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Abstract— We consider the delivery of video assets over a best-
effort network, possibly through a caching proxy located close to the
clients generating the requests. We are interested in the joint server
scheduling and prefix/partial caching strategy that minimizes the ag-
gregate transmission rate over the backbone network (i.e., average out-
put server rate) under a cache of given capacity. We present multiple
schemes to address various service levels and client resources by en-
abling bandwidth and cache space tradeoffs. We also propose an op-
timization algorithm selecting the working set of asset prefixes. We
detail algorithms for practical implementation of our schemes. Sim-
ulation results show our scheme dramatically outperforms the full
caching technique.

Keywords— Content Distribution Networks, Streaming Media,
Server Scheduling, Partial Caching, Batch Patching, SLA

I. I NTRODUCTION

Streaming media represents a unique opportunity for Ser-
vice Providers – unlike other web objects which are en-
hanced by edge delivery, quality video actually requires
edge of network services to attain reasonable user experi-
ence. As access providers roll out faster last-mile connec-
tions, upstream congestion in the provider’s backbone, peer-
ing links and best-effort Internet will limit their ability to
meet customer expectations for these premium links. While
streaming media brings additional complexities (very large
objects, isochronous delivery, and interactivity), there are
clearly many advantages of edge delivery. Attributes mak-
ing it especially well-suited for edge delivery include its
static nature, high value to Content Providers, distribution
and delivery revenue potential to Content Delivery Service
Providers, and the potential for content services (transcod-
ing, ad insertion, digital rights management) best offered
through decentralized techniques.

Techniques to address the lack of end-to-end bandwidth
to support streaming media include i) multicasting to groups
of clients, and ii) caching at streaming proxies located closer
in the network to the end user.

Multicast scheduling strategies, such asPeriodic Broas-
castingandBatching, have been proposed to simulate on-
demand access. Although multicast significantly reduces
network bandwidth, it is often considered impractical due to
its reliance on a fully multicast-enabled network. Additional
drawbacks of multicast scheduling strategies include client
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requirements for receiving multiple streams, large client
buffers, and lack of flexibility in providing user-level QoS.
Because video distribution and delivery incurs high storage
and transmission costs, and requires specialized servers at
the edge, Service Providers will target valued content, for
which QoS guarantees are a must and best-effort service is
unacceptable.
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Fig. 1. Illustration of our joint scheduling and proxy caching strategy.

Caching audio/video objects in streaming proxies at the
network edge is another attractive solution. Besides pro-
viding improved performance to the end-user, caches save
on network bandwidth between the access provider network
and the origin server. Caching strategies for video objects
range from caching of full video objects to caching par-
tial video objects by segmenting the video in the temporal
and/or spatial domain(s). There are at least two issues with
the caching of whole videos. First, the time and bandwidth
required to bring an entire video into the cache associates
a very high penalty with erroneous caching decisions. Sec-
ond, ongoing streams may prevent deletion at cache replace-
ment time causing the cache to be less reactive and to drift
away from the optimal operating point.

Therefore, our objective is to create a content distribu-
tion system for streaming media, as opposed to a best-effort
video caching system. We achieve this by placing a stream-
ing proxy in the path between the server and the clients.
We develop a scheme which combines stream scheduling at
the origin server and caching at the proxy to minimize the
aggregate transmission rate over the network while main-
taining configured user-level quality of service (QoS) con-
straints. The QoS constraints are expressed in terms of max-
imum playback delay and application-level packet loss ratio
(PLR). Object prefixes reflecting either popularity or con-
tracted service levels are positioned at proxies to reduce
startup latencies and enable on-demand access.

The paper is organized as follows. In Section II we
present relevant research in the multicast and streaming me-
dia caching areas. In Section III, we present our scheme for



video stream delivery along with simulation results high-
lighting the bandwidth savings and cache space usage trade-
offs under different scenarios. Section IV describes a prac-
tical algorithm that is being implemented in our prototype
and discusses practical issues. Finally we present our con-
clusions and future work in Section V.

