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Abstract — Compression efficiency is mainly driven by re-
dundancy of the overcomplete set of functions chosen for non-
orthogonal signal decompositions. Redundancy is an important
criteria in the design of dictionaries, whose size only provides a
first indication without however taking into account the distri-
bution of the atoms. This paper provides a new formulation for
the structural redundancy of an overcomplete set of functions.
The structural redundancy factor directly drives the energy com-
paction properties of non-orthogonal transforms in frame expan-
sion [1] or Matching Pursuit [2].

I. STRUCTURAL REDUNDANCY
Signal transforms are generally based on inner products to com-
pute the contribution of each basis function or atoms into the signal
reconstruction. Hence, the structural redundancy 3 can be interpreted
as the cosine of the maximum possible angle between any direction
in H and the closest direction of any atom of the dictionary [2]. It
characterizes the redundancy of the dictionary and tends to one when
the size S of the overcomplete dictionary increases.
For each dictionary vector g, ,% € [1..5], one can define its pro-
jection neighborhood as the subspace of # whose any direction has
g~; as closest direction among the dictionary vectors.

Definition 1 The projection neighborhood V., of the vector g, is
the subspace of H defined by

Vi = {z € H | [{zlgr:)| 2 Klgn;)|, V5 # 1} - M

The projection neighborhood V., as represented in Fig. 1, cor-

responds to the intersection of couples of infinite convex polyhedral
cones situated symmetrically with their apexes at the origin.

Figure 1: Representation of the projection neighborhood V.,
in RS,

The structural redundancy 8 thus corresponds to the cosine of the
maximum possible angle, over all dictionary vectors, between g,
and any direction in its projection neighborhood V., . It can be written
as
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1I. APPLICATION IN MATCHING PURSUIT
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Figure 2: Structural redundancy factor 3 versus .S.

Fig. 2 represents the evolution of the redundancy factor 3 with the
size of random atom dictionaries. We can see that the structural re-
dundancy factor obviously increases with the size of the dictionary.
We can conjecture that the evolution of /3 is exponential with the num-
ber of vectors N,. In other words, 3 =1 ~ A NP .

The approximation error decay rate in Matching Pursuit has been
shown to be bounded by an exponential [2]. In other words, the
norm of the residue converges exponentially to zero when the itera-
tion number NV tends to infinity. Fig. 3 shows that the residual energy
is clearly upper-bounded by the exponential curve computed from the
structural redundancy factor 3.

—— Expontial upper-bound for f,
~ - Residual energy of f,

~ . Expontial upper-bound IortzL
... Resiiual energy of f,

Residual energy
3

20 25 )
Heration number

Figure 3: Matching Pursuit on random signals (f1, f2) of
length 10 (S = 50).
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