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operator can be implemented as the threshold of a Euclides

We propose a new exact Euclidean distance transformation (DT) DT, as shownin [25]. Ifan approximate DT such as Danielsson’

by propagation, using bucket sorting. A fast but approximate DT is  was used, the occasional errors in the distance computation cot

first computed using a coarse neighborhood. A sequence of larger |ead to pixels missing from the dilated object. Thus, the morpho

neighborhoods is then used to gradually improve this approxima-  |ogical closing, a dilation followed by an erosion with the same

tion. Computations are kept short by restricting the use of these  structuring element, could actually remove pixels from the orig:

large neighborhoods to the tile borders in the Voronoi diagram of  jna1 opject, which is in contradiction with the basic properties

the image. We assess the computational cosf[ of this new algorithm of mathematical morphology.

and show that it is both smaller and less image-dependent than Many algorithms providing exact Euclidean maps have bee

all other DTs recently proposed. Contrary to all other propagation ; - . .

DTs, it appears to remain o(n?) even in the worst-case scenario. proposgd in the past. They can be divided |r?to threg categorie

© 1999 Acadernic Press according to the order used to scan the pixels. First, paralle

algorithms were presented by Yamada [4], Mitchell [16, 18], or

Embrechts [20], but they cannot be efficiently implemented on

1. INTRODUCTION general-purpose computer. Second, raster scanning algoritht

were proposed by Mullikin[12] or Saito [19]. Third, propagation

From a binary image made of an objé&ztind its background or contour-processing algorithms were introduced by Vincen
O’, a distance transformation [1] makes an image, the distarjg§ Ragnemalm [14], and Eggers [24].

map, in which the value of any pixel is the distance from this In these algorithms, the information is transmitted from eact

pixel to the objecD, i.e. the distance to the nearest pixel®f pixel to its neighbors, starting from the contours of the objec

L and using a dynamic list to store the pixels in the propagatio

D(p) = min{dist(p. ). q € O}. front. For a Euclidean DT, the information propagated is usu

7EI‘Iy a vector pointing to the nearest object pixel. As shown by

Approximations of the Euclidean distance transformatio . T .
bp ggers [21], this can be seen as an efficient implementation

(DT), were proposed by Danielsson [2] and Borgefors [3, 5, 7]. . )
Danielsson uses four raster scans on the image to get a resgqstepiroarglilu?égrgmhms of Yamada or Mitchell on general pur-

hat i i hich I . . .
t .at Is exacton most pomts but w Ich can produce sma errcg)rSSalto’s algorithm and the propagation methods are the faste
with some configurations of the object pixels. Borgefors pro-

: . exact Euclidean DT for general purpose computers. Neverthe
poses a chamfer DT using two raster scans, but only prowdefégs their computational cost is highly image dependent. Fc
much coarser approximation of the Euclidean metric. Leymarsl%m’e imanes Fhe computational cgmylexitg reacdp(eé) for.
[13] showed that, ifimplemented carefully, both approximationﬁs>< N imagges ' P piextty

h imil ional .R Im [14 . .
ave simrar computatlong cost agnema’m [14] .proposed ar\/Ve propose a faster Euclidean DT by propagation that work
ordered propagation version of Danielsson’s algorithm, as well

as araster scan implementation [17] using a minimal number'gftWO steps. First, we perform an approximate DT using ordere

scans. While these approximations are good enough for mﬁfopagatlon by bucket sorting. It produces a result similar tc

applications, there are cases for which the exact Euclidean _melssons. The_n, this approximation Is |mpr_oved by using
) ) . . _..neighborhoods of increasing size. The computational costis ke
is needed. For instance, the mathematical morphology dilation . ) .
small by restricting the use of these neighborhoods to the poin
where they are really needed: the edges of tiles in a Voronc

* Corresponding author. E-mail: Cuisenaire@tele.ucl.ac.be. diagram of the object pixels.
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FIG. 1. Pixelqis closer to object pixep, than top; or ps. On the left (right) image, in grey, the Voronoi polygdi(p,) is disconnected with the 4-direct
(8-direct) neighborhood. Thus, Danielsson’s 4SED (8SED) algorithm asBifffjs= distz(p1, q) =9 (170), instead of dis{p2, q) = 8 (169).