II. RELATED WORK

Streaming video over multicast consumes less network
bandwidth and imposes less of a load on the sender
than does streaming video over multiple unicast channels.
Among schemes that attempt to capitalize on the benefits of
multicast for VOD are those based on the Periodic Broad-
cast idea [1], [2], [3], [4] The video is divided into many por-
tions which are continuously broadcast over multiple chan-
nels and are as such bandwidth efficient only when the re-
quest arrival rate is high. Another technique is the sim-
ple batching scheme where the server accumulates requests
over a batching interval and starts a new multicast stream
at the end of each interval if there were any requests in the
batch. A more bandwidth efficient scheme is that of Patch-
ing ([5], [6]). In this scheme, each batch is served over one
or two channels – either a regular channel alone or the com-
bination of a regular channel and a patching channel. A reg-
ular channel delivers the full video from start to finish while
a patching channel delivers only the missing part of the
video from the start until the point at which the clients join
the regular channel. The client receives both the patch and
the ongoing stream and buffers the latter while playing back
the former. Once the patch is exhausted, the client switches
to the buffered regular multicast. [5] compared the perform-
nace of patching with simple batching and found that patch-
ing was able to support true VOD at much higher request
rates for a typical server configuration. Further research in
this area can be found in [7] where the authors present the
Optimized patching scheme which defines a Patching Win-
dow beyond which it is more efficient to start a new regu-
lar multicast rather than generate patches. Finally, [8] ex-
tends the above technique to allow for client-controlled la-
tency/cost trade-off to provide classes of service by varying
the batching interval.

The other relevant body of research is that of video
caching. Techniques range from caching whole videos (ap-
plying conventional memory caching techniques with modi-
fications to account for the size) to partial objects segmented
in the temporal and/or spatial domain(s). Segmentation in
the temporal domain is achieved by splitting the video into
constant time length (CTL) segments and segmentation in
the spatial domain is achieved by encoding videos at multi-
ple resolutions.

Full-caching strategies for video in a cluster of caches
is considered in [9]. Key conclusions are that in stream-
ing proxies, replication or striping of objects based on ex-

plicit tracking of request frequencies achieves higher hit
rates rather than doing LFU or LRU on a per-request ba-
sis. They found that the cache replacement policy (LRU or
LFU) did not make any difference because most videos had
ongoing streams and could not be chosen for replacement.
For this reason and the fact that bringing a large video file to
a cache is very expensive, partial caching (including prefix
caching) were proposed.

In [10], the authors present a caching scheme for adap-
tive, layered video (segmented in the temporal and spatial
domains) such that thequality of the cached stream is pro-
portional to its popularity. They also combine it with a fine-
grained cache replacement strategy that tracks statistics per
layer of video and eliminates the least popular segments of
the video. The scheme has been designed with the goal
of being adaptive to the network but not with the explicit
goal to minimize the bandwidth streamed out of the origin
server. Secondly, although this method results in caching
the most popular parts of a video, the quality of video play-
back can be variable among different viewers of the same
video, which might be undesirable. Finally, the adaptive
scheme works well with layered encoding of videos, which
is not employed in most popular formats. Another work that
considers partial caching isMiddleMan [11]. This scheme
works over a cluster of proxies on a LAN and the combined
space is managed by a centralMiddleMan who does the
cache replacement decisions. The caches store only as much
of the object as is played back by the client. Other video
caching schemes include Resource-based CachingRBC[12]
which focuses on the management of resources in the cache.
RBC determines which objects (partial or whole) to cache
such that the space and bandwidth of the cache are uni-
formly utilized. Prefix caching is proposed in [13] and [14]).
Although caching the prefix can hide the startup latency and
jitter in the network, this scheme does not reduce the aggre-
gate transmission from the origin server.

In this paper, we build on some of the ideas in the mul-
ticast research area to minimize the aggregate bandwidth
streamed out of the origin server and also present a practical
scheme in which videos are cached in a proxy such that the
space used by the video can be proportional to its popularity
and the available bandwidth to the server.

III. PARTIAL CACHING AND BATCH PATCHING

In this section, we develop a scheme which combines ef-
ficient stream scheduling at the server, and both prefix and
partial caching in a proxy located close to the clients gener-
ating the requests.

Our main objective may be formulated as follows: given a
set of video assets and their respective characteristics, mini-
mize the average rate streamed out of the origin server under
a cache of fixed capacityX . We assume that the network is



ideal (i.e., jitter- and error-free environment) and that the
clients wish to be served instantaneously (i.e., null playback
delay). Section IV explains why these apparently strong as-
sumptions do not lead to any loss of generality.

The motivation behind this problem formulation results
from the following observation: minimizing the average
backbone rate is equivalent to maximizing the average byte
hit ratio (BHR) at the proxy under a given server scheduling
strategy. The problem formulation is refined in Section III-
E after the complete description of our joint strategy. The
study is first performed on a single video asset. Then we
consider a heterogeneous set of video assets and related re-
quest patterns. We now describe the server scheduling strat-
egy we build our scheme on.

