Published in WCW 2001, Boston, MA, June 2001.

Joint Server Scheduling and Proxy Caching for
Video Delivery

Olivier Verscheure, Chitra Venkatramani, Pascal Frossard and Lisa Amini

requirements for receiving multiple streams, large client

Abstract— We consider the delivery of video assets over a best- buffers, and lack of flexibility in providing user-level QoS.
effort network, possibly through a caching proxy located close to the Because video distribution and delivery incurs high storage

clients generating the requests. We are interested in the joint server and transmission costs. and requires specialized servers at
scheduling and prefix/partial caching strategy that minimizes the ag- :

gregate transmission rate over the backbone network (i.e., average out- the edge, Service Providers will target valued content, for
put server rate) under a cache of given capacity. We present multiple which QoS guarantees are a must and best-effort service is
sch_emes to a_ddress various service levels and client resources by e”unacceptable.

abling bandwidth and cache space tradeoffs. We also propose an op-

timization algorithm selecting the working set of asset prefixes. We

detail algorithms for practical implementation of our schemes. Sim-

ulation results show our scheme dramatically outperforms the full Video Lossy Packet Caching | Client
caching technique. Server Network Poy_ | Cloud
+ +
Keywords— Content Distribution Networks, Streaming Media, |
Server Scheduling, Partial Caching, Batch Patching, SLA Soreing Gaenng

Fig. 1. lllustration of our joint scheduling and proxy caching strategy.
I. INTRODUCTION

Streaming media represents a unique opportunity for Ser-Caching audio/video objects in streaming proxies at the
vice Providers — unlike other web objects which are efietwork edge is another attractive solution. Besides pro-

hanced by edge delivery, quality video actually requiré@ding improved performance to the end-user, caches save

edge of network services to attain reasonable user expgﬁ_network bandwidth between the access provider network

ence. As access providers roll out faster last-mile connét2d the origin server. Caching strategies for video objects
tions, upstream congestion in the provider’s backbone, peE’ﬁf[‘g_e from f:achmg of full V'?'eo Obje,CtS t(,) caching par-
ing links and best-effort Internet will limit their ability to tial video Ot_)JeCtS by_ segmenting the video in the_ temport_;ll
meet customer expectations for these premium links. whgd/or spatial domain(s). There are at least two issues with
streaming media brings additional complexities (very Iargtge caching of whole videos. First, the time and bandwidth

objects, isochronous delivery, and interactivity), there afgauired to bring an entire video into the cache associates

clearly many advantages of edge delivery. Attributes maR.Very high penalty with erroneous caching decisions. Sec-

ing it especially well-suited for edge delivery include it&Nd: ©ngoing streams may prevent deletion at cache replace-
static nature, high value to Content Providers, distributidR€"t time causing the cache to be less reactive and to drift
and delivery revenue potential to Content Delivery Servic®/@y from the optimal operating point.

Providers, and the potential for content services (transcod-Therefore, our objective is to create a content distribu-
ing, ad insertion, digital rights management) best offerdbn system for streaming media, as opposed to a best-effort
through decentralized techniques. video caching system. We achieve this by placing a stream-

Techniques to address the lack of end-to-end bandwidf¢ Proxy in the path between the server and the clients.

to support streaming media include i) multicasting to groupae develop a scheme which combines stream scheduling at

of clients, and ii) caching at streaming proxies located clos&€ Origin server and caching at the proxy to minimize the
in the network to the end user. aggregate transmission rate over the network while main-

] i) o taining configured user-level quality of service (QoS) con-
Multicast scheduling strategies, suchResiodic Broas- straints. The QoS constraints are expressed in terms of max-

castingand Batching have been proposed to simulate onmum playback delay and application-level packet loss ratio

demand access. Although multicast significantly reduc@s| Ry, object prefixes reflecting either popularity or con-

network bandwidth, itis often considered impractical due {p5cted service levels are positioned at proxies to reduce
its reliance on a fully multicast-enabled network. Additionatariyp |atencies and enable on-demand access.

drawbacks of multicast scheduling strategies include client) .)
The paper is organized as follows. In Section Il we

The authors are with the IBM T.J. Watson Research Center, New YOI[Q_,resent r_elevant research '_n the multicast and streaming me-
USA. Contact author: ovl@us.ibm.com. dia caching areas. In Section Ill, we present our scheme for

video stream delivery along with simulation results highplicit tracking of request frequencies achieves higher hit
lighting the bandwidth savings and cache space usage tradges rather than doing LFU or LRU on a per-request ba-
offs under different scenarios. Section IV describes a pragis. They found that the cache replacement policy (LRU or
tical algorithm that is being implemented in our prototyp&FU) did not make any difference because most videos had
and discusses practical issues. Finally we present our congoing streams and could not be chosen for replacement.

clusions and future work in Section V. For this reason and the fact that bringing a large video file to
a cache is very expensive, partial caching (including prefix
Il. RELATED WORK caching) were proposed.

