s

B D B D

i D

C i F C P B A

B B

A A A A

P P P P

s s s s

i D

C i G s C C P P A A

=

=
= =
= =

= =
=

= ,);

end for;

B

Fig. 6. LSA digit-serial basic processing cell and its algorithm.

The exponentiator operates as the previously described bit-

serial LSA based where each CELL-k of the multiplier
process one digit of an entire word in one clock-cycle. Note
that the architecture shown in Fig 5., is still programmable
with respect to the primitive polynomial P(x).

The basic processing element CELL-K of the multiplier is
shown in Fig. 6. Two D-bit registers A, P and 1-bit s registers
are used to give one time unit delay to the input data Ai, Pi and
Si at each CELL-k. In Fig. 6, F denotes the function
processing the state of the C internal register; its circuit
diagram is shown in Fig. 7., where FF denotes a flip-flop.
Note that the critical path is proportional to the digit-size and
expressed as (D-1)(Txor-3+TNAND-2). The G function process the
state of the output register Cout. The corresponding circuit
diagram for one bit output coefficient is shown in Fig. 8. The
critical path in this architecture becomes DTXOR-3+TXOR-

2+2TNAND-2.

At d clock cycles after the least significant digit-words A0, E0,
P0 and the LSB of s enter the exponentiator architecture
shown in Fig. 5, the result Yi will start coming out after 2m d⋅
at the rate of one digit every clock cycle. Thus, the
exponentiation time eT takes 2(1)m d+ ⋅ clock cycles.

V. MPLEMENTATION AND COMPARISON

Clock gating technique can be used for power-efficient

implementation of registers that are disabled during some
clock cycles, when such registers maintain the same value
through multiple cycles such as the internal slave registers c
and b in Fig. 2 and C and B in the digit-serial cell shown in
Fig. 6. These registers have their own load controlled by sin
signal. This technique works well for data-flow logic, where
clocking requirements can be predetermined at least one cycle
ahead. Thus, the clock gating enable signal sin must be valid
halfway into the cycle to gate off the capture clock. To
overcome this problem, we require that these internal registers
be triggered faster than the master registers cout and bout (Bout
and Cout respectively) using different clock edges that is
pipelining within the clock cycle. This requires one more
clock pulse, resulting in 2-phase non-overlapping clocking
scheme.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 7 Circuit diagram of the F function.

Fig. 8. Circuit diagram of the G function for one bit output.

The free and clock gating LSA exponentiator have been
implemented at the gate level using different digit-size
D=1,4,8 in order to perform a comparison in terms of delay,
area and energy consumption for one exponentiation over
GF(2607) with P(x)=1+x273+x607 as primitive polynomial.
These architectures are mapped on TSMC CMOS 0.18µm
technology at a targeted supply, VDD=1.8V and 0.9V. A low
power design-flow has been validated using Synopsys tools
for power analysis and optimization. Different types of
power dissipation components are estimated using gate level
simulations on a set of random stimulus. Since low-energy
design is more important than low-power design, the energy
and energy-delay product is computed. The performance
characteristics including total delay, area in term of gates and
energy-delay product are reported in Fig. 9, 10 and 12
respectively. The cost function is reported in Fig. 13 and
defined as the Energy-Delay-Area products versus the digit-
size.
On the one hand, the critical path in the architecture shown in
Fig. 2 is just the sum of one full-adder and one NAND gate
delay. For larger digit-size the critical path is limited by the F
function in Fig. 7 and increases linearly with the digit-size to

(D-1)(TXOR-3+TNAND-2). In the same time, the latency decreases
linearly with the digit-size in almost the same rate resulting in
a constant total delay as shown in Fig. 9.

0

0.5

1

1.5

2

2.5

3

0.9V 1.8V 0.9V 1.8V

LSA Gated LSA

Architecture

T
o

ta
l D

el
ay

 [
m

s]

D=1 D=4 D=8

Fig. 9. Total Delay as function of the digit size for one LSA digit-serial
GF(2607) exponentiation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

0

10

20

30

40

50

60

70

0.9V 1.8V 0.9V 1.8V

LSA Gated LSA

Architecture

G
at

e
N

u
m

b
er

 [
K

 g
at

es
]

D=1 D=4 D=8

Fig. 10. Area in gates of the LSA digit-serial GF(2607) exponentiator as
function of the digit size.

