1290 IEEL Transactions on Consumer Bleetronics, Vol, 45, No, 4, NOVEMBLR 999

AN EFFICIENT HOST/CO-PROCESSOR SOLUTION FOR MPEG-4 AUDIO COMPOSITION

L. Le Bourhis, G. Zoia, M. Mattavelli, D, J. Mlynek
Swiss Federal Institute of Technology, Integrated Systems Laboratory LSI, CH-1015 Lausanne Switzeriand

Abstract

Yhis paper presents an efficient software host/co-
processor archiitecture for the implementation of
MPEG-4 Audio composition. The preposed solution is
based on a specific partition between general-purpose
tasks and DSP-oriented functionality, thus achieving
portability, efficient partitioning of the processing
Fescnrees (d memory management.

1 Introduction

The new MPEG-4 Audio and Systems standards [1, 2]
provide extended capabilitics for audio processing and
composition. MPEG-4 Audio is built around two familics
of components. The first one is the decoding part (the
Audio layer) while the sccond one is built aound the
BIFS (Binary Format for Scencs | 1]} composition uoxdes
(the Systems layer). MPLEG-4 decoders tuke MPEG-4
clementary bit-streams, encoded in various formats such
as AAC (Advanced Audio Coding [2}) based on state-ol-
the-art subband coding and shaping, CELP (Code Excited
Lincar Prediction [2]) for vocal compression and SA
(Structured Audio [2]) for syalhetic generation and digital
audio processing. Once these bit-streams are decoded into
decoding bulfers, composition buffers are produced.
Composition buffers are then processed in BIFS nodes
which perform various processing stages on the audio
streams 0 as o generate the oulput sound, MPEG-4
Systems provides audio extended capabilities, which are
much more powerful and efficient than those present in
similar multimedia languages such as VRML [7] (Virtual
Reality Mark-up Language). It provides mechanisms
perform mixing, delay, 3-1 spatial processing or other
additional clfccts, to cnhance the audio expericnee
delivered by high-quality coding ools such as AAC (sec
for instance reference [4]).

However, these new powerful and flexible ways of
handling audio rendering require o large amount of
processing resources and present new hmplementation
challenges in comparison with the classical andio coding
schemes. Morcover, the complexity ol audio scene
structuges requires appropriale strategics for resource

Revised manuscripl received October 8, 1999

partitioning, memory management and an efficient
implementation ol the various processing nodes [4].

This paper presents an architeeture for the
implementation of an MPEG-4 Audio Compositor aiming
1o uchicve:

e portability on different host/co-processor platforms

s [rame hased processing

s llexibility [or the integration of different processing
node implementations speeilied by the audio scenc at
hand,

The results presented in this paper summarize the
extensive studics and recent achicvements of the authors
concerning the implementation of MPP1G-4 Systems Audio
nades [4,5]. Over the simple node implementations, a
complete scene management uceds several other
fundamental strategies 1o be optimized: among them
sampling rate conversion, composition buffer structure,
synchronization and channel routings. In the first part, we
will describe MPEG-4 audio composition leatures and the
niechanisms necessary to build an clficient model for audio
camposition, avoiding pitfalls created hy MPLEG-4 new
teatures. Once proper solutions have been found lor these
issucs, it is possible to proceed with the definition ol an
optimal memory and processing organisation, in order 1o
make it cusily portable on a hosl/co-processor
configuration. The secowd part ol the paper reports the
implementation and the validation of this Flost/Co-
processor architeeture design.

2 An approach towards an efficient
“MPEG-4 Audio Systems”
implemenitation
This section describes general features offered by the
MPLG-4 audio compositor, as well as some clues Tor an
ellicient implementation. The proposed solutions arc
optimized for version | ol the MPEG-4 stanclard.,
2.1 Sampling Rate Conversion
When the MPEG-4 system is operative, decoders produce
composition bullers to feed the compositor, According to
the decoder and audio content type, the frame length of

0099 3006349 510,00 ¥ 1999 IRER

Bourhis et al.; An Gllicient Host/Co-Processor Solution for MPLG-4 Audio Cemposition 1201

audio samples and the sampling frequency may be
dilferent trom decoder o decoder according to the values
in Table I,

s
e
e B o
2050] 320
24000 1920
32000 2048
T oadton
L AROD0
oo
RE200
e

Tuble |

As we will see in the deseription of a [unctional system,
the wide range ol possible sampling frequencics and
frame lengths introduces eclevant problems Tor the
inpletentation ol the composition process. So as w solve
these problems, 1t is usclul to develop w suitable model
for composition bullers that cnable o llexible
management ol the synchronization. This model must
retain all valuable information that is nccessary for
managing composition (Composition Time Stamyps,
sampling rate, bulfer length). These buffers are crealed
by decoders and aceessed by dudioSowrce nodes. If the
various children of a node do not produce output at the
same sapling rate, then the size of the output buffers of
the children do not match. Therelore, the sampling rate of
the children’s outputs must be brought into alignment in
order o place their output buflers in the input bulfer of
the parcnt node. The sampling vate of the input buller for
the node must be the fastest of the sampling rates of the
children, The output buffers of the children must be re-
sampled to be at this sampling rate. The specific method
of re-sampling is non-normative,

In the example of Figure 1, the AudioSource at 22 kilz
fceds two input channels ol the AudioMix node,

AudicSonrce T - Audiotxlay P
22kHz -
(N ——————

- AudioMix

AudioSieee” |

a4, 1kfl

|

Figure 1 A simple andio scene

According o the standard, two sampling rale conversions
are needed, one for (he delayed channel and one for the
direct stream. Such overhead must be carclully unalyzed.

