
AN EFFICIENT HOST/CO-PROCESSOR SOLUTION
FOR MPEG-4 AUDIO COMPOSITION

L. Le Bourhis, G. Zoia, M. Mattavelli, D. J. Mlynek

Swiss Federal Institute of Technology, Integrated Systems Center C3I,
CH-1015 Lausanne Switzerland.

Abstract

This paper presents an efficient software host/co-
processor architecture for the implementation of
MPEG-4 Audio composition. The proposed solution is
based on a specific partition between general-purpose
tasks and DSP-oriented functionality, thus achieving
portability, efficient partitioning of the processing
resources and memory management.

Introduction

The new MPEG-4 Systems standard [1] provides
extended capabilities for audio processing and
reproduction. The possibilities offered by the so-called
BIFS format for scenes, are much more powerful and
efficient than those provided by similar multimedia
languages such as VRML [2,3]. The MPEG-4 AudioBIFS
provides mechanisms to perform mixing, delay, 3-D
spatial processing and other various effects that can
greatly enhance the perceived audio experience delivered
by high-quality coding tools such as MPEG-2 AAC.
However, these new powerful and flexible ways of
handling audio rendering require a large amount of
processing resources and present new implementation
challenges in comparison with the classical audio coding
schemes. Moreover, the complexity of audio scenes
structures requires appropriate strategies for resource
partitioning, memory management and an efficient
implementation of the various processing nodes [4].

This paper presents an architecture for the
implementation of an MPEG-4 Systems Audio
Compositor aiming to achieve:
• portability on different host/co-processor platforms
• frame based processing
• flexibility for the integration of other additional

processing nodes.
The results presented in this paper summarize the

extensive studies and recent achievements of the authors
concerning the implementation of MPEG-4 Systems
Audio nodes [4,5].

An approach towards an efficient “MPEG-4
Audio Systems” implementation

The appropriate definition and the optimization of
software architectural features become an issue of

paramount importance in MPEG-4 Audio Systems. The
complexity of actual audio scenes and the amount of
processing resources required are not anymore a
negligible implementation aspect for a multimedia
system. Major problems that need to be solved are:
sampling rate conversion, synchronization among nodes,
composition buffer structures, memory management and
the design of a flexible architecture for the integration of
spatial processing features [4].

First of all, scene composition allows the presence of
different coded audio objects at different sampling rates.
Algorithms typically used for high-quality and precise
sampling rate conversion necessitate large amounts of
processing power. A virtual node dedicated to this
conversion processing has been introduced. This node is
based on a three-stage asynchronous sampling rate
converter and used for all possible conversions in an
MPEG-4 audio scene. In fact, the usage of this converter
node, along with a frame-based processing, permits to get
rid of memory buffers between nodes, reducing both
memory usage and system complexity. Looking at the
scene description and analyzing the different
AudioSource sampling rates, we can find the optimal
placements for these conversion nodes.

A goal of the described implementation is to develop
a “frame-based” compositor model. A fixed frame-based
model can work on a constant time-window, thus
providing a “deterministic” behavior that greatly eases
system synchronization issues, which can be very
problematic in audio composition of complex scenes
yielded by “MPEG-4 Systems” environments. The first
idea would be to send the input samples as far as possible
directly into the Audio subtree. Problems arise when two
nodes have the same parents but have a different number
of available samples: the remaining samples need to be
buffered in the nodes until new samples come. The
objective of the proposed “frame-based” compositor
model is to minimize buffer usage by introducing them
only on a temporary basis, thus avoiding buffers between
nodes. This means that memory is allocated only in
specific conditions and for each single execution cycle.
To address this issue, we must ensure that all the samples
sent to the audio tree will be consumed in a single cycle:
this implies that samples must be framed at the input
according to their sampling rate.

Another key-point in an efficient implementation is
the interaction among the audio decoders and the

composition buffers. In an MPEG-4 audio scene,
decoders feed the audio tree with composition buffers,
and the associated corresponding time information to
perform temporal synchronization. The compositor is in
charge of managing these buffers to create the complete
scene. Structures associated to buffers are necessary to
handle the samples coming from the different decoders
and to provide mechanisms to identify buffers associated
to the several AudioSource nodes. The basic idea is to
associate a bufferId with each output channel of a
decoder, and to provide these Ids to the AudioSource
nodes so that they can target the correct buffers.