On the other hand, Fig. 10 shows that the area increases
dramatically with the digit-size due to the large number of
logical gates and latches used to temporary hold the internal
and the output data in master-slave manner. This means that the
level of parallelism is limited by the area constraints (digit-
size).

Clock gating technique achives a substantial reduction in
both the total delay and number of gates, for digit-size equal or
larger then 4. It helps to eliminate the feedback loops and
multiplexers used to feed the output of each internal storage
elements back to the input for synchronous load-enable. Such
feedback loops are replaced by only one integrated cell with
latch based clock gating, thus the area is reduced in all cases
but for the bit-serial architecture (D=1) these clock gating
celles (latches) add a substential delays which increase the
critical path.

0 50 100 150 200

D=1

D=4

D=8

D=1

D=4

D=8

0.
9V

1.
8V

Power consumption [mW]

Cell internal Power Net switching power

Fig. 12. Different types of power dissipation components as function of the
digit size of the LSA digit-serial GF(2607) exponentiator.

0

50

100

150

200

250

300

0.9V 1.8V 0.9V 1.8V

LSA Gated LSA

Architecture

E
n

er
g

y
x

D
el

ay
 [

u
J.

m
s]

D=1 D=4 D=8

Fig. 12 Energy-Delay product as function of digit-size of the LSA digit-
serial GF(2607) exponentiator.

0

10

20

30

40

50

0.9V 1.8V 0.9V 1.8V

LSA Gated LSA

Architecture

N
o

rm
al

iz
ed

 E
n

er
g

y-
D

el
ay

-A
re

a
p

ro
d

u
ct D=1 D=4 D=8

Fig. 13 Energy-Delay-Area product as function of the digit size of the LSA
digit-serial GF(2607) exponentiator.

If the switching power contributes to more then 90%

(dominant factor) then the power consumption can be
reduced by factor β2 when reducing the operating voltage by
a factor β eq. (6). From eq. (7) the delay is increased by
factor β assuming that VDD>>Vt. Therefore, the power saving
is counterbalanced by the increased delay since the energy-
delay product is proportional to δ2. This is not the case for
VDD=1.8V and β=2 since VDD is close to the threshold
voltage Vt hence the delay increases and the short circuit
power is no longer a negligible factor (switching power is no
longer the dominant factor) as shown in Fig. 11.

The most interesting result is obtained when comparing

the Energy-Delay and the cost function versus the digit-size.
The performance characteristic reported in Fig. 12, shows
that Energy-Delay products are significantly reduced when
digit-size increase. High gain is obtained for D=8 when

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

operating at 0.9V and more than 75% reduction is noticed (and
more than 92% when gating the clock) since the power is
significantly reduced when operating at lower voltage.
However, when comparing the characteristic reported in Fig.
13 (cost function), the optimum is obtained for D=4 when
operating at both 1.8V and 0.9V due to the dramatic increase in
circuit area for larger digit-size. The highest gain is obtained
when gating the clock as the number of gates and delay are
substantially reduced.

I. CONCLUSION

This paper presents a new area efficient (~17m) linear

systolic array (LSA) architecture implementing exponentiation
over large GF(2m) according to square-and-multiply algorithm
in witch the operations are overlapped in order to reduce the
latency to 2(m+1)m. The architecture relies on Standard Basis,
bit-level pipelined multiplier that is expandable to any field
order. Also, the exponentiator is programmable with respect to
the primitive polynomial P(x).

In order to reduce the energy, we extended the LSA bit serial
exponentiator to a generalized digit-serial architecture obtained
by unfolding the bit-serial multiplier. The resulting circuit is
array-type at the digit-level using parallel multiplication
algorithm inside of each digit cells. Consequently latency is
reduced to 2(m+1)d where d is the number of digits and the
energy delay products are significantly reduced at the expanse
of increasing area. The cost function defined as the energy-
delay-area product versus the digit-size D has an optimum for
D=4 with up to 55% saving of energy-delay product and more
94% when gating the clock.

REFERENCES
[1] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, “Handbook of

Applied Cryptography”, CRC Press LLC, 1997.
[2] T. ElGamal, “A public key Cryptosystem and a signature scheme based

on discrete logarithms”, IEEE Transactions on Information Theory, vol
IT-31(4), pp 469-472, July 1985.