One can imagine ol having 2 single sampling e
conversion just alter the AudioSource at 22kllx, hence
avoiding a dual conversion. The drawhack ol this solution
15 the need 1o store a 44,1 kllz stream in the delay line
instead ol a 22 kHy stream. Such trade-olT must be carelully
considered o optimize processing clficiency, A good
solution to clliciently handle sampling rate conversions is Lo
degipn o dedicated sampling rate conversion node (SRC
node). This is the solution chosen i the described
implementation. 1t cnables the flexible placement of this
node anywhere in the scene deseription, thus leading o its
optimal usage. The [unctional description ol this node will
be presented later.
2.2 A frame based compositor

When dealing with audio processing, two solutions are
possible: working on sample by sample basis or with a
frame-based approach. Tirame-based solution is the best
approach when homogencous streams are available (e,
sume sampling rates). This solution allows reducing
overhead processing, since the same processing s appficd
1o 2 large nunmiber of samples. The problem of this approach
in MPEG-4 is the wide runge of sampling frequencics
alfowed in a scenc. In our implementation it has been
chosen to work on a frame base ol 10 ms. This choice
allows o good control rate and gives an alimost non-
noticeable delay for composition. This also solves the
problent of bullering information between nodes. This
solution teads 1o the Irame lengths reported in Table 20 As
one can nolice, there remaing a problem for 11025 Hz and
22050 Tz, A straightforward solwion is to convert the
corresponding bulfers directly in a more suitable sampling
frequency. A lree analysis provides the correet sampling
rate choice.

(g E ERe ;

ROO0 _ 80 ;
11025 Special handling
12000 120 :
16000 T oo
22050 Spectal handling !
R0 A
32000 . 320
44100 41
Asono RO
61000 : T ado
88200 ! 882
senoe T g

Tuble 2 [vame length vy, sampling freqitency

Por example i the 22kilz source is supposed to be
mixed with a 44.1 kHz channe! it could be wseful to
perform this conversion at the beginning, A drawback of
this method is that compaosition units as defined by MPLEG-
4 are not cntirely consuined at cach iteration. Therelore, a
specilic bufTer handling mechanism must be implemented.

1292 IEEE Transactions on Consumer bilectronics, Vol. 45, No. 4, NOVEIMBER {999

2.3 Composition buffers and AudioSource
Interaction

2.3.1 Input buffers struciures

In an MPEG-4 audio scene, decoders send Irames of
samples to the compositor. This compasitor is in charge
of managing buffers storing these frames so to render the
complete audio scene, Input buffer structures are
nceessary Lo handle the samples coming from diflerent
decoders and o provide mechanisms to casily identity
bufters associaled with AudioSource nodes. The basic
idea is to associate a buflfer Id with each channel of a
decoder output and provide these Ids to the AudioSource
nodes so that they can target the correet buffers,

New CTS
CTS

New Start

CT8 Flag Used
Start Address
First Free

End Address

Sampling Rate Emply
Nb Samples

Filled

Figure 2 A single channel buffer structure

Since there is other information regacding bullers, an
informative structure for cach buller is stored in a
dedicated memory space illustrated in Figure 2. Hach
address corresponding to these information structures is
located in a global buffer table. At the end, there are three
memory structures o implement input buffers. The low-
level memory ts the bulfer memory: it is where the
samples are stored. A single buller consists ol a circular
space reserved in this memoty. Start Address and End
Address are stored in its associated Information memaory
in a dedicated Bufler Tnfo memory. Other specilic
information is the number of samples available in this
buiter and the first free sample. This latest information is
used by the decoder 1o know where (o put new samples.

Other information like NewCTS, CTSFlagUsed arc
used for temporal synchronization and will be described
later. Locations of these bulfer information structures arc
stored in the Buffer Table as described in Frigure 3.

With this structure when a new bufier is needed, the
correct procedure is:

New CTS

CTS
Nuew Start
(TS Flag Used
Start Address]
First Free
Foed Address

""""""""""" commms Si ing Rate
Reserved Tor S'llll;)lmg e

T Nb Samples

new huilers

Nb Bulfe
Bulfer Info Pu{0]

Buller Info Pti] 1]

New CTS

CTS

. | NewsStart |
€TS8 Flag Used

Start Address

First Lree

Lirst Free Temp
First I
First Free Info

Iind Address

Sampling Rate
Nb Samiples
Figure 3 Buffer tuble example

e Request & new bulfer in the buffer memory (returns
Start Address) by looking al First Free in the Buffer
Table

e Rceserve a new space in the bulfer information memory
by looking at First Free Info and update the buffer
location liclds (Start Address, fnd Address) in this new
structure, Set First Free 1o the Start Address and
NhSampies o rero.

e Update NbBuffesr and Buffer Info Pt in the bulfer
Table along with First Free, First Free Info and first
Free Temp

The NbBuyffer found when this new bulfer is created
constitutes the buffer Id. Tt is uwsed as a reference lor
AudioSource nodes. When a specilic bulfer is targeted,
looking in the buffer table with the correct offset returns the
tocation of the specitic buller information structure.

2.3.2 AudioSource synchronization

In an MPEG-4 audio scene, temporal synchronization is
performed through the use of Composition Time Stamps
(CTS). These time stamps are not necessarily conveyed in
cach composition units. When this CTS is absent, it means
that the composition time is continuous, Whenever the C1.S
is present, the compositor shall take care of s consistency.
If there is a difference between the conveyed CTS and the
supposed CTS {as if it werc a continuous stream), some
specilic actions have to be performed. These actions are
essential since all AudioSowrce arc independent and must
go on working even il a single source is not synchronized.
Using Starttime and StopTime lields of an AudioSource
node also provides another mean of synchronization.

