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We propose a new exact Euclidean distance transformation (DT)
by propagation, using bucket sorting. A fast but approximate DT is
first computed using a coarse neighborhood. A sequence of larger
neighborhoods is then used to gradually improve this approxima-
tion. Computations are kept short by restricting the use of these
large neighborhoods to the tile borders in the Voronoi diagram of
the image. We assess the computational cost of this new algorithm
and show that it is both smaller and less image-dependent than
all other DTs recently proposed. Contrary to all other propagation
DTs, it appears to remain o(n2) even in the worst-case scenario.
c© 1999 Academic Press

1. INTRODUCTION
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operator can be implemented as the threshold of a Euclidean
DT, as shown in [25]. If an approximate DT such as Danielsson’s

ould
ho-

e
rig-
ies

een
ries,
allel
or
n a
thms
n

ent

ch
ect
tion
su-
by
n of
ur-

stest
the-
For

rks
red
r to
ing
kept
ints
noi
From a binary image made of an objectO and its background
O′, a distance transformation [1] makes an image, the dist
map, in which the value of any pixel is the distance from t
pixel to the objectO, i.e. the distance to the nearest pixel ofO,

D(p) = min{dist(p, q), q ∈ O}.
Approximations of the Euclidean distance transforma

(DT), were proposed by Danielsson [2] and Borgefors [3, 5
Danielsson uses four raster scans on the image to get a
that is exact on most points but which can produce small e
with some configurations of the object pixels. Borgefors p
poses a chamfer DT using two raster scans, but only provid
much coarser approximation of the Euclidean metric. Leym
[13] showed that, if implemented carefully, both approximati
have similar computational cost. Ragnemalm [14] propose
ordered propagation version of Danielsson’s algorithm, as
as a raster scan implementation [17] using a minimal numb
scans. While these approximations are good enough for m
applications, there are cases for which the exact Euclidea
is needed. For instance, the mathematical morphology dila
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was used, the occasional errors in the distance computation c
lead to pixels missing from the dilated object. Thus, the morp
logical closing, a dilation followed by an erosion with the sam
structuring element, could actually remove pixels from the o
inal object, which is in contradiction with the basic propert
of mathematical morphology.

Many algorithms providing exact Euclidean maps have b
proposed in the past. They can be divided into three catego
according to the order used to scan the pixels. First, par
algorithms were presented by Yamada [4], Mitchell [16, 18],
Embrechts [20], but they cannot be efficiently implemented o
general-purpose computer. Second, raster scanning algori
were proposed by Mullikin [12] or Saito [19]. Third, propagatio
or contour-processing algorithms were introduced by Vinc
[9], Ragnemalm [14], and Eggers [24].

In these algorithms, the information is transmitted from ea
pixel to its neighbors, starting from the contours of the obj
and using a dynamic list to store the pixels in the propaga
front. For a Euclidean DT, the information propagated is u
ally a vector pointing to the nearest object pixel. As shown
Eggers [21], this can be seen as an efficient implementatio
the parallel algorithms of Yamada or Mitchell on general p
pose computers.

Saito’s algorithm and the propagation methods are the fa
exact Euclidean DT for general purpose computers. Never
less, their computational cost is highly image dependent.
some images, the computational complexity reacheso(n3) for
n × n images.

We propose a faster Euclidean DT by propagation that wo
in two steps. First, we perform an approximate DT using orde
propagation by bucket sorting. It produces a result simila
Danielsson’s. Then, this approximation is improved by us
neighborhoods of increasing size. The computational cost is
small by restricting the use of these neighborhoods to the po
where they are really needed: the edges of tiles in a Voro
diagram of the object pixels.
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FIG. 1. Pixel q is closer to object pixelp2 than top1 or p3. On the left (right) image, in grey, the Voronoi polygonVP(p2) is disconnected with the 4-direct
q
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(8-direct) neighborhood. Thus, Danielsson’s 4SED (8SED) algorithm assigD(

In Section 2, we show some relations between Voronoi
agrams and distance transformations. In Section 3, we pre
the bucket sorting propagation, while the use of larger ne
borhoods is explained in Section 4. In Section 5 we comp
the computational cost of our DT to the algorithms of Egg
and Saito and analyse its dependency to image features. Fin
Section 6 briefly addresses the extension of the DT to 3D
anisotropic data.