A. Optimized Batch Patching

White and Crowcroft have recently introduced the con-
cept of optimized batch patching [8], which aims at mini-
mizing the average server output rate (i.e., backbone rate).
Basically, client requests are batched together on an interval
basis before requesting either a patch or a regular multicast
(RM) from the server. The interval is fixed and notedb. Fol-
lowing the reasoning from [7], there is an optimalPatching
Window, notedW , after which it is more bandwidth efficient
to start a new regular multicast rather than send patches.

They refer to an RM-epoch as one in which a regular mul-
ticast was started and a non-RM epoch as one in which a
regular multicast did not begin. The average backbone rate,
R, is calculated in terms of the mean of the aggregate num-
ber of bytes contained in all patches commencing between
two adjacent RM epochs chosen at random and the mean
interval between RM epochs:

R =
(1− Pb)rW 2 + (1− Pb)brW + 2rbT

2bW + 2b2

1−Pb

, (1)

wherePb = Pb(0) denotes the probability of gathering zero
request in a batch of durationb (empty batch),T is the du-
ration of the video and,r denotes the streaming rate of the
video asset. The optimal patching windowW is derived
by differentiatingR and setting the result equal to0. This
yields:

W =
−b +

√
Pbb2 + 2(1− Pb)bT
b(1− Pb)

(2)

This scheme outperforms other multicast-based techniques
in terms of average backbone rate over a large range of re-
quest rates. Figure 2 compares the normalized backbone
rate (that is,R/r) required by this scheme versus the op-
timal patching algorithm [7] for different Poisson request
rates (that is,Pb = e−bλ) and a batching intervalb set to1
minute. Optimized batch patching clearly outperforms opti-
mal patching, albeit at the expense of higher latency (play-
back delay). Actually, the higher the intervalb over which

requests are batched, the better the performance. There-
fore the authors integrated the concept of classes of service
(CoS) in their scheme. Also these multicast-based tech-
niques rely on multicast-enabled routers. In the remainder,
we propose an extension to this scheme which alleviates the
above problems and even adds some flexibility.
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Fig. 2. Optimized batch patching versus optimal patching. This graph
shows how the normalized backbone rate evolves with the size of the
patching windowW for different average inter-arrival rates following a
Poisson distributionλ. The duration of the video assetT is 90 minutes.
The batching intervalb is set to 1 minute.

B. Partial Caching applied to Batch Patching

We build on the optimized batch patching idea by intro-
ducing a proxy cache in the path from the origin server to the
clients cloud. We adopt the intuitive approach consisting of
storing the firstb units of time in the proxy cache (i.e., batch-
ing period). That is, the proxypermanentlycaches aprefix
of b units of time. Moreover we impose the proxy cache to
play the role of a client for the origin server. That is, all the
patches and regular multicasts streamed out of the server are
requested by the proxy and are thereby streamed through it.
This design approach has several advantages among which,
(i) it eliminates the need for network-level multicast, (ii)
it allows for client-based stream adaptation (heterogeneous
client capabilities), and (iii) it has the potential to decrease
the number of streams concurrently streamed to a given
client. The former leads to a change of terminology. In
the remainder, we useregular channeland patch channel
instead of regular and patch multicasts.

Our scenario is illustrated by Fig. 3. The proxy divides
the time axis into intervals[ti−1, ti] of duration b units
of time. Assume a request arrives at the proxy at time
t1 ∈ [tk−1, tk). The proxy immediately starts streaming
the requested asset to the client. Assume the most recent
regular channel (RC) was started at timets, with ts < t1



is an integral number ofb units of time. If tk is such that
tk < ts+W , the proxy joins the RC at timetk and streams it
through to the client, which buffers the stream while playing
back the prefix. Also at timetk, the proxy requests a patch
of durationtk − ts and passes it on to the client. However
if tk ≥ ts + W , a new regular channel of the asset of dura-
tion T − b (the prefix of durationb is sitting in the proxy) is
requested from the server at timetk. In practice the streams
requested from the server are unicast to the proxy, which
implements multicast at the application level to provide the
services mentioned above.

tktk-1

b

W

r

ts t1

Joins RM and request

patch of duration 4b

RM


Sends prefix

Fig. 3. Optimized batch patching with prefix caching. A client request
an asset at timet1 ∈ [tk−1, tk). The interval limittk is such that
tk < ts + W .