Rourhis et al.; An Eificient Host/Co-Processor Solution for MPLG-4 Audio Composition 1293

The next subsection describes solutions 10 both
synchronization issucs.

233 Composition Time Stamps managemen(

As we have scen so far, decoders are responsible to
feed the audio scene tree with composition buffers (CBs)
with associated time information (timestamps), which
indicates at what time these bulfers have 1o be composed.
This leads to the concept of a synchronized and not
synchronized source. When a new huffer frame arrives
that does not contain a continnous time information, the
audio scene shall take care of this “time jump” and wail
for the appropriate time. To implement this system, the
composilor needs its own time base reference (current
systenm time} to which {t will refer to know whether or not
a CTS is correct. The storage of decoder timing
information is donc in Input Buffer Information structure.
It is the role of the decoders to update these lelds when it
is necessary, Each of the input buflers has the following
associated information:

s NewCTS [lag: sct 1o one means that a new CT8 (s
present for the next samples

o TS CTS Value

e New Stert: indicates the localion in the bulier
memory where is the first sample corresponding to
the new CTS

o CTS Flag Used: indicates thit AudioSource has used
the current CTS.

This information is used to synchronize AudioSource.
When an AudioSource is cxccuted, it retricves iming
information corresponding 10 the targeted bufler. To
cvaluate synchronization, we neced o define two
distances: a time distance and a sample distance. The
number of samples between the currenl pointer location in
the sample builer and the address of NewStart gives the
sample distance, k.c. the number of samples that are still
available from the current time untif the time of the new
composition time stamp: they could be less than
neeessary, ol course. The time distance is the time
between the current time and the time corresponding
the new CTS. The time distance is converted on a sample
base using the source sampling rate value. The first thing
1o do when a new CTS is present is o see if it is
continuous with the previous frames. So, if Sample
Distance = Time Distance + Jitter, the new frame can be
considercd as synchronous. In this case, the flag
CTSElaglsed is raised and the processing gocs on
normally considering the buller continuous. When all
sources will have processed this new TS, a dedicated
buffer monitoring process will set the NewCTSHlag off
according to CTSFlagUsed. On the next call AudioSource
will not perform any special action since the NewCTSflag
will be off and the buffer will e scen as continuous.

Problems occur when the new CTS does nol

correspond to a continuous frame. In this case there are
different cases:

Case 1 Time Distance > Distance and Distunce > Frame
Length

There are enough samples before reaching Mew Srart so that
a complete frame can be processed. In this case I'rame
Length samples are senl. Remaining samples will be
processed during a next call. Current Pty 15 incremented by
frrame Fength.

Case 2: Time Distance > Frame Fength and Distance <
Frame Length

There are not enough samples before Mew Start and the new
CTS does not correspond Lo the current time. In this case
the remaining samples (Distance) ave sent and the Trame is
padded with zeros 1o obtain a valid irtame. On the next call
Distance will he zero, Current Per s sct (o New Start.

Case 3: Time Distance> Frame Length and Distance = ()
The new €75 will not be reached during this [rame and all
the previous samples have already been consumed. Tn this
case, the AudioSource generates a frame of zeroes. Current
Ptr slays on New Start

Case 4:Time Distance <2 Frame Lengih and Distance — ()

This happens when the synehronization is about to occur
during the current frame. The beginning of the [rame is
lilled with Time Distance zevoes and the rest is [illed with
normal samples [rom the input bulfer. Current Pt is
incremented by Frame Length — Time Distance.
CTSFlagUsed is raised.

Caxe 5:Time Distance <0 Distance and Distance = Frame
Length

This happens when there is a short desynchronization
resulting in a Pistance — TimeDistance zevo padding i the
middle ol the frame.

Other cases like Time Distance < Frame Leagth and
Distance > Time Distance are not handled since this
constitutes an error. This would mean that the decoder
produced a frame that is overlapped in time with the
previous one.

2.3.4 Startlime and StopTime management

StartTime and StopTime are used in time sensitive nodes
(like AwdioSeurce and AudioClip). These liclds give
control over the node’s activity, StapTime and StartTime
arc proeessed according to current time and (rame’s end
time (=current time + frame duration). An important notion
to have a working model is w0 associate a statc with
AudioSource Nodes. A node can be running or stopped.
The system can be seen as a state machine since its output
depends on the source state. According to the current

1294 [HELE Transactions on Consumer Plectronics, Vol 45, No, 4, NOVEIMBER 1999

StartTime and StopTime values, the system decides on the
oulput state and a correct frame is issued.

2.4 Channels Routing — A Common Node
Representation

241 Channels addressing

The object-oriented nature of MPLEG-4 scenes
requires a llexible impltementation. Dynamic node
modiflication, insertion and deletion shall be handled
correctly to provide the maximum interactivity. A good
insight into this problem is when dealing with node
conncctions. Linking nodes is one of the mest important
aspects of a compositor implementation.

MPEG suggests (o use static bulfers between all nodes
as flow regulation mechanisms. Adopting this solution
lcads 1o a correct, but memory consuming
implementagion. Conversely the goal ol our
implementation s (0 minimize buffer usage and only use
buffers on a temporary basis. This means that memory is
allocated onfy in specific conditions and for a single
exceution eyele. This combined with a constant frame-
based processing (10 ms) allows 1o drastically reduce
Memory usage.