The following notations are used. Lettersp, q, r are used for
pixels with indexespi , where needed. Those pixels belong
ther to the objectO or the backgroundO′ of the image. The
coordinates of pixelp are (px, py). distM (p, q) is the distance
between pixelsp and q using metricM ; diste stands for the
Euclidean metric and distE for its square; i.e., distE(p, q) =
(px − qx)2 + (py − qy)2. In what follows, all DTs are compute
using distE, because this metric requires no floating-point co
putations, contrary to diste. In the algorithms, we also write
distE(dp) = dp2

x + dp2
y, with dp= p− q. D(p) is the value of

the distance map at pixelp. VP(p) is the Voronoi polygon sur-
rounding pixelp of the object.N(p) is the set of neighbors o
p; i.e., N(p) = {q = p+ n | n ∈ N}; N = N((0, 0)) is a neigh-
borhood. The neighborhoods we consider here are balls;
N = Bd = {n | distM (n, (0, 0))< d} with some metricM .

2. VORONOI DIAGRAMS AND
DISTANCE TRANSFORMATIONS

Let us consider, in a continuous plane, the discrete se
points made of the centres of the pixels in the objectO. The
division of the plane into polygonal areas containing the p

of the plane that is nearer to one object pixel than to any ot
is called the Voronoi diagram [10]. The polygonal areas a
ns) = distE(p1, q) = 9 (170), instead of distE(p2, q) = 8 (169).
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called tiles. Voronoi diagrams and distance transformations
closely related problems. On one hand, given a set of points
its Voronoi division, computing the distance map to this set
point is a straightforward operation. On the other hand, DTs
an efficient way of computing Voronoi division, as shown
Borgefors [5] and Saito [19].

On a continuous plane, the tiles of the Voronoi diagram
connected sets. As illustrated at Fig. 1, this is not always true
discrete lattice. The tile around object pixelp2 is disconnected in
Fig. 1a (1b) for 4-direct (8-direct) connectivity. In other word
belonging to a given Voronoi tile is not a local property: t
tile to which a pixel belongs cannot always be deduced fr
the tiles to which its neighbors belong. Because they propa
the information locally from neighbor to neighbor, both ras
scanning and propagation DT algorithms [2, 13, 14, 17] w
provide a wrong value forD(q) at Fig. 1. The information from
pixel p2 cannot reach pixelq, p2 is hidden fromq by pixels p1

and p3.
Parallel algorithms do not suffer from this limitation becau

they allow multiple propagation fronts to follow each oth
Hence, the information flow fromp2 reachesq before the flows
from p1 and p3, and thus, there is no such hiding effect. A
thors of sequential algorithms have proposed methods to e
late this multiple fronts behaviour with a sequential propagat
Ragnemalm [14] explicitly introduces a delayed updating me
anism. Mullikin [12] propagates lists of ties and near ties. Egg
[24] orders the propagation according to the chessboard m
instead of the Euclidean one.

Regardless of the way it is emulated, the multiple propa
tion mechanism common to these exact Euclidean DTs requ
her
re
performing many unnecessary computations while successive
propagation fronts reach the same pixel and update its value.
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For some images (see Section 5), this leads to ao(n3) complex-
ity for n × n images.

As pointed out by Ragnemalm [14] to justify ordered propa
tion, a pixel only needs to be updated once—when it gets its
value. The algorithm we propose approaches this behavior i
steps. First, the propagation from each object pixel is restrict
pixels of its tile by using an ordered propagation scheme sim
to Ragnemalm’s approximate DT [14]. Second, we produce
exact Euclidean DT by restoring the connectivity of the tile
we consider larger neighborhoods on the tile boundaries. T
two steps are developed in Sections 3 and 4, respectively.