The average backbone rate is computed from Equations 1
and 2 by replacingT with T − b. Figure 4 compares the
optimized batch patching technique with and without prefix
caching in terms of the required normalized backbone rate
versus the duration of the prefixb in minutes. We again as-
sume a Poisson arrival process such thatPb = e−bλ. The
two techniques provide approximately the same normalized
backbone rate for small values ofb. The difference becomes
noticeable forb > 10 minutes. Also each technique pro-
vides the same performance independent of the request rate
for batching intervalsb ≥ 15 minutes. Note that increas-
ing b is equivalent to increasing either the client playback
delay (without prefix) or the cache occupancy (with prefix).
Note also that forb ≥ T

2 , the optimal patching window is
zero (Wopt = 0) when a prefix is cached. ThereforeR/r
reduces to:

R

r
=

(T − b)(1− Pb)
b

≤ (1− Pb).

The drawbacks of this straightforward extension are
twofold. First, the link connecting the requesting client to
the proxy must accomodate up to three concurrent streams.
Indeed the first client of a batching period will have al-
ready triggered the streaming of the regular channel and
of the patch which will be needed by the late arrivals in
the same batching period, which are still playing back the
prefix. Second, the client buffer must accomodate up to
W +b units of time at the streaming rater. Indeed the client
must buffer the on-going regular channel while receiving the
patch of maximum sizeW . Also the last client of the batch-
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Fig. 4. Optimized batch patching with and without prefix caching. This
graph shows how the normalized backbone rate evolves with the du-
ration of the batching intervalb (duration of the prefix) for different
average inter-arrival ratesλ following a Poisson distribution. The du-
ration of the video asset is 90 minutes. The patching window is com-
puted from Eq. 2 withT being replaced byT − b when a prefix ofb is
cached.

ing interval must store up tob extra units of time. Thus,
B = (W + b)r, which may not be practical.

Therefore we extend this first approach by considering
the temporarypartial caching of either (i) the patch only or
(ii) the patch and the regular channel. In the first case, the
proxy eliminates the need to stream the patch to the clients
by temporarily caching theright portions of it (the client
manages only up to two concurrent streams). In the sec-
ond case, the proxy caches whatever it takes to allow for
sequential streaming of the asset from beginning to end to
the clients (the client manages only a single stream).

We now examine these two extensions separately and de-
rive the equations leading to the estimation of the average
backbone rateR, the average cache occupancyX and the
client buffering requirementsB. The derivations of all the
equations are not presented here due to space constraints
and can be found in [15].

C. Partial Caching of Patch Only

The proxy eliminates the second stream to the client by
caching the patch. Let[tk−1, tk) denote a batch which re-
quires a patch ofk buffers in the intervalb to kb. At tk, the
proxy determines which patch intervals are not cached1 and
starts fetching the first required interval and completes it at
tk+1. At this time, it is aware of whether or not there are
requests in[tk, tk+1). If there are requests, it does not free
the buffer when all the requests in[tk−1, tk) are serviced

1It needs to fetch at least one patch interval which is between(k − 1)b
to kb.



but retains it to service requests in[tk, tk+1) and subsequent
non-zero batches. Everytime there is a batch with zero re-
quests, the buffer is released once it has been streamed to all
the clients in the previous batch.

By caching the patch, we clearly save on bandwidth from
the server compared to the previous approach. The number
of patch buffers streamed from the server, in units of time,
is given byµ (refer to [15] for details):

µ = b

264bW
b
cX

i=1

i(1− Pb)P
b i
2 c

b +

b i
2 cX

j=1

(2j − 1)(1− Pb)
2
P

j−1
b

375 (3)

The normalized average backbone rateR/r is thus ob-
tained from:

R

r
=

µr + (T − b)r
b(1 + n)

,

wheren is the mean number of batches between two reg-
ular channels and is derived in [8] as:

n =
W

b
+ Pb(1− Pb)

Note that the reason why we average over(n + 1) inter-
vals instead of over the entire duration of the stream is that
the patch buffers obtained for one period ofn + 1 cannot be
used in the nextn + 1 interval. This is because of the one
intervening batching interval that triggers a regular channel.
Requests in this batching interval do not require any patch
and will consequently release the buffer[b, 2b], which will
be needed by the next batching interval. This triggers a new
cycle of patch byte requests to the server as described ear-
lier.

The cache buffer occupancy, which includes the prefix of
durationb, is given by Equation 4 below [15].