[3] W. Diffie, M. E. Hellman, “New Directions in Cryptography”, IEEE
Transactions on Information Theory, 22:644-654, November 1976.

[4] William M. Rake, “The RPK Public-Key Cryptographic System”,
Technical Summary, 1993-1996.

[5] B. Schneier, “Applied Cryptography”, Second Edition, Wiley, 1996.

[6] A. M. Odlyzko, “Discrete Logarithms in finite fields and their
cryptographic significance”, EUROCRYPT, 1984, pp. 224-147.

[7] A. M. Odlyzko, “Discrete Logarithms: The past and the future”,
Design, Codes and Cryptography, 19(2/3), 2000, pp. 129-147.

[8] E. D. Mastrovito, “VLSI Architectures for Computations in Galois
Fields”, PhD thesis, Linköping University, Departement of Electrical
Engineering, Linköping, Sweden, 1991.

[9] M. Kovac, N. Ranganathan, “ACE: A VLSI Chip for Galois Field
Efficient GF(2m) Based Exponentiation”, IEEE Transactions on
Circuits and Systems-II: Analog and Digital Signal Processing, Vol.
43, No. 4, pp. 189-297, April 1996.

[10] D. E. Knuth, “The Art of Computer Programming: Seminumerical
Algorithms”, Volume2, Addison-Wesley, Second edition, 1981.

[11] B. B. Zhou, “A New Bit-Serial Systolic Multiplier Over GF(2m)”,
IEEE Transactions on Computers, Vol. 37, No. 6, pp. 749-751, June
1988.

[12] F. A. Cherigui, D. Mlynek, “Low Energy Digit Serial Architectures for
large GF(2m) multiplication”, IEE Transactions on Circuit-Systems
and Devices, 2001.

[13] C hin-Liang Wang, “Bit-Level Systolic Array for Fast Exponentiation
in GF(2m)”, IEEE Transactions on Computers, vol. 43, no. 7, pp. 838-
841, July 1994.

[14] M. R. Schroeder, “Number Theory in Science and Communication”,
Vol. 2, Springer-Verlag, 1986.

[15] Ö. Egecioglu, ç. K. Koç, “Exponentiation using Canonical Recoding”,
Theorical Computer Science, 129(2): 407-417, 1994.

[16] H. Wu, A. Hasan, “Efficient Exponentiation of a Primitive Root in
GF(2m)”, IEEE Transactions on Computers, Vol. 46, No. 2, pp. 162-
172, February 1997.

[17] ç. K. Koç, T. Acar, “Fast Software Exponentiation in GF(2k)”,
Proceedings, 13th Symposium on Computer Arithmetic,

[18] C. C. Wang et al., “VLSI architecture for computing multiplications
and inverses in GF(2m)”, IEEE Transactions on Computers, Vol. C-34,
No. 8, pp. 709-717, August 1985.

[19] P. A. Scott, S. E. Tarvares and L. E. Peppard, “A fast multiplier for
GF(2m)”, IEEE J. Select. Areas Commun., Vol. SAC-4, Jan 1986.

[20] P. A. Scott, S. J. Simmons, S. E. Travers, L. E. Peppard, “Architecture
for exponentiation in GF(2m)”, IEEE Transactions on Computers, Vol.
6, No. 3, pp. 578-586, April 1988.

[21] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson,
“Optimal normal bases in GF(pn)”, Discrete Applied Mathematics, pp.
149-161, 1988/1989.

[22] S. T. J. Fenn, M. Benaissa, D. Taylor, “GF(2m) Multiplication and
Division Over the dual Basis”, IEEE Transactions on Computers, Vol.
45, No. 3, pp. 319-327, March 1996.

[23] A. P. Chandrakasan and R. W. Brodersen, “Low Power Digital CMOS
Design”, Kluwer Academic Publishers, 1995.

[24] Y. Taur, Y. J. Mii, D.J. Frank, H.S. Wong, D.A. Buchanan, S.J. Wind,
S. A. Rishton, G.A. Sai-Halasz and E.J. Nowak, “CMOS scaling into
the 21st century: 0.1 µm and beyond”, IBM Journal of Research and
Development, vol. 39, no. ½, Jan/Mar 1995, pp. 245-260.

[25] A. Bellaouar, M. Elmasry, “Low-Power Digital VLSI design: Circuits
and Systems”, Boston, Massachusetts, Kluwer Academic Publishers.

