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ABSTRACT

‘We propose a statistical non-parametric classification of brain
tissues from an MR image based on the voxel intensities and on
the relative anatomical location of the different tissues. Classi-
cally, the overlap of the tissue probability distribution functions
for voxel intensities can be reduced by using multi-component
(T1w,T2w,Pd,...) MR images, but at a much higher cost for im-
age acquisition. Instead, we generate an artificial image compo-
nent as the distance from the edges of the segmented brain. The
non-parametric k-Nearest Neighbors rule (k-NN) is used since it
requires no a priori on the probability distribution of this distance
component. The k-NN rule is also tested using different metrics
(Euclidean, weighted Euclidean, Mahalanobis) in the classifica-
tion space to define what “nearest neighbors” are.

The results are twofold: firstly we show that all metrics per-
form well in ideal conditions, but that the Mahalanobis (and to
some extent the weighted Euclidean) metric is more robust in case
of under-training of the classifier. Secondly we show that using
the relative anatomical location in combination with the intensity
information improves the classification of the tissues.

1. INTRODUCTION

Pattern classification in medical imaging is a challenging task,
sometimes almost impossible without intensive manual interac-
tion in pathology cases. In order to cope with this complexity,
a promising direction is the introduction of a priori information
about the problem to be solved. In this work, our goal is to de-
velop a classification method that will help in the automation of
brain MR images analysis by providing a segmentation tool able
to classify either normal or abnormal anatomy. Our method com-
bines the information given by the intensity values of the voxels in
the image and its relative distance with respect to the brain surface.
With this new information we are able to localize the different tis-
sues in the joint histogram even if they overlap intensity values
thanks to the discriminative action of the relative distance infor-
mation. This generates a classification of the data which is more
reliable than those methods based only in the intensity spectra.
Different classification techniques can be found in the litera-
ture. Parametric techniques like C-Means, K-Means, finite Mix-
ture of Gaussian probabilistic distribution modelization, and oth-
ers, are optimal for classification when the distribution of the data
is known. For brain MRI, it is well known that the voxel inten-
sity histogram corresponds to a mixture of Gaussians except for
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the background noise which corresponds to a Rayleigh distribu-
tion [1]. Once the background is extracted the different tissues can
be easily classified by one of the previous methods. In our case,
we do not have any a priori information about the relative dis-
tance probabilistic distribution, which is the main reason to use a
classification rule which makes no assumption on the probabilistic
distribution of the samples. We decided to use a multiple feature
k-Nearest Neighbors (k-NN) classification rule with an appropriate
distance metric. Therefore, we tested different distance metrics to
find the most reliable one. Tested metrics were: the Euclidean dis-
tance, and two others which are sensitive to inter-variable changes,
a weighted Euclidean distance and the Mahalanobis distance [2].

2. METHOD

Our algorithm combines the gray level values of the MR images
with the Euclidean distance (ED) from each of the voxels to the
brain surface to build up a joint histogram to identify the different
tissues.

Initialization for the algorithm consists of image acquisition
and tissue class prototype selection. Next the ED map is calculated
in order to build up each voxel feature vector. Then a classification
is performed based upon these features using the k-NN rule . Next
sections describe the method and the different metrics that were
tested for the classification.

2.1. Fast Euclidean distance map for anisotropic volumes

We applied the method proposed by Saito and Toriwaki [3] in
1994, based on the exact Euclidean metric for an n-dimensional
picture to compute the distance from any voxel in the brain to
its surface. To achieve this they use a serial composition of one-
dimensional filters. Cuisenaire [4] has shown in 1999 that this is
the fastest algorithm for 3D images with a typical MRI size, i.e.
256x256xS (where S is the number of slices) or smaller. In terms
of complexity, calculating the distance map of an image of NxNxN
voxels takes o(N*) memory access and o(N*) CPU operations.

The basic idea consists in the following two items:

(1) Minimize the square of the ED instead of the exact distance
in the process of transformations.

(2) Implement the transformation by decomposing the proce-
dure into serial execution of the three one-dimensional transforma-
tions.