.)) In [10], the authors present a caching scheme for adap-

Streaming video over multicast consumes less netwagtie |ayered video (segmented in the temporal and spatial
bandwidth and imposes less of a load on the sendgmains) such that thguality of the cached stream is pro-
than does streaming video over multiple unicast channeltional to its popularity. They also combine it with a fine-
Among schemes that attempt to capitalize on the benefitsphined cache replacement strategy that tracks statistics per
multicast for VOD are those based on the Periodic Broa iyer of video and eliminates the least popular segments of
castidea[1], [2], [3], [4] The video is divided into many porihe video. The scheme has been designed with the goal
tions which are continuously_broadc_a_st over multiple chagf peing adaptive to the network but not with the explicit
nels and are as such bandwidth efficient only when the igsa) to minimize the bandwidth streamed out of the origin
quest arrival rate is high. Another technique is the silpryer. Secondly, although this method results in caching
ple batching scheme where the server accumulates requggtSmost popular parts of a video, the quality of video play-
over a batching interval and starts a new multicast strea§jck can be variable among different viewers of the same
at the end of each interval if there were any requests in fjgjeo, which might be undesirable. Finally, the adaptive
batch. A more bandwidth efficient scheme is that of Patcheheme works well with layered encoding of videos, which
ing ([5], [6]). In this scheme, each batch is served over oRgnot employed in most popular formats. Another work that
or two channels — either a regular channel alone or the Cogynsiders partial caching MiddleMan[11]. This scheme
bination of a regular channel and a patching channel. A regyrks over a cluster of proxies on a LAN and the combined
ular channel delivers the full video from start to finish Wh”%pace is managed by a centhiddleManwho does the
a patching channel delivers only the missing part of thgche replacement decisions. The caches store only as much
video from the start until the point at which the clients joiy the object as is played back by the client. Other video
the regular channel. The client receives both the patch aélﬂ:hing schemes include Resource-based Ca&tR@f12]
the ongoing stream and buffers the latter while playing bagiich focuses on the management of resources in the cache.
the former. Once the patch is exhausted, the client switch®8c determines which objects (partial or whole) to cache
to the buffered regular multicast. [S] compared the performych that the space and bandwidth of the cache are uni-
nace of patching with simple batching and found that patcfisrmiy utilized. Prefix caching is proposed in [13] and [14]).
ing was able to support true VOD at much higher requegthough caching the prefix can hide the startup latency and

rates for a typical server configuration. Further researchiiier in the network, this scheme does not reduce the aggre-
this area can be found in [7] where the authors present e transmission from the origin server.

Optimized patching scheme which defines a Patching Win- hi build f the id in th |
dow beyond which it is more efficient to start a new regu- In this paperr], we build on some ﬁ the ideas m; edml'Jd-h
lar multicast rather than generate patches. Finally, [8] glicast research area tlo'm|n|m|ze the aggregate ban Wi t
tends the above technique to allow for client-controlled |§_treamed out of the origin server and also present a practical

tency/cost trade-off to provide classes of service by varyiﬁ%heme in which videos are cached in a proxy such that the
the batching interval. space used by the video can be proportional to its popularity

) ~and the available bandwidth to the server.
The other relevant body of research is that of video

caching. Techniques range from caching whole videos (ap-

plying conventional memory caching techniques with modi- 1ll. PARTIAL CACHING AND BATCH PATCHING

fications to account for the size) to partial objects segmented

in the temporal and/or spatial domain(s). Segmentation inln this section, we develop a scheme which combines ef-
the temporal domain is achieved by splitting the video intiicient stream scheduling at the server, and both prefix and
constant time length (CTL) segments and segmentationgartial caching in a proxy located close to the clients gener-
the spatial domain is achieved by encoding videos at multiting the requests.

ple resolutions. Our main objective may be formulated as follows: given a

Full-caching strategies for video in a cluster of cacheset of video assets and their respective characteristics, mini-
is considered in [9]. Key conclusions are that in streanmize the average rate streamed out of the origin server under
ing proxies, replication or striping of objects based on ex cache of fixed capacity. We assume that the network is

ideal (i.e., jitter- and error-free environment) and that thequests are batched, the better the performance. There-

clients wish to be served instantaneously (i.e., null playbafidre the authors integrated the concept of classes of service

delay). Section IV explains why these apparently strong g€0S) in their scheme. Also these multicast-based tech-

sumptions do not lead to any loss of generality. niques rely on multicast-enabled routers. In the remainder,
The motivation behind this problem formulation result¥/® Propose an extension to this scheme which alleviates the

from the following observation: minimizing the averag&P©ve problems and even adds some flexibility.

backbone rate is equivalent to maximizing the average byte

hit ratio (BHR) at the proxy under a given server scheduling50 EE R (R Optimal patehing
strategy. The problem formulation is refined in Section Ill- s; - - =8 r=2 —— Opfimired bateh patehing | 7
E after the complete description of our joint strategy. The || -~ A=infinity

study is first performed on a single video asset. Then we
consider a heterogeneous set of video assets and related.re
quest patterns. We now describe the server scheduling straif-
egy we build our scheme on.