3. PROPAGATION DT USING BUCKET SORTING

In order to restrict the propagation from one object pixe
the pixels of its tile, the propagation order should be the s
as the metric order. In other words, the pixels in the propaga
front should be sorted by increasing distance values before
propagated.

As shown by Verwer [8] for constrained chamfer DT a
Ragnemalm [14] for Euclidean DT, this can be accomplis
by bucket sorting the pixels in the propagation front. Instea
using a single list, pixels to be propagated are stored in a nu
of buckets, one for each possible distance value. The squa
the Euclidean metric, distE(p, q) is always an integer ifp and
q are located on an integer grid. Thus, we use it as the indd
for the lists, which are processed by increasing index value
illustrated at Fig. 2. For each pixelp in the propagation fron
we store its coordinates (px, py) and its coordinates (dpx, dpy)
relative to the nearest pixel of the object. This gives the
lowing algorithm, which we call “Propagation using a sin
neighborhood,” or PSN.

INITIALIZATION : let M be an upper bound forD(p)
for all p∈ O

{D(p) = 0; (p, (0, 0))→ bucket(0)}
for all p∈ O′

D(p) = M
d = −1;

FIG. 2. Ordered propagation with bucket sorting. Pixels are taken from

nonempty bucket with the lowest index, their neighbors are tested, and, if ne
entered in the bucket whose index is the square of their Euclidean distanc
NCE TRANSFORMATION 165
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ITERATIONS:
while all buckets are not empty

{d = d + 1;
for all (p, dp) in bucket(d)

if D(p) = d
for all n ∈ N

{newD= distE(dp+ n)
if newD< D(p + n)

{D(p + n) = newD; (p + n, dp+ n)
→ bucket(newD);}

} }
The termination condition—that all lists are empty—is true

the last (2d + 1) processed are empty, withd the current distance
d2 the current index.

An efficient implementation of the buckets’ data structu
requires a memory allocation in chunks for the dynamic lis
Verwer [8] discusses the optimal chunk size for memory/sp
optimization. It should be large enough so that the dynam
memory allocation becomes a negligible part of the computa
time, but small enough in order not to waste too much mem
in partially filled buckets. Practically, we chose chunks of
elements, but a large range of values would be acceptable.

Also, special care should be given to an efficient computat
of distE(dp+ n). Leymarie [13] recommends distE(dp+ n) =
distE(dp) + 2 · dpx + 1 if n= (1, 0), distE(dp+n)=distE(dp) +
2 · dpy + 1 if n = (0, 1), etc. which only requires using addition
one shift and one increment. Instead, we use distE(dp+ n) =
sq[dpx + nx] + sq[dpy + ny], where sq[x] is a precomputed
lookup table forx2. This has a similar computational cost an
is more general whenn belongs to a large neighborhood, su
as in the next section.

As shown by Ragnemalm [14], not all neighbors in N need
be considered, but only those neighborsn in the same direction
as dp, i.e. neighbors for whichdpx · nx ≥ 0 anddpy · ny ≥ 0.
Apart from the first two iterations, these inequalities can ev
be considered in the strict sense. The neighborhoods for the
second, and all successive iterations are illustrated in Fig. 3. C
trary to Ragnemalm’s [14], those are not based on
8-direct neighborhood, but the simpler 4-direct one. Indeed,
few additional errors made at this step do not matter since t
will be corrected in the next section anyway.

4. USE OF MULTIPLE NEIGHBORHOODS

As pointed out in Section 2, the above algorithm is not
exact Euclidean DT, because the tiles in the Voronoi diagr
are not connected sets. Actually, it makes the same error
Danielsson’s 4SED algorithm [2]. In order to overcome th
limitation, we should consider neighborhoods larger than th
of Fig. 3. Unfortunately, we cannot apply this simple idea
rectly, for two reasons. First, the computation time is prop
eded,
e.

tional to the size of the neighborhood and becomes prohibitive
with large ones. Second, there is no upper bound on the size of
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FIG. 4. Proof of Prope
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FIG. 3. Neighborhoods us

the neighborhood to be used to ensure the connectivity o
tiles regardless of the image.