2.2. k-NN classification rule

The k-Nearest Neighbors (k-NN) rule is a non-parametric tech-
nique used for supervised pattern classification. Duda and Hart
[5] in 1973, provide an excellent description of the method and its
properties though Fix and Hodges [6] in 1951, appear to be the
first who made the formulation of this rule. Given a training data
set, P, consisting of N prototype patterns (vectors) of dimension D
and the corresponding correct classification of each prototype into
one of C classes, a pattern v of unknown class is classified as class
¢ if most of the k closest prototype patterns are from class ¢ (Cover
and Hart [7], 1967). Distance is measured with a distance metric
appropriate to the problem domain.

Fix and Hodges [8] in 1952, also established the consistency of
the rule, under the assumption of normal statistics, for sequences
such that k— oo and k/N—0. On the other hand, as the rule makes
no assumption on the probabilistic distribution its probabilistic er-
ror R must be at least as large as the Bayes probability of error
R* (due to the overlap of the distributions). Cover and Hart [7]
show that the conditional risk for the /-NN, under certain statisti-
cal assumptions, is R<2R*. The risk for the ~-NN is bounded by
(1+1/k)R*.

2.3. Possible distance metrics

The general distance metric definition between the vector samples
z; and the prototypes p; is given by:

d% = (& - p;) TS (3 — pj)

Where d?j represents the squared distance; superscript T de-
notes (vector) transpose;, and ¥~! is the inverse of the applied
distance metric matrix.

In the case of the Euclidean distance (ED) X = Id, where Id
stands for the identity matrix. For the variance weighted Euclidean
distance metric (WED) ¥ = ¥, where 3, represents the variance
matrix of the prototypes of class ¢ to which p; belongs. And for
the Mahalanobis distance metric (MD) ¥ = 3., where X, is the
covariance matrix of the prototypes of class ¢ to which p; belongs.

‘While ED metric is the same for all classes, wED and MD are
metrics which take the sample variability into account, so these
metrics depend on which class the sample belongs to. In general,
wED and MD are a very useful way of determining the similarity
of a set of values from an unknown sample to a set of values mea-
sured from a collection of known samples. Instead of treating all
values equally when calculating the distance, they weight the dif-
ferences by the range of variability in the direction of the sample
point. This metrics construct a space that weights the variation in
the sample along the axis of elongation less than in the shorter axis
of the group ellipse. In terms of measurements, sample A will have
a substantially smaller distance to the mean than sample B since
it lies along the axis of the group that has the largest variability.
Therefore, sample A is far more likely to be classified as the same
class as the group. One of the main reasons the MD method is used
is that it is very sensitive to inter-variable changes in the training
data. MD looks at not only variations (variance) between the re-
sponses at the same variable,which is the case of the wED, but
also at the inter-variable variations (covariance). In other words,
the difference between the wED and MD falls in the direction of
the axis of the ellipse.While for the wED the axis are parallel to
the variables axis, ellipse axis for the MD can have any direction.
The Mahalanobis group defines a multidimensional space whose
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boundaries determine the range of variation that are acceptable for
unknown samples to be classified as members.

2.4. Compensated geometrical relative location for classifica-~
tion

2.4.1. Training vector prototypes

Prototypes are voxels selected by an operator familiar with the
anatomy of the subject to be segmented and the operation of the
classification process. These voxels are representative of particu-
lar tissue classes which are used to model the probability density
function of the features of these classes. In the vector prototype
selection process we obtain the spectral information of the proto-
type (the value of the prototype in each of the features) with this
information are able to build up a joint histogram which models
the probability density function of our classes. Typically the num-
ber of prototypes to be selected for each class has to be big (ideally
k— 00) to have a small error R (see 2.2) but much smaller than N
such that ¥/N—0. In our case we use the voxel intensity and the
ED to the surface of the brain values to construct our feature space.
Fig. 2 shows the obtained joint probability distribution function
for the different classes. As we can see classes are well separated,
even if their intensities overlap one another.

Concerning the time of training prototypes acquisition, it takes
about one minute for an experienced operator.

2.4.2. Pre-processing

Prior to tissue classification we apply a procedure to automatically
segment the brain from the rest of the head, based on histogram
fiting and morphological operations [9]. Fig. 1 shows a typi-
cal histogram. The first maximum corresponds to the background
which is fitted by a Rayleigh curve [1]. We first estimate the back-
ground threshold and compute a mask of the head within the VOI.
Next we apply a series of mathematical morphology operations to
obtain a coarse segmentation of the brain. These operations use
the sphere as structuring element implemented applying distance
transformations [4]. This pre-processing step needed to construct
the relative distance map to the brain surface takes about 20 sec-
onds depending on the number of operations.