X = b + b

264��W

b

�
− 1

�
(1− P ) +

bW
b
cX

i=1

(1− P )
i
P
bW

b
c−i

375 (4)

The client still needs to buffer the on-going regular chan-
nel while playing back the patch. Late clients in a batch-
ing period buffer an additionalb units of time. Thus,B =
(W + b)r.

Figures 5 shows the evolution of the normalized back-
bone rateR/r versus the duration of the patching win-
dow W under different average inter-arrival request times
λ following a Poisson distribution and batching intervalsb.
Clearly the longer the patching window, the lower the back-
bone rate. That is, the backbone rate may no longer exhibit
a minimum value for a patching window duration within
[0, T − b]. Indeed the longer the durationW , the higher the
temporary patch buffer size required at the proxy.
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Fig. 5. Optimal batch patching with prefix and patch caching. This
graph shows how the normalized backbone rate evolves with the dura-
tion of the patching windowW for different average inter-arrival rates
λ = {8, 0.25} req./min. following a Poisson distribution, and prefix
durationsb = {1, 10} min.

Figure 6 highlights this remark. Note that forλ = 8, Pb

tends to zero and therefore,W = T − b leads toX = T
(b permanently stored andT − b units of time temporar-
ily buffered). The tradeoff between permanent (prefix) and
temporary buffers is also shown. Increasing the prefix du-
ration leads to a gain in normalized rate (see Fig. 5) at the
expense of higher buffer occupancy (see Fig. 6). The set of
equations clearly indicates that the optimal solution to our
optimization problem is full asset caching if the proxy cache
can accomodate for it. We elaborate on this in Sec. III-E. Fi-
nally note that the slope of these straight lines is dictated by
the factorbλ.

D. Partial Caching of Patch and Regular Channel

In this scheme the client receives a single unicast stream
from the proxy. The proxy caches data from the regular
channel and forwards it to the clients. The client buffer re-
quirement is zero in this case. Since the proxy serves all
the requests in an interval ofW + b from a single regular
channel, it has to maintain a circular buffer of up to(W +b)
units, continuously saving data from the regular channel, for
the entire duration of the video. This buffer is required for
each instance of the regular channel which is triggered ev-
ery(n+1) intervals. The size of this buffer for each regular
channel depends on the batching intervals that have non-
zero requests. If there are requests in an interval[tk−1, tk)
that require a patch of(k − 1) buffers, thenkb needs to be
buffered from the ongoing stream while these requests are
playing back the patch and/or the prefix. This is irrespective
of whether or not the previous batching interval had any re-
quests.



0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

W [min.]

C
ac

he
 o

cc
up

an
cy

 [M
B

yt
es

]

λ=8 req./min.

b=1 min.

Asset size: 675 MBytes

λ=8 req./min.

b=10 min.

λ=0.25 req./min.

b=1 min.

Fig. 6. Optimal batch patching with prefix and patch caching. This graph
shows the cache occupancy versus the duration of the patching window
W for different average inter-arrival ratesλ = {8, 0.25} req./min.
following a Poisson distribution, and prefix durationsb = {1, 10}
min.

The scheme is better explained with an example. Sup-
pose there are five batching intervals([ti−1 − ti), i = 1, 5)
in W + b, that is,W = 4b. The interval[t0, t1) triggers the
regular channel att1. The proxy buffersb from the regular
channel to accommodate late requests in this interval that
are playing back the prefix. Suppose[t1 − t2) had requests,
then att2 the proxy adds another buffer to circular buffer
and does not request the server for any patch bytes. Sup-
pose the next two intervals do not have any requests and the
fifth interval [t4 − t5) has a request. Att5 the2b-long cir-
cular buffer allocated by the first two intervals would have
advanced with the regular channel and will contain the in-
terval[3b−5b]. The fifth interval requires the buffer to be5b
long and so it adds three more buffers of sizebr to the cir-
cular buffer. The proxy then fetches the missing patch bytes
in the intervals[b− 2b] and[2b− 3b] from the server while
storing the interval[5b− 6b] from the regular channel.

Here again, we reuse buffers that are allocated by each
interval ofW for subsequent intervals. Each regular channel
results in the caching of the stream equivalent to the circular
buffer (X) allocated to it, thereby reducing the length of the
stream to be transmitted by the server byX. Taking this into
account, the average backbone rateR/r over the total asset
duration is given by [15]:

R

r
=

T−b
n+1∑

i=1

(µ + (T − b)− (i− 1)X∗)

whereµ is obtained from:

µ = b(1− P )P
bW

b c∑

i=1

i∑

j=1

jP j−1

and the cache occupancyX∗ computed over(n + 1)
batching intervals is:

X∗ = b

bW
b c∑

i=1

i(1− P )P b
W
b c−i,

To obtain the cache occupancyX over the total asset
duration, we simply multiplyX∗ by T−b

n+1 to account for
the multiple regular channels that are active simultaneously,
each of which uses a storage ofX∗. Therefore if we have
a request in every single interval ofb (i.e.,Pb = 0), we end
up caching the whole stream in average.