Nevertheless, it is possible to restrict the number of pixels
which larger neighborhoods should be considered and the
of these neighborhoods, thanks to the following properties.

PROPERTY1. Let N1 and N2 be two neighborhoods such th
N1 ⊂ N2. Let D1 and D2 be the resulting distance maps gen
ated using N1 and N2, respectively. If there is a pixel p suc
that D1(p) 6= D2(p), i.e. D1(p) is inexact and D1(p) > D2(p),
then p has a N2 neighbor q such that either

—D1(q) 6= (D2)(q)
—D1(q) was not propagated using N1.

Proof. Let us first consider that pixels belonging to a Voro
polygonVP(q) can only propagate to other locations belong
to VP(q) with the sameq, which is what ordered propagatio
aims to achieve. Let us considerq such thatp∈ VP(q), i.e.
let q be the nearest object pixel top. Let us consider the se
S= VP(q) ∩ (N2(p)\N1(p)) (see Fig. 4). We know this set
not empty since at least one pixel propagated top using N2,
but none did usingN1. Let us suppose that all pixelsr ∈ S
have a correct valueD(r ) and were propagated usingN1. Since
rty 1. The area in grey isVP(q) ∩ (N2(p)\N1(p)).
d by PSN to propagate pixelp.
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propagation implies a strict increase of the distance value
least one pixelr ∈ S must propagate to a pixelr ′ /∈ S, i.e. a
pixel r ′ ∈ VP(q) ∩ N1(p). This is impossible sincer ′ would then
have been propagated top usingN1, andD1(p) would then be
correct.

In practice, the ordered propagation using bucket sorting—
PSN algorithm—allows propagation to locations that are eit
in the same VP or in the neighborhood of this VP. Neverthele
the above proof remains correct since propagated pixels loc
in the wrong VP are corrected before being propagated an
not propagate themselves.

With this property, only pixels that did not propagate u
ing the 4-direct neighborhood in the PSN algorithm need to
considered with a larger neighborhood. The size and shap
those neighborhoods is determined by Properties 2 and 3,
pectively.

PROPERTY2. For any neighborhood N and a distance tran
formation DN using this neighborhood, there is a value d(N)
such that for all pixels p with DN(p) < d(N), DN(p) is exact.

Proof. The existence of such ad(N) is obvious, since any
neighborhoodN would at least give a perfect Euclidean D
for d(N) = 1, i.e.DN(p) = 0. For a neighborhoodN, the upper
bound ford(N) can be computed by extensive search. For
error to occur at the locationdp0 of a pixel p relatively to its
nearest object pixelq0, there must be, for all pixelsp+ n in its
N neighborhood, an object pixelq1 closer top+ n, but further
away fromp. Mathematically, there can be an error at the relat
locationdp0 if

∀n ∈ N ∃dp1 | distE(dp0) < distE(dp1) and

distE(dp0 + n) ≥ distE(dp1 + n)

Applying this test for all possible couples (dp0x, dp0y) with
dp0i < D, anN × N neighborhood, and restricting the possib
couples (dp1x, dp1y) to a circle on which distE(dp1) is just above
distE(dp0) is an algorithm of at mosto(D3 · N) complexity. The

results for the 4-direct neighborhood andN × N neighborhoods
are found in Table 1.
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TABLE 1
Smallest Errors for the 4-Direct and Square Neighborhoods

Smallest error Nonpropagating pixel

Neighborhood (dpx, dpy) distE (dpx , dpy) distE

4-direct (2, 2) 8 (1, 1) 2
8-direct= 3× 3 (12, 5) 169 (10, 4) 116

5× 5 (25, 7) 674 (22, 6) 520
7× 7 (48, 10) 2404 (44, 9) 2017
9× 9 (72, 12) 5328 (67, 11) 4610

