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Abstract. This paper describes a technique for identifying
the boundary of the optic disk in digital images of the
retina, using an approach based on active contours (snakes).
The optic disk is the region on the retina at which optic
nerve axons enter and leave the eye. Changes in optic disk
shape and area may indicate disease processes, particularly
glaucoma, and accurate identification of the disk boundary
may be used to quantify changes. For accurate boundary
identification, some pre-processing of the image is
necessary. This pre-processing minimises incorrect
boundary detection due to blood vessels crossing the optic
disk. Pre-processing techniques based on local minima
detection and morphological filtering were developed. After
pre-processing, the optic disk boundary was determined
using an active contour. The contour was driven by a novel
external image-derived field called the Gradient Vector
Flow. This reduced the need for accurate initialisation of
the contour. Results obtained by applying these techniques
to a set of nine retinal images are presented.
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1   Introduction

Glaucoma is the second most common cause of blindness in the
developed world, accounting for approximately 12.5% of blind
registrations [1]. Approximately 1% of the population over 40 will have
impaired vision due to glaucoma, and as our population ages, the
incidence of glaucoma in the general population will tend to increase.
Glaucoma is a disease characterised by elevated intraocular pressure
(IOP), which means that the fluid in the eye is at higher pressures than
in the normal population. This increased IOP leads to damage of optic-
nerve axons at the back of the eye, with eventual deterioration or loss
of vision. Optic-nerve axons enter and leave the eye at a site termed the
optic disk; a circular structure approximately 2 mm in diameter located
at the back of the eye (the fundus). Figure 1 shows a typical
monochrome fundus image; the optic disk is the bright circular area in
the middle, where the blood vessels converge. This image was obtained
using a specially designed medical camera called a fundus camera, that
is routinely used by ophthalmologists for assessing the state of the
retina and back of the eye. As glaucoma progresses, optic nerve fibres
atrophy and changes in the shape and depth of the optic disk are
apparent. These changes occur on a slow time scale (years), and
quantitative and qualitative comparison of optic disk images over time
are a measure of disease progression.  Accordingly, accurate image
processing techniques for determining the boundary of the optic disk
may provide useful clinical information. This paper reports on a
technique for finding the outer boundary of the optic disk region using
the technique of active contours.

2   Theory

2.1   Overview of Active Contours

In image analysis and computer vision, segmentation is one of the most
important steps in allowing successful completion of higher order tasks



such as recognition and tracking. Many techniques have been proposed
for segmentation, e.g., globally-based, edge-based, and region-based
techniques [2]. An edge-based technique that has been developed in
recent years is active contours, colloquially known as “snakes” [2,3].
Active contours simulate the fitting of an elastic curve to boundaries or
objects of interest in an image. They have been applied to detection of
roads and building in remote sensing images [4], feature extraction in
faces [5], and 3D segmentation of MRI brain images [6], to name but a
few examples.

The active contour model is an energy-minimising contour lying in a
damped medium in the plane of an image [2]. The contour is subject to
external (image-derived) and internal (contour-based) forces. The
contour has the ability to move dynamically in the image space, and
can be given inertial properties through the use of an associated mass
density µ. The medium through which the contour moves is assigned a
damping coefficient of γ. The final equilibrium position of the contour
in the image field will depend upon its initial position and velocity, its
mass density and related parameters, the damping coefficient of the
space, and external influences due to the image itself (such as lines and
edges). Since the contour is a dynamic object, it can converge to
arbitrary configurations which correspond to contours of interest in the
object, if the external forces and contour parameters are appropriately
chosen. Since active contours combine prior knowledge about the
object of interest (i.e., smoothness, approximate size), together with
individual image characteristics, they provide an excellent framework
for detection of the optic disk boundary.