N
o

A. Optimized Batch Patching

Normalized backbone
n
o

White and Crowcroft have recently introduced the con- '\
cept of optimized batch patching [8], which aims at mini- , |
mizing the average server output rate (i.e., backbone rate).
Basically, client requests are batched together on an intervaf|
basis before requesting either a patch or a regular multicast ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

10 20 30 40 50 60 70 80 920

(RM) from the server. The interval is fixed and notedrol- ° W [min]
'°‘.""”9 the reasoning from [7].’ .there IS an Opt!mtchlng Fig. 2. Optimized batch patching versus optimal patching. This graph
Window notedV, after which itis more bandwidth efficient shows how the normalized backbone rate evolves with the size of the

to start a new regular multicast rather than send patches. patching window for different average inter-arrival rates following a

. . Poisson distribution\. The duration of the video assEtis 90 minutes.
They refer to an RM-epoch as one in which a regular mul- the patching intervat is set to 1 minute.

ticast was started and a non-RM epoch as one in which a
regular multicast did not begin. The average backbone rate,
R, is calculated in terms of the mean of the aggregate num- Partial Caching applied to Batch Patching
ber of bytes contained in all patches commencing between
two adjacent RM epochs chosen at random and the meanVe build on the optimized batch patching idea by intro-
interval between RM epochs: ducing a proxy cache in the path from the origin server to the
clients cloud. We adopt the intuitive approach consisting of
(1= Py)rW? + (1 = By)brW + 2rbT storing the first units of time in the proxy cache (i.e., batch-
: @ , , :
20W + 12_be ing period). That is, the proxgermanentlycaches grefix
of b units of time. Moreover we impose the proxy cache to
whereP, = P, (0) denotes the probability of gathering zerglay the role of a client for the origin server. That is, all the
request in a batch of duratidn(empty batch)" is the du- patches and regular multicasts streamed out of the server are
ration of the video and; denotes the streaming rate of theequested by the proxy and are thereby streamed through it.
video asset. The optimal patching winddW is derived This design approach has several advantages among which,
by differentiating? and setting the result equal @ This (i) it eliminates the need for network-level multicast, (ii)

R:

yields: it allows for client-based stream adaptation (heterogeneous
W= —b+ /Pyb? +2(1 — P,)bT 2 client capabilities), and (iii) it has the potential to decrease
B b(1— Py) the number of streams concurrently streamed to a given

This scheme outperforms other multicast-based techniqé§nt: The former leads to a change of terminology. In
in terms of average backbone rate over a large range of 1a€ remainder, we usegular channeland patch channel
quest rates. Figure 2 compares the normalized backbdhgiead of regular and patch multicasts.

rate (that is,R/r) required by this scheme versus the op- Our scenario is illustrated by Fig. 3. The proxy divides
timal patching algorithm [7] for different Poisson requeghe time axis into intervalgt;_1,t;] of durationb units
rates (that isP, = e~®*) and a batching intervdl set tol of time. Assume a request arrives at the proxy at time
minute. Optimized batch patching clearly outperforms opthy € [tx—1,tx). The proxy immediately starts streaming
mal patching, albeit at the expense of higher latency (plathe requested asset to the client. Assume the most recent
back delay). Actually, the higher the intervabver which regular channel (RC) was started at time with ¢, < t;

is an integral number df units of time. If ¢; is such that ™ ‘ ‘ ‘
---- Optimised batch patching
—— OBP + prefix caching

tr < ts+W,the proxy joins the RC at timg and streams it
through to the client, which buffers the stream while playing *
back the prefix. Also at time,, the proxy requests a patch

of durationt;, — t, and passes it on to the client. However_ 1o
if £, > t, + W, a new regular channel of the asset of dur
tion T — b (the prefix of duratiorb is sitting in the proxy) is
requested from the server at tirhe In practice the streams §
requested from the server are unicast to the proxy, whighs
implements multicast at the application level to provide the
services mentioned above. <

R/r

bone ra&’
©

cl

Joins RM and request
patch of duration 4b
A

- b [min.]

) P \ 1<————l—’—.——>i \ \ Fig. 4. Optimized batch patching with and without prefix caching. This
ts tar 1y t 3 graph shows how the normalized backbone rate evolves with the du-
E W A > ration of the batching interval (duration of the prefix) for different
Sends prefix average inter-arrival ratel following a Poisson distribution. The du-

ration of the video asset is 90 minutes. The patching window is com-
Fig. 3. Optimized batch patching with prefix caching. A client request puted from Eq. 2 witi” being replaced by — b when a prefix ob is
an asset at timeé; € [tx_1,t,). The interval limitt, is such that cached.
tp <ts+ W.