In Section 2, we show some relations between Voronoi dialled tiles. Voronoi diagrams and distance transformations &
agrams and distance transformations. In Section 3, we presgnsely related problems. On one hand, given a set of points a
the bucket sorting propagation, while the use of larger neigits Voronoi division, computing the distance map to this set c
borhoods is explained in Section 4. In Section 5 we compapeint is a straightforward operation. On the other hand, DTs a
the computational cost of our DT to the algorithms of Eggeemn efficient way of computing Voronoi division, as shown by
and Saito and analyse its dependency to image features. Find@lgrgefors [5] and Saito [19].

Section 6 briefly addresses the extension of the DT to 3D orOn a continuous plane, the tiles of the Voronoi diagram ar
anisotropic data. connected sets. Asillustrated at Fig. 1, thisis not always true or
The following notations are used. Lettgrsq, r are used for discrete lattice. The tile around object pixelis disconnected in
pixels with indexesp;, where needed. Those pixels belong efFig. 1a (1b) for 4-direct (8-direct) connectivity. In other words
ther to the objecO or the background’ of the image. The belonging to a given Voronoi tile is not a local property: the
coordinates of pixep are (px, py). distu(p, q) is the distance tile to which a pixel belongs cannot always be deduced fror
between pixelsp and q using metricM; dist, stands for the the tiles to which its neighbors belong. Because they propage
Euclidean metric and digtfor its square; i.e., dis{p,q)= the information locally from neighbor to neighbor, both raste
(Px — ) + (py — dy)?. In what follows, all DTs are computed scanning and propagation DT algorithms [2, 13, 14, 17] wil

using dist, because this metric requires no floating-point conprovide a wrong value fob(q) at Fig. 1. The information from
putations, contrary to distIn the algorithms, we also write pixel p, cannot reach pixed, p; is hidden fromg by pixels py
diste(dp) =dp? + dp§, with dp=p—q. D(p) is the value of and ps.

the distance map at pixgl. VP(p) is the Voronoi polygon sur-  Parallel algorithms do not suffer from this limitation becaus
rounding pixelp of the object.N(p) is the set of neighbors of they allow multiple propagation fronts to follow each other.
p;i.e, N(p)={g=p+n|n € N}; N=N((0,0)) is a neigh- Hence, the information flow frorp, reacheg before the flows
borhood. The neighborhoods we consider here are balls; ifeom p; and ps, and thus, there is no such hiding effect. Au-

N = By = {n| disty (n, (0, 0)) < d} with some metrid\V. thors of sequential algorithms have proposed methods to en
late this multiple fronts behaviour with a sequential propagatior

2. VORONOI DIAGRAMS AND Ragnemalm [14] explicitly introduces a delayed updating mecl
DISTANCE TRANSEORMATIONS anism. Mullikin [12] propagates lists of ties and near ties. Egge

[24] orders the propagation according to the chessboard met

Let us consider, in a continuous plane, the discrete setin§tead of the Euclidean one.
points made of the centres of the pixels in the obf@ctThe Regardless of the way it is emulated, the multiple propag:
division of the plane into polygonal areas containing the paron mechanism common to these exact Euclidean DTs requir
of the plane that is nearer to one object pixel than to any oth@rforming many unnecessary computations while successi
is called the Voronoi diagram [10]. The polygonal areas apFopagation fronts reach the same pixel and update its valt
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For some images (see Section 5), this leadsam®) complex- ITERATIONS!
ity for n x nimages. while all buckets are not empty
As pointed out by Ragnemalm [14] to justify ordered propaga- {d=d+1;
tion, a pixel only needs to be updated once—when it getsiits final forall (p, dp) in bucketfl)
value. The algorithm we propose approaches this behavior in two if D(p)=d
steps. First, the propagation from each object pixel is restricted to forallne N
pixels of its tile by using an ordered propagation scheme similar {newD=diste(dp + n)
to Ragnemalm’s approximate DT [14]. Second, we produce the if newD < D(p+n)
exact Euclidean DT by restoring the connectivity of the tiles as {D(p+n)=newD (p+n,dp+n)
we consider larger neighborhoods on the tile boundaries. These — bucketfewD);}
two steps are developed in Sections 3 and 4, respectively. } }
3. PROPAGATION DT USING BUCKET SORTING The termination condition—that all lists are empty—is true if