2.2   Mathematical Framework of Active Contours

A grey-scale image I is defined in the x-y image plane, with I(x,y)
denoting the value of luminance at position (x,y). The active contour is
defined as a parametric time-varying curve v(s,t)=[x(s,t)  y(s,t)]T in the
plane, with s as a normalised parameter representing position on the
curve, s ∈ [0,1],  and t as time. [Note: for notational clarity, vectors are
written in bold italic throughout this paper]. The contour has a mass
density of µ and moves in a medium with damping coefficient γ.



An energy functional Esnake is associated with this contour, and consists
of terms dependent on internal and external influences:
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where Eint(v) represents the internal energy of the contour due to kinetic
and potential energy terms, and Eext(v) represents energy due to an
external energy field generated by the image in which the contour is
embedded. The internal energy term can be represented as follows
[2,3]:

( )












∂
∂

+
∂
∂

+
∂
∂

=
22222

2

1
22int

sst
E

vvv
v βαµ  , (2)

where α quantifies the elasticity of the contour (resistance to
stretching), and β determines the rigidity of the snake (resistance to
bending).  More general formulations are possible in which µ, α and β
are themselves parameterised by s, but in this paper we assume global
fixed values for these coefficients. The first term in Eq. (2) is a kinetic
energy term, related to the differential motion of the contour at each
point. The second term characterises the potential energy due to
stretching of the contour, and is a generalisation of Hooke’s law, in
which potential energy is proportional to squared extension. The third
term represents the potential energy due to bending. In many cases, the
mass density of the snake is assumed to be zero so that only the last two
terms of Eq. (2) are shown. The external energy Eext represents the
effect of forces that are not intrinsic properties of the contour, but
which are image dependent. Commonly used definitions of external
energy fields include:
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where ∇  is the gradient operator, * is the convolution operator, and Gσ

is a 2D symmetric zero-mean Gaussian function parameterised by σ.
The first of these external energy fields has minima at places of high
image gradient, e.g., edges. The second formulation has minima at



locations where a Gaussian filtered image has maxima, and provides a
more diffuse external field. Note that both of these external energy
fields are conservative (irrotational), i.e., 0=∇×∇ E .

In this framework, there exists a contour which minimises, at least
locally, the energy functional of Eq. (1). Depending on the definition of
external force, the location of minimum energy will correspond to a
boundary of interest in the image (e.g., it will lie on an edge-defined
boundary if ),()1( yxEext  is used).  Returning to Eq. (1), and dropping the

dependence on t, the energy functional can be recast as a function of
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By applying the calculus of variations to this formulation, we obtain the
Euler-Lagrange equations that are satisfied when the energy functional
is minimised:
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Hence, at an energy minimum a force balance exists between internal
and external forces:
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The internal forces resist stretching and bending of the contour, while
the external force preferentially moves the contour to points of low
energy. Since the contour is placed in a medium with a positive
damping coefficient, there will be no kinetic energy term at an energy
minimum (since motion dissipates energy), so Eqs. (6) and (7) will be
satisfied at the final resting place of the contour. A full equation of



motion [3,7] for the contour can be found by adding the inertial and
damping terms to Eq. (5) to produce
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with initial conditions set by v(s,0)=v0(s), and all derivatives set to zero,
for example. Eq. (8)  holds equally for the case of a massless snake
(µ=0), as implemented in this paper.

2.3   Numerical Solutions for Active Contours

A finite difference method (FDM) can be used for the solution of Eq.
(8), under the assumption of zero mass density. We first define a set of
N nodes vi,n of the active contour as:
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with i = 0, 1, …, N-1,  h=1/N as a discretisation step for s, and the
subscript n indicating evaluation at time step n. The initial conditions
are defined as:

ii kv =0, (10)

with ki as arbitrary initial fixed positions. The last node is constrained
to lie next to the first node, so that the contour is closed. The time and
space derivatives of Eq. (8) can be approximated by finite differences
as:
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By arranging the nodes into vectors:
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a matrix expression for the time evolution of the contour nodes can be
written as:
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where the matrices A and B are tridiagonal and pentadiagonal matrices
incorporating the elasticity and stiffness parameters, respectively. This
FDM formulation is used to solve numerically for the time evolution of
the active contours used in this paper. LU decomposition is used to
calculate the matrix inverses efficiently. The stability of this algorithm
is not guaranteed [7], and requires numerical experimentation to obtain
values of the parameters for which convergence holds.