The average backbone rate is computed from Equation§'@ interval must store up t6 extra units of time. Thus,
and 2 by replacing” with T — b. Figure 4 compares the B = (W + b)r, which may not be practical.
optimized batch patching technique with and without prefix Therefore we extend this first approach by considering
caching in terms of the required normalized backbone ratee temporarypartial caching of either (i) the patch only or
versus the duration of the prefixin minutes. We again as- (i) the patch and the regular channel. In the first case, the
sume a Poisson arrival process such that= e~**. The proxy eliminates the need to stream the patch to the clients
two techniques provide approximately the same normalizegt temporarily caching theight portions of it (the client
backbone rate for small valuestofThe difference becomesmanages only up to two concurrent streams). In the sec-
noticeable forb > 10 minutes. Also each technique pro-ond case, the proxy caches whatever it takes to allow for
vides the same performance independent of the request gdgquential streaming of the asset from beginning to end to
for batching intervald > 15 minutes. Note that increas-the clients (the client manages only a single stream).
ing b is equivalent to increasing either the client playback

delay (without prefix) or the cache occupancy (with prefix . : S
Note also that fob > L, the optimal patching window is)rive the equations leading to the estimation of the average

opt EX o backbone ratek, the average cache occupankyand the
zero (W= = 0) when a prefix is cached. TherefoRyr cjient buffering requirements. The derivations of all the

reduces to: equations are not presented here due to space constraints
R _(T-b(1-P) and can be found in [15].
r

We now examine these two extensions separately and de-

<(1-Fh).
C. Partial Caching of Patch Only

The drawbacks of this straightforward extension are

twofold. First, the link connecting the requesting client to . .
the proxy must accomodate up to three concurrent streaigaching the patch. Let,_y,) denote a batch which re-

Indeed the first client of a batching period will have aduires a patch of buffers in the intervab to kb. At ., the

ready triggered the streaming of the regular channel aRE*Y determines which patch intervals are not catlae

of the patch which will be needed by the late arrivals irs1tarts fetch'lng'the f]rgt required interval and completes it at
té+1- At this time, it is aware of whether or not there are

the same batching period, which are still playing back thequests irftx. tx.1). If there are requests, it does not free

prefix. Second the client buffer must accomodate up t .
W + b units of time at the streaming ratelndeed the client (%he buffer when all the requests i1, ¢) are serviced

must buffer the On'g(_)ing regular Channe'_Wh”e receiving thelIt needs to fetch at least one patch interval which is betwéen 1)b
patch of maximum siz&/. Also the last client of the batch- to kb.

The proxy eliminates the second stream to the client by

but retains it to service requestsin, tx+1) and subsequent *
non-zero batches. Everytime there is a batch with zero re; |
quests, the buffer is released once it has been streamed to all | #=8 req/min.

b=1 min.

the clients in the previous batch. asf , , , , i

By caching the patch, we clearly save on bandwidth from,,
the server compared to the previous approach. The numider

of patch buffers streamed from the server, in units of time;?| 3025 req/min. 1

b=1 min.

is given by (refer to [15] for details):

Normalized ba
n
o

L% ;L&
, L4 , j—
p=b|3 i1-P)P2 + 3 (2 -1DA-P)’PTH ()
=1

i=1

a

A=8 req./min.
b=10 min.

=)

The normalized average backbone r&tgr is thus ob-
tained from:

R wr + (T _ b)’l“ 0 10 20 30 40 50 60 70 80 90

r b(1+mn)
Fig. 5. Optimal batch patching with prefix and patch caching. This

wheren is the mean number of batches between two reg- graph shows how the normalized backbone rate evolves with the dura-
tion of the patching windowV” for different average inter-arrival rates

ular channels and is derived in [8] as: X = {8,0.25} req./min. following a Poisson distribution, and prefix
durationsh = {1, 10} min.

w
nz?—FPb(l—Pb)

Figure 6 highlights this remark. Note that far= 8, P,

Note that the reason why we average ofer+ 1) inter- tends to zero and therefordl/ = 7' — b leads toX = T
vals instead of over the entire duration of the stream is th@tpermanently stored an#él — b units of time temporar-
the patch buffers obtained for one periodof 1 cannot be jly buffered). The tradeoff between permanent (prefix) and
used in the next + 1 interval. This is because of the on&emporary buffers is also shown. Increasing the prefix du-
intervening batching interval that triggers a regular channetion leads to a gain in normalized rate (see Fig. 5) at the
Requests in this batching interval do not require any patefipense of higher buffer occupancy (see Fig. 6). The set of
and will consequently release the buffér2b], which will - equations clearly indicates that the optimal solution to our
be needed by the next batching interval. This triggers a nejtimization problem is full asset caching if the proxy cache
cycle of patch byte requests to the server as described & accomodate for it. We elaborate on this in Sec. lII-E. Fi-
lier. nally note that the slope of these straight lines is dictated by

The cache buffer occupancy, which includes the prefix 81€ factorb.
durationb, is given by Equation 4 below [15].