In order to ensure a synchronized “frame-based”
processing, composition time stamps are analyzed with
additional parameters such as StartTime and StopTime
fields. Results of this analysis permit to build valid frames
to be used with our fixed length “frame-based” model.

Information storage and recovery for buffers and
nodes are also crucial issues for an efficient
implementation of an MPEG-4 compositor. Scene
updates by user interaction or scripting languages need an
open and flexible compositor architecture. Thus, a
software node architecture, common to all processing
nodes, has been developed. This architecture successfully
ease children information’s gathering, and facilitate
sample progressions through the tree structure that
represents the audio scene. A flat memory model is used
for every data storage: all data, either static or coming
from intermediate processing nodes, are stored in one-
dimensional tables and are accessed by offset pointers.
This memory structure has been designed to satisfy the
constraint of portability of the software architecture to
most DSP platforms.

To further reduce memory usage, it is useful to avoid
sending empty frames (filled with zeroes) through the
tree. For instance, if an AudioSource reaches its stop
time, there is no need to create a frame with zeroes. To
solve this problem, each channel has an activity flag
associated with it. When normal processing occurs, this
flag is on, whereas if no valid information is available, it
is set to off. Proper handling of this flag in the subsequent
node allows saving relevant processing time; there is no
need to perform a mixing operation between two channels
of zeroes. Some nodes can be reluctant to this, as it is the
case for AudioDelay nodes. When its child channel has
no activity, it still has to put zeroes in its delay line. At its
output a detection mechanism (looking if the output frame
is empty) can allow to get the off status back and to avoid
propagating again an empty frame.

Once the complete software architecture of the
compositor is defined, any specific complex audio
rendering algorithm can be implemented by simply
inserting the suitable processing algorithm in the
compositor architecture. For instance very complex and
sophisticated algorithms such as mixing and 3-D
spatialisation can be easily integrated in the proposed
architecture.

Implementation and results

A platform independent model for MPEG-4 audio
composition has been successfully developed. The use of
a dedicated virtual sampling rate conversion node enables
the simplification of nodes interconnection problems and
allows building a “frame-based” compositor. A fixed
compositor frame length of 10 ms has been chosen for the
actual implementation. An efficient 3-stage asynchronous
converter has been used for all typical audio sample rate
conversions. Specific mechanisms such as click-free
switch and mix for parameters update have also been
implemented. The final step of the platform independent
implementation was the definition of a host/co-processor
communication protocol. Data transfers between these
independent devices can be established by command
methods, such as sending buffer frames, adding nodes to
the scene or updating parameters. Experiments of MPEG-
4 audio composition using a GPP/DSP configuration have
been successfully conducted using a Pentium/Motorola
DSP56301 platform. These results validate the proposed
software architecture and the flexible integration of
various processing nodes.

Conclusion and further work

We have outlined in this paper an efficient software
host/co-processor architecture for the new MPEG-4
Audio composition. This solution is based on a careful
partition between general-purpose tasks and DSP-oriented
functionality; main goals for this implementation were
portability, efficient partitioning of the processing
resources and memory management.

Further work to be done is mainly in two directions: a
complete integration of Structured Audio for
downloadable processing algorithms and the extension
towards advenced spatial capabilities proposed by version
2 of MPEG-4.

References
[1] A. Eleftheriadis, C. Herpel, G. Rajan and L.Ward,

Editors: ISO/IEC SC29WG11 Document No. 14496-1 (MPEG-
4 Systems) Draft International Standard. MPEG 1998.

[2] Official Draft #3, ISO/IEC SC29WG11 Document No.
14772: The Virtual Reality Modeling Language Specification.
July 1996.

[3] E. Scheirer, R. Väänänen, J. Huopaniemi: AudioBIFS:
the MPEG-4 Standard for Effects Processing. Proceedings of
the COST-G6 Workshop on Digital Audio Effects Processing
(DAFX '98), Barcelona, November 1998.

[4] G.Zoia, L.LeBourhis, U.Horbach and
A.Karamustafaoglu: Proposed revision of Systems and Audio
profiles and levels from an analysis of audio composition.
MPEG98, Document M3604, Dublin - July 1998.

[5] L.LeBourhis, G.Zoia: About AudioBIFS level
definitions. MPEG98, Document M4111, Atlantic City -
October 1998.