2.4   Gradient Vector Flow Model

A disadvantage of the active contour model imposed above is that in
general there exist many configurations for the snake which are local
energy minima, but which do not provide the boundary of interest to us.
In general the algorithm will provide a convergent solution that is close
to the initial snake configuration; hence, the accuracy of the method is
highly sensitive to initialisation. This can be traced back to the fact that
a gradient-based external energy field as in Eq. (3) is quite locally
defined. If we try to increase the range of the force, by low-pass
filtering the image, we lose the ability to obtain an accurate final result.
A related problem for snakes defined in this manner is an inability to
move into boundary concavities (Figure 1 of [8]). In response to these
issues, Xu and Prince proposed a new type of external force field which
provides better long range attraction, while preserving sharp local
minima in the energy field [8]. Their proposed solution is a static
external force field termed the gradient vector flow (GVF) field
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The GVF field h(x,y) is defined to minimise the following energy
functional:
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where g is an edge map of the image I, i.e.
[ ] ),(),(),( yxIyxGyxg ∗∇= σ , and λ is a regularisation parameter,

which governs the trade-off between the first and second terms in the
integrand. The intention is to obtain an extended directional smooth
field of attraction, that accounts for the proximity of boundaries, and
hence reduces the sensitivity to initialisation. Qualitatively, this
formulation is equivalent to the solution of a generalised diffusion
equation, and has the effect of increasing the effective range of edges at
locations distant from edges. Conversely, near edges, where g∇  is

large, the second term is dominant and can be regulated by setting
g∇≈h so that the local accuracy is preserved. Again using the calculus

of variations, the GVF field can be found by solving the following
Euler equations:
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A numerical solution to Eq. (17) can be found by treating p and q as
functions of time, and hence converging to a solution. The iterative
solution so obtained is fully described in Ref. [8], and convergence of
this iterative algorithm is guaranteed for certain values of λ. In this
paper we use 2.0=λ  and 80=N  iterations for the calculation of the
GVF field. After calculation, the GVF field is normalised so that only
directional information remains. In this way, the GVF field it is not
dependent on overall image luminance levels. A weighted GVF field
replaces the original external force field in Eq. (14):
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with κ as an adjustable weight parameter set to 1 in this paper.

2.5   Image Pre-processing

Initial results obtained using the GVF-based snake were quite
inaccurate. Figure 1 shows the result for a typical initial condition such
as a circle close in radius to the optic disk. The detected boundary is
strongly influenced by strong edges created by blood vessels crossing
the optic disk. Other initialisations also lead to incorrect results.

Fig. 1. Convergent solution of a GVF-based snake for a simple initialisation condition
(smooth inner circle). The boundary found does not correspond to the true edge of the
optic disk region, as the snake has been influenced by the edges created by blood
vessels.

These erroneous results occur because the GVF field is based on an
edge map calculated from the raw image, in which blood vessels make
a major contributions to edges. To obtain correct convergence onto the
boundary of the optic disk, we need to pre-process the image to remove
pixels corresponding to vascular structures, and replace them by pixels
representative of the optic disk background behind. Two different
methods of pre-processing are used in this paper – minima detection
and morphological filtering.