D. Partial Caching of Patch and Regular Channel

W L5 W In this scheme the client receives a single unicast stream
X=b+b Q*J - 1) =P+ z::l (I=p)yPev (@ from the proxy. The proxy caches data from the regular

channel and forwards it to the clients. The client buffer re-
) i) guirement is zero in this case. Since the proxy serves all
The _cllent st_lll needs to buffer the on-going regular chaqhe requests in an interval &% + b from a single regular
nel while playing back the patch. Late clients in a batchy,anne| it has to maintain a circular buffer of U & +b)
ing period buffer an additiondi units of time. ThuspB = units, continuously saving data from the regular channel, for
(W +b)r. the entire duration of the video. This buffer is required for
Figures 5 shows the evolution of the normalized bacleach instance of the regular channel which is triggered ev-
bone rateR/r versus the duration of the patching winery(n+ 1) intervals. The size of this buffer for each regular
dow W under different average inter-arrival request timeshannel depends on the batching intervals that have non-
A following a Poisson distribution and batching intervials zero requests. If there are requests in an intdeyal;, ¢1)
Clearly the longer the patching window, the lower the backhat require a patch dfc — 1) buffers, therkb needs to be
bone rate. That is, the backbone rate may no longer exhibitffered from the ongoing stream while these requests are
a minimum value for a patching window duration withirplaying back the patch and/or the prefix. This is irrespective
[0,T — b]. Indeed the longer the duratid#, the higher the of whether or not the previous batching interval had any re-
temporary patch buffer size required at the proxy. guests.

700

Asset size: 675 MBytes L w 1
b

600 v v v v : : : J u:b(l—P)PZZij_l

=8 req./min. i=1 j=1
b=1 min.

o

Q

=]
T

and the cache occupancy* computed over(n + 1)
1 batching intervals is:

=8 reg./min.
b=10 min.

A

=)

=]
T

- K
X =bY i(1-P)pL¥i-i

7 =1

o

Cache occupancy [MBytes]
8
o
T

o

=3

1=
T

, e T To obtain the cache occupancy over the total asset
= Thm0.25 req min. duration, we simply multiplyX* by f;i’ to account for

L= ‘ ‘ = ‘ ‘ the multiple regular channels that are active simultaneously,
0 10 20 30 40 50 60 70 80 90

W min.] each of which uses a storage &f*. Therefore if we have
))))])) a request in every single interval bfi.e., P, = 0), we end
Fig. 6. Optimal batch patching with prefix and patch caching. This gra

shows the cache occupancy versus the duration of the patching wingﬂ% caching the whole stream in average.
;g/”galrl ndiff:rggtisz\éir%?:triighetir(-)ar\]”i\;?]ldra@? =d{87t(_)£]5} feq-/Toin- The same conclusions aballyr versusW for different
e , and prefix duratiobs= {1,10} \s andps as in the previous scheme hold in this scheme
as well. However, this scheme clearly uses more tempo-
rary buffer at the proxy (higher likelihood to fully cache
]]] the assets), while decreasing the backbone rate significantly.
The scheme is better explained with an example. SuPpreover this schme results in a single stream to the clients
pose there are five batching intervéls 1 —t:),i = 1,5) and requires no storage from the client device (&= 0),
in W+ b, thatis,IW = 4b. The intervalto, t,) triggers the \yhich makes this approach well suited to streaming multi-
regular channel at;. The proxy buffers) from the regular megia assets to handheld devices. This scheme is very simi-
channel to accommodate late requests in this interval that g Interval Caching [16] wher® + b is the length of an

are playing back the prefix. Suppoge — ¢;) had requests, interval. The difference is that this interval is cached in the
then att, the proxy adds another buffer to circular bUffebroxy and is stored for use by future intervals.

and does not request the server for any patch bytes. Sup-
pose the next two intervals do not have any requests and E1e
fifth interval [t4 — ¢5) has a request. At the2b-long cir-
cular buffer allocated by the first two intervals would have The mu|t|p|e assets prob|em may be formulated as fol-
advanced with the regular channel and will contain the il]bws: Givena cache of Capacitw, and a set ofV videos
terval[3b—5b]. The fifth interval requires the bufferto b& assets characterized by their streaming rateluration7;
long and so it adds three more buffers of sizeo the Cir- and interval-based request probabiliy,, find the tuple
cular buffer. The proxy then fetches the missing patch bytes; 17,1 v1 < i < N thatminimizesthe aggregate back-

in the intervalgb — 2b] and[2b — 3b] from the server while 56 rateR — ZN R, underthe ConstrainE].V X, < X,
storing the interval5b — 6b] from the regular channel. i=1 i =

100

Multiple assets

) Clearly this problem can be solved via standard opti-
_ Here again, we reuse buffers that are allocated by e3gfyation techniques. However its multi-dimensional nature
interval of W for subsequent intervals. Each regular channg|kes it computationally expensive. Therefore we propose
results in the caching of the stream equivalent to the Circu'érsimplification which relies on the previous observation
buffer (X) allocated to it, thereby reducing the length of thg, ot poth an increase of the prefix duratigror the patch-
stream to be transmitted by the servetyTaking this into ing window WW; for asseti always result in a lower back-
account, the average backbone rafe- over the total asset jyone rater; and a corresponding increase of the temporary

duration is given by [15]: buffer X;. Also, we have shown thd¥; must be null for
b; > T;/2. These observations lead to the following sim-
b plification: we imposelV; = b; for all b; < T;/2. This
R . . N simplification slightly degrades the performance of our sys-
=2 (T =b) - (- 1)X7) tem but dramatically decreases the complexity.