11× 11 (108, 15) 11889 (102, 14) 1060
13× 13 (143, 17) 20738 (136, 16) 1875
15× 15 (192, 20) 37264 (184, 19) 3421
17× 17 (238, 22) 57128 (229, 21) 5288
19× 19 (300, 25) 90525 (290, 24) 8467
21× 21 (357, 27) 128178 (346, 26) 12039
23× 23 (420, 29) 177241 (408, 28) 16724
25× 25 (500, 32) 251024 (487, 31) 23813
27× 27 (574, 34) 330632 (560, 33) 31468
29× 29 (667, 37) 446258 (652, 36) 42640
31× 31 (768, 40) 591424 (752, 39) 56702

Note. The first two lines correspond to the errors illustrated at Fig. 1.

In Table 1, the right column, we also find the smallest re
tive location where a pixel could fail to propagate using ea
neighborhood. Using this table, we know the size of the nei
borhood to consider for which nonpropagating pixel selec
by Property 1. For instance, if its value is distE(dp) = 1000, we
find in Table 1 that 1000 is between 512 and 2017. Theref
propagatingp with a 7× 7 neighborhood is enough to ensu
an exact result, but a 5× 5 neighborhood may be too small.

PROPERTY3. For a pixel p, whose relative location from the
nearest object pixel is(dpx, dpy), the only neighbors(nx, ny)
that need to be considered are those “in the same direction”
(dpx, dpy). More precisely, if we consider dpx and dpy positive,
without loss of generality the neighbors(nx, ny) to consider are
such that

(nx + 1) · dpy

dpx
≤ ny ≤ 1 + nx · dpy

dpx
.

Proof. In Fig. 5, we wish to determine which neighbo
(nx, ny) should be considered when propagating pixelp, whose
location relative to the nearest object pixelq is (dpx, dpy). Let
us first consider the upper bound. If pixelp1 = p+ (0, 1) be-
longs to the sameVP(q), the upper bound for neighbors ofp1

is higher than for those ofp, which guarantees no neighbor wi
be missed.

On the other hand, we considerp1 ∈ VP(q′) with q′ 6= q. The
limit between the tilesVP(q) andVP(q′) is on the midperpendic-
ular ofq′q. This midperpendicular would be a good upper bou
for neighbors ofp, since the information fromq only needs to be

propagated to pixels belonging toVP(q). This midperpendicular
itself is bounded by the second inequality of Property 3. Inde
NCE TRANSFORMATION 167
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it intersectspp1 betweenp andp1, thus belowp1. Also, its an-
gle must be lower thandpy/dpx. Otherwise, it would crossqq1

betweenq andq1, which is impossible for the midperpendicula
of qq′ with q′ on an integer location. The proof for the lowe
bound is similar.

Applying this property reduces the computational cost o
n × n neighborhood fromo(n2) to o(n). From these three prop
erties, we propose a new algorithm for the exact Euclidean
First, we apply the above PSN algorithm and store all nonpr
agating pixels into a new bucket data structure bucket 2(). T
approximation is corrected using a family of neighborhoodsNi

made of balls of increasing sizes, for which the limits of v
lidity valid(Ni ) have been precomputed. For instance, the ri
column in Table 1 gives valid(Ni ) for the 4-direct andn × n
neighborhoods.

1. Initialization
2. PSN algorithm with nonpropagating pixels stored

in bucket2().
3. Propagation with larger neighborhoodsNi :

i = 1; d = valid(N4-direct) − 1;
while all buckets in bucket2() are not empty

{d = d + 1;
if d > valid(Ni )

{i = i + 1;}
for all (p, dp) in bucket2(d)

for all n ∈ Ni with direction within bounds
of property 3

{newD= distE(dp+ n);
if newD< D(p + n)

{D(p + n) = newD;
(p, dp) → bucket2(newD);

} } }
ed,
FIG. 5. Proof of Property 3. In PMN,p only needs to propagate to neighbors
within the grey area.
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5. COMPLEXITY AND COMPUTATIONAL COST