Minima detection makes use of the observation that the luminance of a
vessel pixel is darker than the surrounding optic disk. Accordingly we



pass through the region of interest containing the optic disk and
compare the luminance level of points in a local neighbourhood. This
comparison proceeds as follows. For each point I(k,l) we select sets of
surrounding points in the shape of two crosses at 45o relative to one
another. The crosses extend to ±ξ pixels in all directions. If the
luminance of the centre point is less than 90% of the luminance of all
of the extrema on the crosses, then it is marked as a candidate vessel
pixel. This process is carried out for ξ=1, 2, 3, and 4. The first pass
through the image results in a large set of candidate pixel points, many
of which are spurious. Since vessels are connected structures, we make
use of this fact by performing successive erosions and dilations using a
set of four simple 3x3 structuring elements:
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Nearby vessel pixels may still be disconnected, so this step is followed
by restoration of pixels which share common 4-connected neighbours.
These processes result in a collection of pixels which are classed as
vessel pixels. They are now replaced by “average” optic disk pixels
calculated by taking an average value over the local neighbourhood
excluding vessel pixels. Improved results were obtained by first using
an unsharp mask on the image, prior to minima detection.

A completely morphological technique for pre-processing was also
devised. For typical images, vessel widths do not exceed 5 pixels in
diameter. Accordingly, we increase the luminance level of vessel pixels
by applying a grey scale dilation with a 5x5 structuring element of
constant value. Since this tends to alter the position of the optic disk
boundary, the dilation is followed by an erosion using the same
structuring element to restore the boundary to its original position.
Finally, we perform a morphological reconstruction by retaining the
maximum of the dilated/eroded image and the original. We used
slightly different definitions to those normally encountered as our aim



was to remove darker areas from the image. Specifically, we used the
following definitions of dilation, erosion, and reconstruction:
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with the overbar denoting averaging, and the dot indicating element-by-
element multiplication. These morphological operations result in a
‘filling-in’ of the vascular structure, by pixels from the surrounding
optic disk area. A schematic of these three processing steps is given in
Figure 2 for a cross-sectional slice through the image.

Original profile of a vessel
and the border of the optic disk

Profile after dilation

Original profile of a vessel

and the border of the optic disk

Profile after dilation and erosion

Original profile of a vessel
and the border of the optic disk

Profile after dilation and erosion
and reconstruction

Fig. 2. Representation of the three stages of morphological filtering which are used
for pre-processing.

3   Results

The techniques described above were applied to a set of nine retinal
images taken from the Digital Library of Ophthalmology at The New
York Eye and Ear Infirmary (http://www.nyee.edu). These images were
originally acquired as 35 mm slides using a Nikon colour fundus
camera. Images were scanned into digital format using a slide scanner.
The images analysed in this study were processed at a resolution of 285
x 400 pixels The colour images were initially stored in RGB format,



but were converted to the YIQ basis prior to processing. Thereafter, the
images were processed in the luminance (Y) domain. The results of the
pre-processing algorithm are shown in Figure 3. Figure 3(a) shows the
result when the minima detection scheme was used to pre-process the
image; Figure 3(b) shows the result when the morphological correction
technique was used. Both techniques are successful in removing the
presence of vessels in the optic disk region. However, the minima
detection scheme leaves traces of the original vascular structure,
whereas the morphological technique totally removes all traces of the
vascular structure. Both techniques leave the boundary of the optic disk
region intact.

A GVF field was calculated based on the resultant image. The first
stage in its calculation is the production of an edge map, typically taken
as a binary map. The edge map was calculated using the Marr-Hildreth
operator (Laplacian of Gaussian). This edge detector detects zero
crossings of the second derivative of the image. The Marr-Hildreth
operator is parameterised by σ, the width of a 2D Gaussian filter which
reduces noise sensitivity.  To provide an improved edge map, we
combined the results of three binary edge maps, to get weighted edges,
using σ =1.5, 2.0, and 2.5 (corresponding respectively to 11 x 11, 13 x
13, and 17 x 17 convolution masks). The threshold for each individual
edge map is set as a function of σ, leading to an edge map with values
0,1/3, 2/3, 1. The GVF field is then found by applying the iterative
algorithm described earlier. The regularisation parameter λ is chosen to
be 0.2. After the GVF field is calculated, it is normalised, so that only
the directional information remains. The active contour was then
interactively initialised by choosing approximately 10 points close to
the contour of interest. These 10 points were linearly extrapolated to
form a  set of  nodes evenly spaced by some maximum distance (e.g., 3
pixels). Typically, this gave a set of approximately 100 nodes. The
contour was chosen to have an initial velocity of zero. The parameters
for the contour and medium were set to  α=2, β=1.5, and γ=2. These
values were determined empirically by numerical experimentation.
Values of α and β equal to or close to zero lead to sharp corners,
discontinuities, crossovers, and loopbacks which are undesirable. Too
high a value of these parameters means that the snake is overly
constrained in size and smoothness.