Progression of samples in the audio wee is done by
mecans ol pointer passing, A node accesses its input
samples by retricving theie location {rom its children. In
this case, the only information a node has to provide 1s the
tocation of its output. When a node does not perform a
specilic processing on the samples (i.c. AudioSwitch), it
only has to ¢opy its input pointers to the correct channel
oulput pointer. For example an AwdioSwitch gets the
address of the children nodes that have 1o be passed and
just provide these address to the parent nodes. This
solution provides a greal implementation advantage since
no menory aceess is perlormed.

When temporary memory is required, a dedicated
procedure allows locking some memory m the buffer
memory for the current frame cycle. For example this
oceurs when two chanuels at 44 1kHz are mixed, A
temporary bufler of 441 samples is locked in the inemory
where the AwdioMix node ouwtputs the mixing result.
When the tree has been completely processed this
memory is Treed using a bulfer monitoring mechanism,

To implement this processing, nodes shall contain the
following information:

NbChildren: number of children.

ChildrenldList NbChildren]: children Tds
Samplete[i]: pointer W available samples for channel 7,
Base[i]. base address of the circular buller [or channel 7.
Lengithfi]: length of the bulicr for channel J.

242 Channels activity

To {further reduce memory usage, it is usclul to avoid
sending empty frames (lilled with zeroes) through the

tree. For examnple if an AudioSource is aller its StopTime,
there is no need 1o create a frame with zeroes, So as to
optimize this processing, cach channel has an activity tlag
associated with it. When normal processing oceurs, this Jag
is on, whercas 1l no valid mlormation is available it is sct to
off. Proper bandling of this flag in the subsequent node
allows saving a relevant amount of processing: there is no
nced to perlorm a mixing operation between two channels
ol zerocs. Some nodes can be reluctant to this, as it is the
case {or AudioDelay nodes. When its ¢hild channel has no
aclivity, it still has to put zeroes in its delay line. At its
output a detection mechanism (checking if the output {rame
is cmply) can allow 1o get the “ofl status” back and o avoid
propagating again an cmpty frame.

2.5 Nodeinformation structures

In the scene description, nodes have a parent -> child
relationship. This relationship must be transkated in a proper
formiat, Since there are several node types, it is not possible
to implement exactly the same information structure for
cach node. Specilic informaiion for cach node need o he
stored in a “Node information memory ™. Like for the input
bufler management, a node table references the addresses ol
all node information. The reference is built around the node
Id. Providing the table with a node 1d, it returns the node
information location, By this system, children ol a node are
listed as node 1ds.

This nade table also stores the node levels. This level is
used to sort the table. Level-ordered nodes are then
exceuted from the lowest (AwndioSonree) 10 the highest
(Somnd).

The last information contained in this table is a pointer
(FiestIree) W the first free byte of node information
memory. This pointer is used when more space needs 1o be
reserved lor new nodes. At the end, the node table contains
the following information:

NbNodes: number of nodes in the scene

Firsttyee: points 1o the first byte of [ree node info memory
Nodeldfi]: Node Id ¢

NodelnfolPtrfi]: Pointer 10 the location of node Nodeldfif
Nodelevelli]: Level of Nodeldfi]

In the MPEG-4 object-oriented system, audio nodes can be
linked in any way so that there is no particular assumption
that can be made out of a node type depending on its parent,
This feature requires having a common node structure that
will be the basis for pode information exchange. This
information s located at the same place in the node and
constitutes what its parents can know:

Nodeldd: node identification number

NodeType: node type

Framelength: frame length in samples

NumChen: number of output channcels

ChunnelsActivityfi]: channels activity flags

Bourhis et al: An Lillicient Host/Co-Processor Solulion {for MPTG-4 Audio Camposition 1295

OitScemple Prfi]: output sample pointer for channel {
OutBasefif: base address lor channel /
Outlengthfi]: bulter length Tor channel |

3 An Implementation of MPEG-4 audio
BIFS on a co-processor architeciure

The objective of the described implementation is o
develop a portable software C model of the co-processor.
This model aims o have a specific implementation
oricnted memory organization. A flat imemory mocdel has
been used for the co-processor. Livery information is
stared in tables and accessed with offsets, There are no
complex structures such as pointers ol pointers of arrays.
This option has been chosen to cuse code portability 10
any DSP platform. Another strategy has been to base the
host/co-processor relationship on a strict simple
communication mechanisny data transfers between these
instances are conmumand frames. Dala are stored as integer
values and can be manipulated using Coating-point
arithimetic. Creating an object [rom this implementation
allows Its integration into a more sophisticated
civironment as it will be shown in a demonstration
cxample.

3.1 Co-processor Overview
3101 Memuory orgunization

The co-processor memory s split in (wo main
structures. The first one 15 used o implement nodes
representation wd the second deals with buffers as shown
in Figure 4. Since the objective of this implementation is
o provide a flat memory model the dilferent structures
are declared as simple arrays. Accessing a specific picce
ol information is done by ollset addressing. A global life
confaing all the offscts necessary 1o correctly address
these arrays.

Memory structures are re-sizable by constant
declarations:

DspNadeMemSize 2048
DspNodeTahleMemSize 2506
DspBuflersinfoMemSize 2048
DspBufferstubleMemSize 32
DaspBupiersMemSize 96000

Other audio scene clements strongly inlluence the
memory requirements, [ike the number of nodes in the
scene, the member of avdio channels a node can receive or
generate. NhChannels is the most relevant parameter lor
node occupancy. Lor example, a marix in an AudioMix
node can take 236 Jocations Tor an 8x8 mixing operation
whereas it will tequire a stalic reservation of 65,536
locations for a 236x256 mixing,

3.4.2 Command interpreter

As previously explained, the co-processor madel only

Nade '[.'én:h_lc
Node Info ‘Bisfrer nfo
Memoty Tahle

v

Bl

Marsory

- Balter Table:

Figure 4 Co-processor memory siructures

receives commands from the host. Processing of these
commands is performed in o specific procedure.
Conmimands, [or example, cnable o receive compaosition
buflers or to update node information. Relevant actions
taken according to the command Lype are described betow:

Inifiatise Node Memory: this command is used to send
an entire Node Mewory deseription. The scene can be
compiled directly by the host Tt process offsels and creates
a valid node memory array. This is cquivalent 1o loading a
complete scene deseriplion.