The same conclusions aboutR/r versusW for different
λs andbs as in the previous scheme hold in this scheme
as well. However, this scheme clearly uses more tempo-
rary buffer at the proxy (higher likelihood to fully cache
the assets), while decreasing the backbone rate significantly.
Moreover this schme results in a single stream to the clients
and requires no storage from the client device (i.e.,B = 0),
which makes this approach well suited to streaming multi-
media assets to handheld devices. This scheme is very simi-
lar to Interval Caching [16] whereW + b is the length of an
interval. The difference is that this interval is cached in the
proxy and is stored for use by future intervals.

E. Multiple assets

The multiple assets problem may be formulated as fol-
lows: Givena cache of capacityX , and a set ofN videos
assets characterized by their streaming rateri, durationTi

and interval-based request probabilityPbi , find the tuple
{bi, Wi} ∀ 1 ≤ i ≤ N that minimizesthe aggregate back-
bone rateR =

∑N
i=1 Ri, underthe constraint

∑N
i Xi ≤ X .

Clearly this problem can be solved via standard opti-
mization techniques. However its multi-dimensional nature
makes it computationally expensive. Therefore we propose
a simplification which relies on the previous observation
that both an increase of the prefix durationbi or the patch-
ing window Wi for asseti always result in a lower back-
bone rateRi and a corresponding increase of the temporary
buffer Xi. Also, we have shown thatWi must be null for
bi ≥ Ti/2. These observations lead to the following sim-
plification: we imposeWi = bi for all bi < Ti/2. This
simplification slightly degrades the performance of our sys-
tem but dramatically decreases the complexity.

We now briefly describe the algorithm based on the above
simplification: First, we impose a video unit (e.g., a group-
of-pictures) by which the prefixesbi will either be decreased



or increased. Then we calculate, for every asset, the product
of its popularity by its respective size (similar to the SLRU
technique). Assume all thebi are first set toTi. We elim-
inate a number of video units from the prefix durationbi.
This number is inversely proportional to the product value
for asseti. Finally we iterate until the sum

∑N
i Xi ≤ X .

We compared the full caching technique with the opti-
mal batch patching with prefix and patch caching scenario.
We assumed a Poisson distribution of the request inter-
arrival times, a Zipf distribution of the asset popularity with
various parameters (from which theλi are derived), a set
of 100 videos with constant streaming rates and durations
uniformly distributed in, respectively[56, 1500] kbps and
[15, 90] minutes, and a cache sizeX three times smaller
than the sum of all the asset sizes. Preliminary results show
that the gain in backbone rate is tremendous (from approx-
imately 4 to 8 times lower depending on the parameter of
the Zipf distribution). Moreover our scheme rapidly adapts
to changes in request statistics, while this is a known draw-
back of a full caching scenario.

In the remainder, we detail algorithms for practical im-
plementations of the schemes proposed in this section.

IV. PRACTICAL ISSUES

In all of the scenarios, the proxy receives the client re-
quests, immediately starts streaming the prefix and also
batches them, on a per asset basis. At the end of each batch
the proxy determines if a regular channel needs to be started
or a patch needs to be requested from the origin server,
based on the value ofW computed using the expression in
Section III.

The proxy also runs the optimization algorithm described
in Section III-E periodically to determine the prefixes that
need to be stored in the cache. Initially, the cache starts out
with Constant Time Length (CTL) prefixes of the most pop-
ular videos. The optimization algorithm may be triggered
either periodically, when the network utilization at the proxy
falls below a certain threshold or when the access probabili-
ties of assets change significantly. In all cases, the algorithm
requires an estimate ofPb for each of the assets, to deter-
mine the length of the prefix to cache and thereby maximize
the byte hit ratio (BHR). Note that the value ofPb changes
with the value ofb. The bigger the chosenb, the smaller
is the probability of having zero requests in the batch. Var-
ious methods can again be adopted to determine the value
of Pb. As a simple approach, we could assume the inter-
arrival request rate follows a Poisson distribution and track
the inter-arrival time of requests over a certain time window.
A more accurate but complex method would be to track the
inter-arrival times, fit it to a well-known distribution and use
the characteristics of the distribution to estimatePb.