Apart from the described pre-processing the MR data was not
processed with any filter to try to improve the SNR or removing
the bias field inhomogeneities that appear in the tissue areas due to
the effect of equipment limitations and patient induced electrody-
namic interactions.
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Fig. 1. Typical MR histogram before (a) and after (b) the pre-
processing,.
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Fig. 2. Joint histogram (a), ventricle’s region zoomed histogram (b) and training prototypes for classification (c).

2.4.3. Tissue classification

In this section we describe the method we propose for tissue
classification after the pre-processing step.

Once we have applied our mask to the input volume we calcu-
late the ED from each of the voxels to the border of the mask,
which is approximately the same as calculating the distance to
the surface of the brain, depending on the accuracy of our pre-
processing step. Then we are able to extract the feature vector
values of our training prototypes (see fig. 2). Our vector compo-
nents consist of the intensity and relative distance values, which,
as we will see, are reliable to achieve a good classification. Next,
we have chosen the k-NN rule for voxel classification [10]. In
next section we see some of the results we have obtained with this

method.

3. RESULTS

In this section the application of relative anatomical location to
segmentation problems involving normal anatomy is discussed. A
visual and analytic comparison were done. In order to test the
behavior of our method we compared it with the k-NN rule using
only intensity values. An evaluation of different metrics such as
ED, a weighted ED (wED) and the MD was also carried out (see
sec. 2.3).

Three different sets of T1 weighted MR images of dimensions
256x256x128 were used to carry out the tests for normal anatomy.
Their pixel size was 1 mm. and the distance between slices 1.25
mm.

The error ratio of the method was calculated using the method
to classify the prototypes. All prototypes are used as training data
except the one to be classified. The error ratio is defined as the
percentage of mis-classified samples.

‘When observing the error ratio in the fig.4 for a given curve
we notice a jagged behavior. This results from the fact that most
classification decisions are the result of a vote of the k nearest sam-
ples, choosing between two classes. In such a dual vote, an even
number of voters make a decision of lesser quality than the same
number minus 1.
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‘When analyzing the error probability distribution (Fig. 4) we
notice that there are two groups of curves; one corresponding to
the tests where the relative anatomical location was not taken into
account, an the other for the tests using the relative distance in-
formation in combination with the intensity. For the first group the
error probability is much higher than for the second one. As shown
in fig. 2 this is caused by the overlapping intensity distributions of
the gray and white matter, which is not the case when combining
relative distance location and intensity values.

It is important to remark the behavior of the ED metric when
combining the relative distance and intensity informations for dif-
ferent N. We notice that it has the same behavior as the wED and
MD until a certain k is reach, which is different for N=300 or
N=500, then the error increases. This is due to the fact that the
condition k/N—0 is not valid anymore. This shows that the ED is
valid while the measure is local. This is not the case of the wED
and MD which are global metrics.

In our tests, the WED and MD have a similar behavior. It can
be seen in 2 that the axis of the ellipses that model the clusters are
parallel to the variables axis, which is the reason for the similar
behavior of both metrics. In the case where the axis of the clusters
were not parallel to the variables axis then the MD is likely to have
a better performance.

4. CONCLUSIONS

We presented a robust and simple classification method for single
channel MR which makes use of a new feature to achieve a good
classification: the relative distance to the brain surface. Applying
the k-NN rule to the (intensity,distance) vector yields a good dis-
crimination of the different tissue classes. Since we did not use
any anisotropic or bias inhomogeneities corrector filtering the ob-
tained results could be improved by adding these filters in the pre-
processing step. This will improve the SNR and help the samples to
be closer between those belonging to the same cluster. We could
also apply some post-processing (if needed) adding some spatial
constraints to our classification in case any sample was misclassi-
fied. Due to the good discrimination between classes that we ob-



Fig. 3. Original image (a), classification for k=20 using only intensity values and the Euclidean metric (b) classification for k=20 using
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intensity and relative distance values and the Mahalanobis metric (c).

tained applying this method, we are currently doing some research
for the localization of multiple sclerosis pathology.
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