=1
We now briefly describe the algorithm based on the above
simplification: First, we impose a video unit (e.g., a group-
wherey is obtained from: of-pictures) by which the prefixds will either be decreased

or increased. Then we calculate, for every asset, the prodpfix b for each asset, given the access probabilities. The
of its popularity by its respective size (similar to the SLRiproxy then updates the cache to the new state computed
technique). Assume all thig are first set tdl;. We elim- by the algorithm. With the prefixes stored in the cache,
inate a number of video units from the prefix duratign it streams videos to clients using one of the three scenar-
This number is inversely proportional to the product values. The following subsections describe the algorithm in the
for asset. Finally we iterate until the su@fy X, < X. proxy for the three different schemes described in Section

We compared the full caching technique with the optf-”'
mal batch patching with prefix and patch caching scenario.
We assumed a Poisson distribution of the request int%r-
arrival times, a Zipf distribution of the asset popularity with ™
various parameters (from which the are derived), a set

of 100 videos with constant streaming rates and durationsThe_ proxy only stores prefixes of videos. When a re-
uniformly distributed in, respectivel§s6, 1500] kbps and quest is received, the proxy may send up to three concurrent

[15,90] minutes, and a cache size three times smaller streams to the client — the prefix, the patch stream and the

than the sum of all the asset sizes. Preliminary results shfggular channel. In our scheme, an application level mul-

that the gain in backbone rate is tremendous (from approg-as'[is used to stream the latter two. The client listens on

imately 4 to 8 times lower depending on the parameter ree ports for S”eams from th_e proxy_—the prefix, the pat_ch
the Zipf distribution). Moreover our scheme rapidly adap%:d the regular multicast. While playing back the prefix, if

Cache Prefix Only

to changes in request statistics, while this is a known dra _tays refcelveﬂ from th_e patclh_strear_rljhlt 's (;fached gnbd sg 'S
back of a full caching scenario. the data from the ongoing multicast. The buffer used by the

. . _ ~_ clientis at mos{W + b)r.
In the remainder, we detail algorithms for practical im-

plementations of the schemes proposed in this section.
B. Cache Prefix and Patch
IV. PRACTICAL ISSUES
In this scenario, the proxy caches data from the patch, be-

In all of the scenarios, the proxy receives the client reides the prefix, and streams these to the client thus reducing
quests, immediately starts streaming the prefix and ald® number of streams to the client to two. For each asset
batches them, on a per asset basis. At the end of each baltett has ongoing streams, the proxy maintains an interval
the proxy determines if a regular channel needs to be startatlle, which holds information about which intervals of the
or a patch needs to be requested from the origin serveigeo are currently cached. Each interval buffeb sme
based on the value 61" computed using the expression irunits long and is retained as long as there are requests being
Section 11l served from it. Since a patch can be at midstime units,

The proxy also runs the optimization algorithm describelf® have’7- intervals in the interval table. The pseudocode
in Section III-E periodically to determine the prefixes thaP the Proxy is presented in Figure 7.
need to be stored in the cache. Initially, the cache starts ouEach time a request is received by the proxy, itincrements
with Constant Time Length (CTL) prefixes of the most popthe request count against each of the patch intervals that this
ular videos. The optimization algorithm may be triggererbquest needs. And, at the end of each batch, the proxy
either periodically, when the network utilization at the proxghecks to see if the batch triggers a regular channel or a
falls below a certain threshold or when the access probabjpiatch. If it triggers a regular channel, the proxy requests a
ties of assets change significantly. In all cases, the algorithmicast stream from the origin server and application-level
requires an estimate d¥f, for each of the assets, to determulticasts it to all the clients in the batch. If not, it de-
mine the length of the prefix to cache and thereby maximitermines which of the required patch intervals are locally
the byte hit ratio (BHR). Note that the value Bf changes cached and fetches the remaining intervals from the server
with the value ofb. The bigger the chosel the smaller over a unicast patch channel. The patches are not multicast,
is the probability of having zero requests in the batch. Valput are streamed to the client individually since they may be
ious methods can again be adopted to determine the vatualifferent points in the playback of the prefix. The proxy
of P,. As a simple approach, we could assume the intalso joins all the requests in this batch to the ongoing regular
arrival request rate follows a Poisson distribution and trackannel.
the inter-arrival time of requests over a certain time window. The client receives two streams in this case — the patch
A more accurate but complex method would be to track the, he regular channel. It buffers the regular channel while
inter-arrival tlr_ne_s, fititto ayvel_l—kn_own d|str_|but|on and useplaying back the patch. The client may buffer a maximum
the characteristics of the distribution to estimate interval of W +-b from the regular channel while it is playing

The optimization algorithm determines the value of thack the prefix and the patch.