Buffer Frame: this command has been delined (o send a
composition bufter o (e input bufler memory of the
coprocessor. According o buller Td the program gets the
correet buller information pointer from the bufler table, 15
NewCTS is on, the corresponding bufler ficlds are updated
with the (7% value contained in this frame and NewSiert
received the address where the fivst of these sanples will be
put. When all the samples have been copied starting [rom
FirstFree, NbSamples and Firstfree liclds are updated.

Nade Info Update: this command has heen defined to
update node information fields. Tt can be called o
implement BIFS update or by a specific application hence
providing user interactivilty as it will be shown in our
demonstration example.

Nolte that the presence of FramieLengih is maintained
even il the frame length is fixed. The purpose 1s o maittain
consisteney through all command frames. This is usciul
when implementing an awlomatic mechanism 10 convey
command frames (IDMA for example).

Mitialize « new buffer: this command has been delined
to create a new bulfer as described in the seetion dealing
with input bufler mechanisms,

thftialize node {fuble: can be used in conjunction with
mitializing node info memory. It sends the node table
associated with the information contained i the node
information memory.

Send a node description: this command is called when
the host wants to send the desceription of a new node,

Node Information is stored in the corresponding memory
according to the first free pointer stored in the node table,

1206 IEEE Transactions on Consumer Blectronics, Yol. 45, No, 4, NOVEMBER 1999

Upon completion, Node Table is also updated according
to the reccived node’s level and L.
It is then necessary fo sort again the table by node level,
therclore other functions have been defined.
Start Processing: 'This function toggles the co-processor’s
trec processing o,
Stop Processing: This command toggles the co-
pracessor's [ree processing ofl.
3,13 Single Co-processor Cycle

When using the presented compositor, processing one
frame Irom cach input buffer is performed in three basic
steps (cycle processing can be triggered with a dedicated
limer gencrating interruption each [0 ms). The {irst step is
to process all the commands. Supposing these cormmands
are stored in a FIFQ-style buffer using non-intrusive
mechanisms (DMA for exawple), this allows having a
refresh rate of 10 ms. The second step is 1o exceule all
nodes according to their level. Since the node table is
ordered according to these levels, the procedure is to take
Nodeld as (hey appear in the table and then call the
appropriate {unction passing their Id. Once nodes have
been processed, a buifer monitoring mechanism updates
CTS jflag fields 1o check whether or not new C75 have
been used. Another task is to update the number of
samples available in the different buffers and discard
wempotary bullers.

3.2 Audio BIFS node implementations

This section describes how the dilferent nodes arc
implemented to fulfil the requirements of the model
previously presented. Node functions are called by
providing Node's Ids as a parameter. The first common
slep to all nodes is to retricve the node informiation
pointer from the node table. Node descriptions and offsets
arc based om an 8-channel model assuming thal cight
simultancous channels can be processed in a single node.

3.2.7 AudioSource

The audio source node is used (o target decoders and
retrieves composition buffers from their outputs,

AuclioSource nodes have a specific purpose. These
nodes establish the link between input buiters and the
audio tree. As a dircet conseguence they must be
initialized correctly. A flag (NewNode) is provided to
warn if it 1s a first call or not, On a first call, the node hag
lo initialize its pointer 1o match input buffer locations.
The procedure is to go through all its children buiters and
update ils internal information according 1o buffer
parameicrs.

According (o the buffer sampling tate, the tframe
length is calculated. The processing is then done on a
buffer-per-buffer basis. CTS value is checked according
to the procedure described above. According to the result,
StareTime and StopTime are processed. Since there is a

wide range of output frame configurations {a mix with
samples and zeroes), a basic frame is decomposed in 4
sections:

INbZeroes | I NbSunples| | NbZeroes2 | NbSamples2l
This allows a large flexibility over the output frame
description. When [rames are completely formed, a
mechanism check if it 18 a frame full of zeroes. In this casce,
the corresponding channel activity flag is sct o off. Hitisa
coherent frame (no zeroes, only samples) it means that no
de-synchronization occurred, the output peinters directly
puints o input buffer location. Conversely when a de-
synchronization oceurved (CTS, StartTime or StopTime) it is
necessary o store the produced frame in a (cmporary bufler
and update output pointers accordingly.

322 AudioDelay

This node is used to delay a group of sounds, so that
they start and stop playing later than specilied in the
AudioSource nodes.

Proper delay handling vequires specilic memory bullers.
In this implementation, it has been decided to keep delay
lines outside the main buffer memory (input buffers and
lemporary bullers) sinee it can be implemented in a specific
external memory, The procedure is the same as the one used
for input buffers: a delay table stores information about
delay memory locations, and a system is in charge of
rescrving some space in this memory upon request.

Request of such delay memory is done during the tirst
call to AudioDelay. A NewNode flag indicalcs a first time
call, so that the node reserves necessary memory,
Reservation is made according 1o the value of the Delay
ficld. The reserved memory has been chosen o be twice as
large as the delay value contained in the ficld 1o allow
larger [lexibility. This valuc has been empirically chosen
since there is currently no normative MPEG-4 specilication
about this isswe. If during the composition the user requests
a larger delay, nothing has been implemented to de-allocale
reserved space and allocate a larger space. During
processing, the node checks il its number of output
channels (numChar) corresponds to the current number of
delay lines (CurrentNbDelayLines). If it is not the case, a
new delay line is requested.