The optimization algorithm determines the value of the

prefix b for each asset, given the access probabilities. The
proxy then updates the cache to the new state computed
by the algorithm. With the prefixes stored in the cache,
it streams videos to clients using one of the three scenar-
ios. The following subsections describe the algorithm in the
proxy for the three different schemes described in Section
III.

A. Cache Prefix Only

The proxy only stores prefixes of videos. When a re-
quest is received, the proxy may send up to three concurrent
streams to the client – the prefix, the patch stream and the
regular channel. In our scheme, an application level mul-
ticast is used to stream the latter two. The client listens on
three ports for streams from the proxy – the prefix, the patch
and the regular multicast. While playing back the prefix, if
data is received from the patch stream, it is cached and so is
the data from the ongoing multicast. The buffer used by the
client is at most(W + b)r.

B. Cache Prefix and Patch

In this scenario, the proxy caches data from the patch, be-
sides the prefix, and streams these to the client thus reducing
the number of streams to the client to two. For each asset
that has ongoing streams, the proxy maintains an interval
table, which holds information about which intervals of the
video are currently cached. Each interval buffer isb time
units long and is retained as long as there are requests being
served from it. Since a patch can be at mostW time units,
we haveW

b intervals in the interval table. The pseudocode
for the proxy is presented in Figure 7.

Each time a request is received by the proxy, it increments
the request count against each of the patch intervals that this
request needs. And, at the end of each batch, the proxy
checks to see if the batch triggers a regular channel or a
patch. If it triggers a regular channel, the proxy requests a
unicast stream from the origin server and application-level
multicasts it to all the clients in the batch. If not, it de-
termines which of the required patch intervals are locally
cached and fetches the remaining intervals from the server
over a unicast patch channel. The patches are not multicast,
but are streamed to the client individually since they may be
at different points in the playback of the prefix. The proxy
also joins all the requests in this batch to the ongoing regular
channel.

The client receives two streams in this case – the patch
and the regular channel. It buffers the regular channel while
playing back the patch. The client may buffer a maximum
interval ofW +b from the regular channel while it is playing
back the prefix and the patch.



ProcessRequest(r)
{

CreateThread(StartStreamToClient(r));
// add this request to the current batch
addRequestToCurrBatch(r);
// Incr. the rqst count in each relevant
// interval
for (i=1; i <=currBatch.numPatchIntervals; i++)

IntervalTable[i].RequestCount++;
}

StartStreamToClient(r)
{

StreamPrefix();
//b time units have elapsed and the
//next reqd. patch has been fetched
for (i=1; i ≤currBatch.numPatchIntervals; i++)

StreamInterval(IntervalTable[i].buffer);
}

// This runs on a separate thread.
CloseCurrentBatch()
{

for(;;;) {
Sleep(b) // wait for batch to end
currBatch = startNewBatch();
currBatch.startTime = now;
currBatch.endTime =

currBatch.startTime + b;
If (newRCReqd())

currRC = StartNewRC();
// Add clients to regular channel
currRC.AddBatchedClients();
for (i=1;i <=currBatch.numPatchIntervals;i++) {

if (IntervalTable[i].RequestCount == 0)
// If there are no requests, free it
// This happens if currBatch has zero
// requests
free(IntervalTable[i].buffer);

else if (IntervalTable[i].buffer == NULL) {
// get patch in new segment buffer
IntervalTable[i].buffer = newBuffer();
//Fetch patch interval so that it is
//available when needed by
// StartStreamToClient
FetchFromOriginServer((i-1)*b, i*b);
// once the segment is fully obtained,
// update the table and get next segment

}
}

}

Fig. 7. Algorithm at the Proxy for Scenario 2

C. Cache Prefix, Patch and Regular Channel

In the third scenario, we save significantly in the re-
quired client storage and also in the number of simultaneous
streams to the client. The client needs to buffer nothing and
receives only one unicast stream from the proxy. The proxy
stores data from the regular channel and serves patches from
this buffer instead of requesting it from the origin server. Al-
though this reduces the bandwidth streamed from the server,
it requires a larger buffer in the cache on average. For a dis-
cussion in the bandwidth/buffer tradeoff, see Section III.