(a) (b)

Fig. 3. (a) . Image pre-processed using the minima detection method described in text.
(b) Same image pre-processed using the morphological technique described in text.

(a) (b)

Fig. 4. Boundaries detected using the GVF active contour applied to the preprocessed
images. (a) Boundary extracted based on the image which has been pre-processed
using minima detection (b) Boundary extracted based on the image which has been
pre-processed using morphological filtering (c) Close-up of the minor differences
between the detected boundaries on the upper optic disk edge (dark curve corresponds
to morphological pre-processing, mid grey to minima detected pre-processing). (d)
Minor differences between the detected boundaries on the lower optic disk edge.

The numerical algorithm of Eq. (14) typically provided convergent
results after approximately 50-200 iterations (depending on the



proximity of the initial conditions to the final boundary). The results
shown here are for 200 iterations. Figures 4(a) and (b) show the
boundaries determined for an image that had been pre-processed by the
minima detection and morphological schemes, respectively.  Figures
4(c) and 4(d) shows detailed views of minor differences between the
determined boundaries. Both pre-processing techniques lead to
accurately detected boundaries; however, in this example the result for
the morphologically pre-processed image is qualitatively better.

4. Conclusions and Discussion

The results indicate that a GVF-based snake can be used in conjunction
with a pre-processed fundus image to extract an accurate boundary for
the optic disk region. Pre-processing is an essential step for accurate
convergence, and will be needed for any general problem which
requires boundary detection in the presence of small occluding objects.
An attractive feature of the GVF contour, as compared to previous
active contour techniques is its relative insensitivity to initial
conditions.  Prior to using the GVF model, we investigated more usual
snake formulations based on the image gradient as an external field, but
achieved results which were highly dependent on initial conditions. For
the GVF snake, we conducted initial studies of the range of
initialisation conditions that provide convergence, and found that
accurate solutions can be obtained from quite distant initial conditions
(e.g., circles ranging from approximately half to double the radius of
the optic disk.)  It is also possible to use initial conditions which
traverse the final boundary repeatedly. Robust convergence across a
large range of initial conditions is important if fully automated image
analysis is desired, where a simple initialisation scheme will be needed.

The sensitivity of this technique to image variations was also
considered. There are two potential sources of variation.  In some
images, the optic disk boundary is not well defined, due to either
natural variation or pathological changes. Variations can also be
introduced by photographic conditions, e.g., too little or too much light,
poor image contrast, etc. In the nine images considered, an accurate
convergent boundary was found in all cases, even those with quite
severe retinal pathologies.  Overall, morphological pre-processing



provided better solutions that were the least sensitive to initial
conditions, and which captured subtle details of the disk boundary.

Three clinical ophthalmologists have reviewed the boundaries extracted
by this technique, and consider it as a promising technique for clinical
use. However, a much more systematic evaluation of the technique is
now required. Specifically, the technique will be applied to a set of
images of known clinical aetiology. Optic disk parameters for disk area
and boundary length will be evaluated, to see if quantitative evaluation
of these parameters correspond with clinical findings.

The technique may also form part of a more general image analysis
scheme for fundus images. Automated analysis of fundus images
requires segmentation of the image into regions such as optic disk,
fovea, vessels, and background retina. The scheme described here can
form part of this segmentation process. Moreover, the morphological
pre-processing scheme is a useful technique for extracting the
vasculature, an area of current research by other investigators [9].
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