Comparing the complexity and computational costs of
algorithms is a complex task. Forn × n images, simple approx
imate algorithms such as Danielsson [2], chamfer DT [3]
Leymarie [13] have a fixedo(n2) cost, regardless of the im
age content. Yamada’s parallel algorithm [4] has ao(d · n2)
cost proportional to the maximum distanced found in the im-
age. More complex exact algorithms such as Ragnemalm [
Eggers [24], and Saito [19] have costs that are highly depen
of the image content and can vary betweeno(n2) ando(n3). For
xperiments give a better knowledge of their complexity
o

empty disk of variable diameter. Test 2, suggested by Eggers,
image in total,
retical considerations. is made of random squares covering 15% of the
FIG. 7. Test 1: diameters vary from 40 to 1000 pixels: “◦,”
ack; distances are computed in the white areas.

T

or

4],
ent

Among the methods published so far, those of Eggers
Saito seem to be the fastest exact Euclidean DTs. Theref
we compare our algorithm to those and to the chamfer 3-4 D
a commonly used approximatation of the Euclidean DT. Tw
versions of our algorithm were used for the comparison:
approximate single neighborhood (PSN) algorithm of Sectio
and the exact multiple neighborhood (PMN) algorithm
Section 4.

The choice of images on which the tests are performed
subjective and strongly affects the results. Thus, we perfo
three tests, illustrated at Fig. 6. Test 1, suggested by Saito, i
Chamfer 3, 4; “u,” PSN; “–,” PMN; “e,” Eggers; “∗,” Saito.
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FIG. 8. Test 2: orientations varying from 0◦ to 90◦: “◦,” C

with an orientation varying between 0◦ and 90◦. Test 3, our
suggestion, is the worst-case scenario foreseen by Egger
Ragnemalm for propagation DTs: a straight line across the im
tion varying between 0◦ and 90◦. All images are

: orientation vary from 0◦ to 90◦. Maxima for each curve ar
hamfer 3, 4; “u,” PSN; “–,” PMN; “e,” Eggers; “∗,” Saito.

and
age

The algorithms were implemented in C on a Sun Sparc Ul
We compare the CPU time required by each algorithm. Sim
results could be drawn comparing the number of comparis

per pixel using each algorithm. All results are shown at Figs. 7
024× 1024 pixels. to 9 for tests 1 to 3, respectively.
e displayed: “◦,” Chamfer 3, 4; “u,” PSN; “–,” PMN; “e,” Eggers; “∗,” Saito.
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FIG. 10. Left: object image.Centre:pixels propagated more than

Test 1 shows similar results for Eggers and Saito’s algorith
while both PSN and PMN perform much better. For a disk
diameter 1000 pixels, both Eggers and Saito are more th
times slower than PMN; PSN is between 1.5 and 3 times fa
than PMN.

Test 2 gives more complex results. PSN is always faster
all exact algorithms. Those perform similarly with an optim
performance around 0◦, 45◦, and 90◦ orientations and poore
results for 22.5◦ and 67.5◦. The average performance of th
algorithms over the range of orientations is quite similar, w
Saito 5% and Eggers 10% slower than PMN. Finally, PMN
less orientation dependent. The ratio between maximum
minimum CPU time requirements is 1.37 for PMN, compar
to Saito’s 1.78 and Eggers’ 2.15.

Test 3 shows the worst-case scenario where the method
Ragnemalm and Eggers are known to have ao(n3) complexity.
The disparity between CPU costs is such that the results
here displayed using a logarithmic scale. Eggers’ DT perfo
very poorly for any orientation but the horizontal, vertical, a
45◦ diagonal. Saito’s DT performs quite well for orientatio
between 0◦ and 45◦, but very poorly for orientations aroun
60◦. On average, Eggers and Saito are respectively 10 a
times slower than PMN. In the worst cases, Eggers and S
are respectively 12 and 10 times slower than PMN. Compa
to approximate DTs, PMN is only 2.5 times slower than PSN a
5 times slower than chamfer DT. Finally, our algorithms are l
orientation dependent since PSN varies from 1 to 2, PMN fr
1 to 4 while both Eggers and Saito vary from 1 to 50. Cham
DT is of course orientation independent.