Two arrays of pointers are stored in the node
information structure 1o handle delay lincs.
DelayNodelnSamplePtr locates input locations for
incoming samples and DelayNodelnOutPir locates outpuls
of the delay lines,

As described in [2], delay line updates require a
dedicated processing. In this implementation a flag is raised
(Update) when a new delay value is desired. This new valuc
is stored in OdelayNodeTarget. From there, two cascs arc
possible: a longer or a shorter delay. In this case dedicated
processing occurs and resulls are oulput in a temporary
buffer. When there is no opdate, normal processing is to

Bourhis ctal: An Elficient Host/Co-Processor Sotution for MPEG-4 Audio Composition 1297

increment the node output pointers o match delay Tine
outpuls,
a) Target < Delay

In this case, the delay node has o cousume more
samples than a frame length. The chosen procedure
depends on the distance between Targed and Delay. 1
Delay-Target is greater than FrameLength then it means
that at lcast two frames need o be consumed during one
frame length. To solve this problem a simple but efficient
solution has heen implemented: decimation. The idea is 10
pick one sample out of two. This speed up output by a
factor two and hence consumes 2*FrameLength samples
and output only Framelengih samples. This gives a speed
up cllect at the output, which is click-frec. When Delfery-
Target 1s smaller than FrameLength, U means that there is
not enough samples to perform the decimation. In this
casc a 4-point interpolation was implemented which
allows to output a valid frame whatever Defay - Targel +
FrameLength is.
bj Target > Delay

In this case the node has W slow down o diminish its
delay. As lor the previous case, a stmple solution is
provided. When Turger-Delay>Framelength, a lincar
interpolation is performed hience consuming
FramelLengtht2 samples. When the Torget value 1s about
to be reached, a 4-point inlerpolation s performed 1o
match both values.

These mechanisms are the basic ways to provide
click-frec delay updates. More sophisticated
acceleration/slow-down procedures might cnable
simulating Doppler-effects and could provide better
results,

323 AudioMix

This node is used 10 mix together several audio signals
in a simple, multiplicative way, Any relationship that
may he specified in terms of a mixing matrix may be
described using this node.

The processing is based on the number of output
channels (rumChan). If there is not enough input
channels corresponding o outputs, output activitics are
set 1o ofl. This method avoids producing empty bulfers.
The execution is simple: cach input channel is copicd on
all output channels weighted by the corresponding malrix
coefticient.

A click-Tree update has been implemented. An update
flag warns the node if there is a change in the matrix
cocliicients. The new coellicients are stored in the node
mlormation in the Targe! arca, A lincar cross-fade is

performed o smooth transition between sets ol

coelficients,

This allows obtaining a click-free coctflicient updatc,
The main drawback is the memory occupancy used to
store Targe! matrix information.

324 AudioSwitch

The AudioSwitch node is used to select a subsct of audio
channels from the specilicd child nodes.

WhichChoice is used to specity which subsct of input
channel is desired at the output. Without any click-free
mechanism, the implementation is tivial. The node goes
through atl s children and outpul the channel if the
corresponding WhichChoice value is on. Conversely, the
problem beeoines tricky when a click-lree update has o be
implemented. As Tor the AudioMix, the target vector 1s
stored in the node information and an update [lag indicates
whether or not it shall be used.

The main issue is to associate channels that where on in
whichChaoice with channels that are now on in Target. To
perform a correct update, we must list channels on in
WhichChoice and channels on in Targei. While listing,
Child [ds amd channel indexes are stored in tables, The
processing is based on the number of output channels
specified by mumChan, I there are fewer chaanels om in
target than specified by sumChan, extra channels bave their
activities set 1o off.

In the case two channels need 1o be exchanged, o cross-
fade wmechanism is used. The first one is laded-oul where as
the targeted one is faded-in.

3.2.3 Sampling Rate Conversion Node

Sampling rate conversion node is essential o keep the
audio tree coherent. It provides frame tength coherency
between nodes allowing the frame-bascd compositor 1o
work without any inter-nedes butfering methods. This node
is instantinted by the host/pre-processor (o cope with
dilTerent sampling rates. Its judicious location depends on
the tree structure as described previously.

The re-sampling method is based on a three-stage
asynchronous converter as shown in Figure 5. This node
allows converting all the sampling frequencies Table 1.

wo [[0

a(k)

nath.

-0 yik)

interp,
Hlalihand Halfband Lagranie
ni=H4 nZ=#l order]

Figure 3 SRC structure

326 SoundNode

The Sound node is uscd to attach sound 10 a scene,
thereby giving it spatial qualitics and relating i Lo the visual
content of the seene.

Sonnd node has been implemented without any spatial
processing. Spatial audio processing represents indeed a
very specific and particular task, to which several years of

1298 [ELE Transactions on Consumer lecteonics, Vol. 45, No. 4, NOVEMBLR 1999

activity have been devoted in various research centers, 3.4 Application example

see for instance [4], [6] for more inlormation and details. An example of application has been developed under
Sound node allows 1o output sounds from its children. Windows NT 1o show some of the implementation miodel
Since the {format of sound output is very specilic o the capabilitics and feawres, The MPEG-4 BIFS scenc
hardware used, the described implementation provides at described in ligure 6 has been implemented according to
this moment files (o output sounds. Al the very beginning the model. The nodes and their relationships have been
a procedure goes through all the nodes and creates a file described in the HostTreelnit file and the associated input
for cach Sownd node channel, When executing the Sound files have been described in the Host Class.

node, a table is used 1o target the correct file. All ftelds
have been declared and the implementation ol a
spatialization algorithm s just a matter of implementing
the desired processing. The open implementation of
nodes permits (o case the coding process.