The difference between this scenario and the previous one
is that, in the previous case, in addition to the prefix, only
patch buffers were being allocated at the proxy. At any time,
there can be a maximum ofWb buffers active. However,
when data is stored from the ongoing stream, the cache has

to hold on to the buffer allocated in each window ofW + b,
for the duration of the video, continuously caching ahead
from the ongoing stream. The algorithm presented below is
applied by proxy separately for each regular channel.

t the end of each batch, the proxy determines how large
the interval cache is.It would consist of as many intervals
as was required by the last non-zero batch in this patching
window. It then increases the circular buffer to be as big as
the patch required for this batch plus the extrab. This can be
better explained with an example. For ease of explanation,
batchbi refers to a batch which requires a patch ofb ∗ i
segments. For instance, if we are at the end of batchb4 att5b
and the last non-zero batch wasb2, then the interval cache
for this regular channel would be2 ∗ b + b long and since
it is caching the ongoing stream, the buffer would contain
intervals2b−3b, 3b−4b and4b−5b. Batchb4 needsb−2b
as a patch and buffer5b−6b from the regular channel. So, it
allocates two buffers, and starts storing the ongoing stream
in one while simultaneously filling the other with the patch
b − 2b from the origin server, while the clients are playing
back the prefix. Once the requests complete the prefix, the
interval b − 2b is available in the buffer and they continue
to play back the stream and continue through the circular
buffer until the end of the stream. Note that in this scheme,
each client gets an individual stream and true application-
level multicast is not done.

The number of active intervals in eachW + b is as large
as the number of non-zero batches. Intuitively, if all batches
during the duration of the stream have non-zero requests,
this video is really popular and we much cache the entire
video and not have to request the origin server. This is the
result that the optimization algorithm yields. If it determines
that the space used by the prefix and the interval cache is as
large as the entire video, it instructs the proxy to do a full-
caching of the video.

CloseCurrentBatch()
{

for(;;;) {
Sleep(b) // wait for batch to end
currBatch = startNewBatch();
currBatch.startTime = now;
currBatch.endTime =

currBatch.startTime + b;
If (newRCReqd()) {

currRC = StartNewRC();
CircularBuffer = new CircBuffer(b);

}
if (currBatch.numRequests > 0) {

n = currBatch.numPatchIntervals+1 -
numAllocatedIntervals;

CircularBuffer.Grow(n*b);
numAllocatedIntervals++;

}
CreateThread (
FetchMissingPatchIntervals())
BufferRegularChannel()

}
}

Fig. 8. Algorithm at the Proxy for Scenario 3



D. Discussion

When discussing streaming video using batching and
multicasting, it is important to address issues such as net-
work delays, jitter and random seeking (VCR functions),
that most multicasting schemes do not address. The fact that
our design uses application level multicasting addresses the
network delay and jitter issues.

First, since all the data flows through the proxy and the
proxy is aware of the network bandwidth to the server and
to all the clients, it can perform QoS-related adaptations to
the stream. Our implementation considers network adapta-
tion on two planes. The optimization algorithm determines
the prefix to cache for each asset depending not only on the
popularity of the asset, but also on the bandwidth available
to the server. The prefix cached is enough to mask the net-
work latency and jitter to stream from the server. Also, when
the proxy determines that it has to request a stream from the
server (patch or regular channel), it determines the avail-
able bandwidth on the link and requests the stream from the
server aδt time earlier. The time estimate could also be in-
fluenced by contracted service levels for given objects. Ad-
ditionally, the proxy has the ability to also perform stream
adaptation services to cater to heterogeneous clients.

As part of ongoing work, we are investigating schemes to
support VCR functions in our framework. Various schemes
for supporting VCR functions in a multicast-based VOD
system are presented in [17], [18], [19].

V. CONCLUSIONS

In this paper, we present a joint server scheduling and
proxy caching scheme aimed at minimizing the bandwidth
streamed from the origin server. The scheme combines
the bandwidth-saving merits of multicast streaming with
QoS and content adaptation service capabilities of a proxy.
We present multiple schemes with different bandwidth and
cache-space tradeoffs that are applicable in different scenar-
ios with different service requirements. Our schemes enable
the honoring of service levels (SLA’s) at the network-edge
streaming proxies by adopting different tradeoffs for assets
with different SLA’s. From our simulations it is evident that
our scheme far outperforms full-caching schemes where an
asset is cached fully or not at all. We are working on var-
ious aspects of this scheme currently, one of which is the
support for VCR functions. We are also in the process of
implementing a prototype version of this technique in IBM’s
VideoCharger Server [20].
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