As a general conclusion of those tests, we see that—a
from a few special cases—PMN is always faster than the fas
published DTs, up to 10 times faster for worst-case imag
The additional cost of using the error-free PMN, compared
the already good approximation of PSN is to multiply the CP
time by a factor between 1 and 3. These conclusions woul
even more favorable to PMN if the tests were performed w
larger images. An explanation of the good behavior of PMN
trated in Fig. 10, where the pixels propagated more th
e are displayed for PMN and Eggers’ DT.
once by PMN.Right:pixels propagated more than once by Eggers’ DT.
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Furthermore, PSN and PMN treat the data in a fully progr
sive way; the computation can be stopped at any time and
provide a sensible result. If stopped during the first propagat
it will provide the DT in a region surrounding the objects only.
stopped during the second propagation, it will provide an err
free DT up to a given value, and a good approximation of it
larger values. We can also create a class of PMN-i algorithms,
wherei is the size of the largest neighborhood used in the s
ond propagation. This provides us with a variety of trade-o
between PSN and PMN, which can be seen as the PMN-0
PMN-∞ extrema of the class.

This property makes our algorithm suitable for applicatio
where the computation time is fixed, such a real-time appli
tions, even though its cost is not entirely image-independen

FIG. 11. Counterexample of Property 1 in three dimensions.p belongs to
VP(q) and has a relative position of (2, 2, 4). With the 6-direct neighborho
p is disconnected from the rest ofVP(q) if there are object pixels for which the
relative position ofp is (0, 0, 5), (4, 0, 3), and (0, 4, 3), respectively. The pixe
in grey on the figure are then members of another tile. In a 3D PMN,p should
get its correct value from either pixelr1 or r2, using a 3× 3× 3 neighborhood.

anUnfortunately, both are propagated with the 6-direct neighborhood, tor2 andr3,
respectively.
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FIG. 12. CPU time required per pixel for two sets of test images of sizes between 50× 50× 50 and 350× 350× 350. Test image 1 (dashed line) is an eighth of
a sphere. Test image 2 (plain line) is a plane oriented at 60◦, the worst case for Saito. The DTs considered are PSN (u) and Saito (∗). They-axis has a logarithmic
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6. EXTENSION TO 3D AND ANISOTROPY

PSN can easily be extended to multidimensional or anisotr
data. The only restriction is that the metric—or a simple fu
tion of it such as its square for the EDT—should only inclu
integer values, providing an appropriate indexing of the lists
the bucket sorting structure.

Extending PMN to anisotropic data also requires to re-eval
the limits of validity of each neighbourhood at Table 1. E
tending PMN to three or more dimensions is unfortunately
straightforward. Indeed, Property 1 of Section 4 is not valid
more than two dimensions. As illustrated at Fig. 11, it is in t
case possible for a pixel to propagate in one direction, whi
fails to propagate in another. Therefore, extending PMN to
or more would require defining a new rule to detect the pix
that should be considered for larger neighborhoods.

In Fig. 12, we compare the performances of Saito’s 3D al
rithm to the 3D extension of PSN, which only gives an appr
imation of the Euclidean metric. Two tests are performed. T
first one is similar to test 1 in 2D and the second one is sim
to test 3. PSN is faster in all cases and should be used if an e
DT is not absolutely needed. The CPU time needed per p
increases with the size of the image for Saito’s algorithm, wh
it is nearly constant for PSN. On the other hand, the differe
of performance between Saito’s algorithm and PSN is smalle

3D than in 2D, because the image sizes considered are sm
(nmax= 350 instead of 1024 in 2D).
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7. CONCLUSION

We have developed a new Euclidean DT algorithm us
ordered propagation. First, a fast approximation is compu
Then, larger neighborhoods are used to correct potential er
This algorithm is significantly faster and less image depend
than all previously published error-free DTs. Since results
produced in a progressive order, it can be used with a fixed c
putation time and provide significant results, which make
usable for real-time applications.
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