_\!l(iiuSmiﬁ'
U B kTR

Aulio
el

. Audio
Switch

3.3 1lost features

A host class was created 1o feed the co-processor with

A . . udioSourt | .
colicrent information. Teatures that allow to successiully 2 16 kiiz “pelae |
cxploit the co-processor architecture are described here. —
. Ve s . AidioS oy T
3.3 0 Scene initialization 3 A4 815 - Audic, y
b : Sl

Nodes are described using nodes stractures cquivalent
to those detailed above, An initialization procedure called
InitScene is done enline. The static nature of the audio
scenc deseription is somewhat restrictive and would 347
require to be implemented as an open structure allowing
to read scene description files. The study was dedicated to
the co-processor implementation and behavior, theretore
the host processing has not been addressed ¢xtensively.

Figure 6 The implemented application example

Interface and Control methods

A uain interface object is used to instanttiate the Comm,
[lost and DSP (co-processor) objects. Host and DSP are
instantiated with the same communication objeet. AL the
beginning host nodes struclure are converted into command

3.3.2 Comprnication object L . :
frammes and written in the Communication object, During

Phe - communication "I’JCCF = !mplcmcnlcd Ao this initiatization, Jaithuffer commands are sent to initialize
separate class, The same instantiation is shared amony the three input bulfers corresponding to the three sources.
host and the CO-PIOCESSOT. .Il is mainly a FIFO-like The GUI bas been implemented using Visual G- 5.0
structure, Access is done writing a command [rame by the and MEC 1o obtain the result reported in Ligure 7.
host and reading a frame by the co-processor. The number
of frames that can be stored in this ohject is sizeable. The T R

size determines the number of commuands thatl can be sent TR

belore the co-processor emply the commarkd bufTer (every oo

|()ITIS). U:’:’.mw amm.z. Smlu.‘"". ;M:'(m.—.-] hm‘.ﬂ. a:,.m ’v"~*<! P - J
When the host needs to write a command Irame, it ‘ , ST ‘ :‘ Lo

creates the ohject command frame and sends it o the oo ' swiind - el

cotmuunication abject (comm). The comm object stores a : r] ' S -

copy of this frame in its internal bulfer and updates the A g

number of frames available in it. Upon completion, the R e R

host is in charge of killing this frame. On the other side,

the co-processor behaves accordingly; it ereates a frame Figure 7 Application inierfuce
and calls the ReadCompand method on the comm object.
This one lills the frame with information contained in its
mternal buffer and returns the frames back, Once the co-
processor has processed this [rame, it is charged of
deleting it. Lverything that goes from the host o the co-
processor passes through this object; hence it constitutes a
good viewpoint 1o see the transfer hetween the host and

Each slider is associated with an object Td, When the
user moves a cursor, the new value is sent 1o the
communication ohject in o Changelarameter [rame that
containg the objectld, the olfset and the new value. Along
with this commmand, it is also send the update flag warning
the corresponding node (hat something has changed. The
AudioSwitch works on the same principle.

Start Timer and Stop Timer send the Siawd and Stop
commands to the co-processor.

the CO-processor,

Bourhis et al: An Elficient HostCo-Processor Solution tor MPTG-4 Audio Composilion 1299

The processing part of the application is triggered on a
timer cvent set cvery 10ms. So, every 10 s, a co-
processor cycle is performed; command interpretation,
trec processing and buller monitoring as - described
previously. "Uhe Step button allows exceuting a single
cycle ol the co-processor.

Feeding the co-processor with input samples s
performed on a pooling basis, Since the host can count
the number ol co-processor eyeles, il knows when the
buffers are going 0 be empty. Tn this case, 1t sends input
frames to the communication ohject.

3.5 DSP Implementation

The way in which the co-processor C code has been
designed provides Tull Texibility and portability. Tesls
have been performed porting the audio BIFS code 1o a
Molorola DSP56303 platform. The Mat memory moxdel
(only tables, uo complex structures) cnables the
straightforward porting 1o assembly code. Offsets 1o
access different information in the table are already
delined. Typical instructions 1o access data are ol the
form;

In C language :

NbNodes = Node'Table] ODSPNode ahleNhNodes|;
In ASM :

Move #Node'Table, 0 load node table start

Move #ONSPNaodeTableNbNodes,nl) ; sel ollsct

Move x:(r04n0),x0) 5 x0 loaded with NDNodes,
which returns the number of nodes in the scene.

Commurication between a PSP and a host has been
observed Lo correctly operate on a DMA principle. Space
is reseeved on the DSP side 10 be used as a conmmand
bufler. foramel.engih ol the conmiand Tranie is the second
word in the frame header, Tt allows sclting up a DMA
transfer accordingly, providing a noo-intrusive
communication mechanism. Upon DMA completion, the
number of available commands in the command bulfer is
updated. Performing this operation at the end avoid
contention i a transler is made while the DSP access its
conunand buffer.

[commanes must absolutely be grouped (il they must
oceur in the same cycle), one can magine to have a
commuand telling how many linked frames were sent.