ProcessRequest(r)

CreateThread(StartStreamToClient(r));
/I add this request to the current batch
addRequestToCurrBatch(r);
/I Incr. the rgst count in each relevant
/I interval
for (i=1; i <=currBatch.numPatchintervals; i++)
IntervalTable[i]. RequestCount++;
}

StartStreamToClient(r)
{
StreamPrefix();
/lb time units have elapsed and the
/Inext reqd. patch has been fetched
for (i=1; i <currBatch.numPatchintervals; i++)
Streaminterval(IntervalTable[i].buffer);

/I This runs on a separate thread.
CloseCurrentBatch()

for(;;;) {
Sleep(b) // wait for batch to end
currBatch = startNewBatch();
currBatch.startTime = now;
currBatch.endTime =
currBatch.startTime + b;
(newRCReqd())
currRC = StartNewRC();
/I Add clients to regular channel
currRC.AddBatchedClients();
for (i=1;i < =currBatch.numPatchintervals;i++)
if (IntervalTable[i].RequestCount == 0)
/I If there are no requests, free it
/I This happens if currBatch has zero
/I requests
free(IntervalTable[i].buffer);

=

/I get patch in new segment buffer
IntervalTable[i].buffer = newBuffer();
/IFetch patch interval so that it is
/lavailable when needed by

/I StartStreamToClient
FetchFromOriginServer((i-1)*b, i*b);

/I once the segment is fully obtained,

/I update the table and get next segment

else if (IntervalTable[i].buffer == NULL) {

Fig. 7. Algorithm at the Proxy for Scenario 2

C. Cache Prefix, Patch and Regular Channel

In the third scenario, we save significantly in the re- currBatch.startTime = now;
quired client storage and also in the number of simultanequs currBatch.startTime + b
streams to the client. The client needs to buffer nothing and ~ f (newRCReqd()) {
receives only one unicast stream from the proxy. The pro
stores data from the regular channel and serves patches f
this buffer instead of requesting it from the origin server. A
though this reduces the bandwidth streamed from the ser
it requires a larger buffer in the cache on average. For a dis- numAllocatedintervals++
cussion in the bandwidth/buffer tradeoff, see Section IIl.

The difference between this scenario and the previous gne FetchMissingPatchintervals()
is that, in the previous case, in addition to the prefix, on
patch buffers were being allocated at the proxy. At any time,}
there can be a maximum d{i buffers active. However,

to hold on to the buffer allocated in each windowl®&f+ b,

for the duration of the video, continuously caching ahead
from the ongoing stream. The algorithm presented below is
applied by proxy separately for each regular channel.

t the end of each batch, the proxy determines how large
the interval cache is.It would consist of as many intervals
as was required by the last non-zero batch in this patching
window. It then increases the circular buffer to be as big as
the patch required for this batch plus the extrahis can be
better explained with an example. For ease of explanation,
batchb; refers to a batch which requires a patchbof i
segments. For instance, if we are at the end of biatelhtsb
and the last non-zero batch was then the interval cache
for this regular channel would &« b + b long and since
it is caching the ongoing stream, the buffer would contain
intervals2b — 3b, 3b — 4b and4b — 5b. Batchb, needd — 2b
as a patch and bufféb — 6b from the regular channel. So, it
allocates two buffers, and starts storing the ongoing stream
in one while simultaneously filling the other with the patch
b — 2b from the origin server, while the clients are playing
back the prefix. Once the requests complete the prefix, the
interval b — 2b is available in the buffer and they continue
to play back the stream and continue through the circular
buffer until the end of the stream. Note that in this scheme,
each client gets an individual stream and true application-
level multicast is not done.

The number of active intervals in eaéh + b is as large
as the number of non-zero batches. Intuitively, if all batches
during the duration of the stream have non-zero requests,
this video is really popular and we much cache the entire
video and not have to request the origin server. This is the
result that the optimization algorithm yields. If it determines
that the space used by the prefix and the interval cache is as
large as the entire video, it instructs the proxy to do a full-
caching of the video.

CloseCurrentBatch()

for(;;;) {
Sleep(b) // wait for batch to end
currBatch = startNewBatch();

currBatch.endTime =
currRC = StartNewRC();
4 CircularBuffer = new CircBuffer(b);
}
if (currBatch.numRequests > 0)
n = currBatch.numPatchintervals+1 -
er, numAllocatedintervals;
CircularBuffer.Grow(n*b);

CreateThread (

BufferRegularChannel()

Y 3

Fig. 8. Algorithm at the Proxy for Scenario 3

when data is stored from the ongoing stream, the cache has

D. Discussion 2]
When discussing streaming video using batching ar[gq
multicasting, it is important to address issues such as net-
work delays, jitter and random seeking (VCR functionsﬁ
that most multicasting schemes do not address. The fact that
our design uses application level multicasting addresses the
network delay and jitter issues. 5]

First, since all the data flows through the proxy and the
proxy is aware of the network bandwidth to the server a g
to all the clients, it can perform QoS-related adaptations to
the stream. Our implementation considers network adapté-
tion on two planes. The optimization algorithm determines
the prefix to cache for each asset depending not only on tee
popularity of the asset, but also on the bandwidth availaqé
to the server. The prefix cached is enough to mask the nét-
work latency and jitter to stream from the server. Also, whemo]
the proxy determines that it has to request a stream from the
server (patch or regular channel), it determines the avail-
able bandwidth on the link and requests the stream from thé]
server ajt time earlier. The time estimate could also be in[- 2]
fluenced by contracted service levels for given objects. A&—
ditionally, the proxy has the ability to also perform strearti3]

adaptation services to cater to heterogeneous clients. [14]

As part of ongoing work, we are investigating schemes to
support VCR functions in our framework. Various schemgss;
for supporting VCR functions in a multicast-based VOD

system are presented in [17], [18], [19]. [16]

V. CONCLUSIONS [17]

In this paper, we present a joint server scheduling and
proxy caching scheme aimed at minimizing the bandwidths]
streamed from the origin server. The scheme combines
the bandwidth-saving merits of multicast streaming witf g
QoS and content adaptation service capabilities of a proxy.
We present multiple schemes with different bandwidth and
cache-space tradeoffs that are applicable in different scenar-
ios with different service requirements. Our schemes enaffél
the honoring of service levels (SLAS) at the network-edge
streaming proxies by adopting different tradeoffs for assets
with different SLA's. From our simulations it is evident that
our scheme far outperforms full-caching schemes where an
asset is cached fully or not at all. We are working on var-
ious aspects of this scheme currently, one of which is the
support for VCR functions. We are also in the process of
implementing a prototype version of this technique in IBM’s
VideoCharger Server [20].

REFERENCES
[1] C.C.Aggarwal, J.L. Wolf and P.S. Yu, “A permutation based pyramid
broadcasting scheme for Metropolitan VOD systemByoc. of the
IEEE International Conference on Multimedia Systedusie 1996.

A.Dan, D.Sitaram and P.Shahabuddin, “Scheduling Policies for an
On-Demand Video Server with Batchind?toceedings of ACM Mul-
timedia Oct. 1994.

K.A. Hua and S.Sheu, “Skyscraper Broadcasting: A new Broad-
casting Scheme for Metropolitan VOD systemBfbceedings of the
ACM SIGCOMM 1997.

S.Viswanathan and T.Imielinski, “Metropolitan Area Video-on-
Demand Service using Pyramid Broadcastindyiltimedia Systems
vol. 4, August 1996.

K.A. Hua, Y.Cai and S.Sheu, “Patching: A multicast technique for
True On-Demand ServicesProceedings of ACM Multimedi&ept.
1998.

S.Sen, L.Gao, J.Rexford and D.Towsley, “Optimal patching scheme
for efficient multimedia streaming,” Proc. of IEEE International
Conference on Multimedia Computing and Systelase 1996.

Y.Cai, K.Hua and K.Vu, “Optimizing Patching Performanc&to-
ceedings of ACM/SPIE Multimedia Computing and Networkiag
1999.

Paul P. White and Jon Crowcroft, “Optimized Batch Patching with
Classes of Service ACM Communications Revie®ctober 2000.
Martin Reisslein, Felix Hartanto and Keith Ross, “Interactive Video
Streaming with Proxy ServerslEEE Infocomm2000.

Reza Rejaie, Mark Handley, Haobo Yu and Deborah Estrin, “Proxy
Caching Mechanism for Multimedia Playback streams in the Inter-
net,” Proceedings of the 4th International Web Caching Workshop
March 1999.

Soam Acharya and Brian Smith, “ MiddleMan : A Video Caching
Proxy Server,"Proceedings of NOSSDAYune 2000.

Renu Tewari, Harrick Vin, Asit Dan and Dinkar Sitaram, “Resource-
based Caching for Web server#;’ Proceedings of MMCNL998.
S.Sen, J.Rexford and D.Towsley, “Proxy prefix caching for multime-
dia streams,1EEE Infocomm1999.

Y.Wang, Z-L.Zhang, D. Du, and D.Su, “A network conscious ap-
proach to end-to-end video delivery over wide area networks using
proxy servers,1EEE InfocommApril 1998.

O.Verscheure, C.Venkatramani, P.Frossard and L.Amini, “Joint
Server Scheduling and Proxy Caching for Video DeliveryBM
Technical Report Number RC219&D01.

A. Dan and D. Sitaram, “A generalized interval caching policy for
mixed interactive and long video environmentSPIE Multimedia
Computing and Networking Conferendanuary 1996.

E.L. Abram-Profeta and K.G. Shin, “Providing Unrestricted VCR
Functions in Multicast Video-on-Demand Servers|EEE Inter-
national Conference on Multimedia Computing and Systelase
1998.

K. Almeroth and M. Ammar, “On the Use of Multicast Delivery to
Provide a Scalable and Interactive Video-on-Demand Servdoei-

nal on Selected Areas of Communicatigmigust 1996.

Fei, Z., Kamal, I., Mukherjee, S. and Ammar, M., “Providing Interac-
tive Functions for Staggered Multicast Near Video-on-Demand Sys-
tems (Extended Abstract),Proceedings of the IEEE International
Conference on Multimedia Computing and Systems (Poster paper)
June 1999.

IBM, “The IBM VideoCharger Server, details available at
http://www.ibm.com/software/data/videocharger/,” .