4 Conclusion

The goal of this paper is o present an celficient
implementation model tfor audio composition as specilicd
by MPHG-4 audio scenes. A Host/Co-processor
implementation moclel has been described which correctly
render audio scenes. A specilic memory organization has
been Tully deseribed feading o an elficient storage ol the
node information as well as the carresponding bulfer
structures. The implementation in C of the Co-processor

with this specific memory model has maximized the
portability to any DST phulorne. Commanication
mechamising have been implemented 1o Tink the Host with
the Co-processor thus enabling correct scene manipulation
and wser isteraction. Solutions o solve the sampling rate
conversion problems by inserting a new SRC node in the
seene description have been presented. Uselul features were
added to the modet such as click-free swilching, The open
archilecture ol the software allows new features like
spatializidion 1o be easily integrated. A program has been
wrilien o show how the user coudd jateract with the BITS
scene using the proposcd model.

Finally, cxperiments have been made using a Motorola DSP
to validate the proposed insplementation medel,

Further work nceds 1o be done in two directions Tor the Tull
implementation ol an MPHG-4 renderer; o complele
integration ol Spructured Awdio Tor downloadable
processing algorithims and the extension 10 advanced spatial
capabifitics included in the new MPEG-4 version 2.

References

[T ISGALEC SC29WGTT Documient No, 14496-1 (MPLG-4
Systes) Deaft Interaational Standard. MPLEC 1998,

125 ISO/TEC SC29WGTH Documient No, 14496-3 (MPEG-4
Audio) Dralt [ntermational Stmdard. MPLEG 1998,

{3] B Scheirer, R, Viandoen, F Huopaniemi: AudioB1VFS: the
MPEG 4 Standard [or Fltects Processing. Proceedings ol the
COST-06 Workshop on Drigitat Audio Fffects Processing (DAFX
98, Barcelona, November 1998,

141 iAol l..L.eBourhis, U lorbach and
A Kuramustalaoglu: Proposed revision ol Systems and - Audio
profiles aned levels Trom an analysis ol audio composition.
MPTGYE, Docoment M3604, Dublin - Tuly [99%,

[5] L.LeHourhas, GhZot About AudioBIES level delinitions.,
MPEGYE, Docinent Ma111, Atlantic City—Ocl 98,

6] Bergault, 13, R: 3-1 Sound for Virtwal Reality and
Multimedia, Academic Press, 1994,

171 Otficial Datt 3, 1SOMEC SCZOWGTT Document No.

14772 The Virwal Reality Modeling Language Specitication.
July 1996,
Laarent Le Bourhis was born in 1974 ncar
Paris. He received his diploma in Electrical
and Hlectronic Lingineering from ESIEL,
Paris in 1997 with an cisphasis on integrated
systems [or signal processing. His first
working experience was al FER university in
Fjubljana (Slovenia) where he developed
voice pitch determination on FI'GAL Te kept on working on
sound in Singapore al SGS-Thomson o design a 31 andio
algorithm for Dolby AC-3 on a DSP. After three months
spent working at 1BM on Sonct/SDEH VDI, macros, he
joined the Integrated System Laboratory (C31) of 1he TEPEL
in 1998, He is now involved in the Luropean project
FEMPHASIS, with specilic tasks in MUEG-4 awdio
composition and 3-1 andio.

1300 IGER Transactions en Consumer Eleetronics, Vol 45, No. 4, NOVEMBER 1999

Giorgio Zoia rcceived his Diploma in
Elcctrical Enginecring from the
Politecnico di Milano in April 1996. A
month later he joined the Integrated
Systemns Laboratory of the EPFL. (C3i)
where he worked on the development of a
PCI interface architecture for the PUMA
audio chip. In September 1996 he started working on the
PUMA chip, a collaboration with Studer Professional
Audio AG; his main activities have been digital design
and CAD synthesis eptimization in submicron
technology.

Froin summer 1997 to the end of 1998 he was involved in
the European project EMPHASIES, with specific tasks in
MPEG-4 synthetic and 3-D audio. He s actively
collaborating to the MPEG-4 standardization process, to
which he submitted several coniributions concerning
Structured Audio, Audio composition (Systems) and
analysis of computattonal complexity. IHe is currently
starting a new project for the implementation of MPEG-4
Audio Systems,

Mareo Mattavelli reccived his Diploma
ol Electrical Engincering [rom (he
Paoliteenico di Milano, Milano, Italy in
March 1987, Then he joined the "Philips
Research Laboratories” of Eindhoven.
Main research activities regarded channel

. and source coding for optical recording
clectronic photography, and signal processing of TV and
HDTV signals. Since October 1991 he joined the "Signal
Processing Laboratory” (LTS) of the "Swiss Tederal
Institute of Technelogy™ (EPELY where he got his PhD
degree in 1996. Then he joined the Integrated Circuit
Laboratory of EPFL where he is currently Scientific
Advisor. Main rescarch interests currently are:
architectures and system for video coding, the application
and implementation of combinatorial optimization
techniques for image analysts, and twols for the aid to
architecture design of complex systems. He is also
involved in ISO-MPEG standardization activities where
currently chairs the MPEG Implementation Study Group.

Daniel J. Mlynek obtained his Ph,D.
degree from the University of
Strasbourg, France in 1972, He joined
ITT Semiconductors in 1973 as a
Design Engincer for MOS circuits in
the Telecommunication field. He was
with ITT Semiconductors until 1989
and held several positions in the R&D,
including that of the Technical Divector in charge of the
IC developments and the associate lechnologies. The
main activitics in the Design were in the arca of Digital
TV Systems where ITT 1s a World leader an in some of

the advanced HDTV concepts. He has several patents on
digital TV Systems. Dr. Mlynek was awarded the Eduard
Rhein Price for his innovation in signal processing
principles that have been implemented in the digital TV
system "Digit 2000". In June 1989, Dr. Mlynck joined the
Swiss Federal Institute of Technology (FEPFL), Lausannc
Switzerland, where he is a Professor responsible for the
VLSI Integrated Circuits.