thelast (2 + 1) processed are empty, willthe current distance,

In order to restrict the propagation from one object pixel td° the current index.
the pixels of its tile, the propagation order should be the sameAn efficient implementation of the buckets’ data structure
as the metric order. In other words, the pixels in the propagatif#fiuires a memory allocation in chunks for the dynamic lists
front should be sorted by increasing distance values before be¥g§wer [8] discusses the optimal chunk size for memory/spee
propagated. optimization. It should be large enough so that the dynami
As shown by Verwer [8] for constrained chamfer DT and€mory allocation becomes a negligible part of the computatio
Ragnemalm [14] for Euclidean DT, this can be accomplishdine, but small enough in order not to waste too much memor
by bucket sorting the pixels in the propagation front. Instead ¥ Partially filled buckets. Practically, we chose chunks of 64
using a single list, pixels to be propagated are stored in a numgtgments, but a large range of values would be acceptable.
of buckets, one for each possible distance value. The square ghlS0, special care should be given to an efficient computatiol
the Euclidean metric, dis{p, q) is always an integer ip and ©Of dis(dp+n). Leymarie [13] recommends digtp+n) =
g are located on an integer grid. Thus, we use it as the iddexdist(dp) +2-dpc+1ifn=(1, 0), diste(d p+n) =dis(dp) +
for the lists, which are processed by increasing index values,ZadiPy + 1if n= (0, 1), etc. which only requires using additions,
illustrated at Fig. 2. For each pixgl in the propagation front, On€ shift and one increment. Instead, we use-@i§i+n) =
we store its coordinatepy, py) and its coordinatesif, dp,) SAdPx +Nx] +sddpy +ny], where sqx] is a precomputed
relative to the nearest pixel of the object. This gives the folrokup table forx®. This has a similar computational cost and
lowing algorithm, which we call “Propagation using a singléS more general when belongs to a large neighborhood, such

neighborhood,” or PSN. as in the next section.
As shown by Ragnemalm [14], not all neighbors in N need tc
InTiaLizaTioN - let M be an upper bound fdD(p) be considered, but only those neighboiis the same direction

forallpe O asdp, i.e. neighbors for whichdp, - ny >0 anddp, - ny > 0.
{D(p)=0; (p. (0, 0)) > bucket(0) Apart from the first two iterations, these inequalities can ever
forall pe O’ be considered in the strict sense. The neighborhoods for the fir:
D(p)=M second, and all successive iterations are illustrated in Fig. 3. Co
d=-1; trary to Ragnemalm’s [14], those are not based on th

8-direct neighborhood, but the simpler 4-direct one. Indeed, th
few additional errors made at this step do not matter since the
will be corrected in the next section anyway.

4. USE OF MULTIPLE NEIGHBORHOODS

As pointed out in Section 2, the above algorithm is not ar
exact Euclidean DT, because the tiles in the Voronoi diagrar
are not connected sets. Actually, it makes the same errors
Danielsson’s 4SED algorithm [2]. In order to overcome this
Distance Image limitation, we should consider neighborhoods larger than thos

i .. 3210 of Fig. 3. Unfortunately, we cannot apply this simple idea di-
FIG. 2. Ordered propagation with bucket sorting. Pixels are taken from tﬂ’g_?c“y’ for two reasons. First, the computation time is propor.

nonempty bucket with the lowest index, their neighbors are tested, and, ifnee(ﬂ.‘anal to the size of the neighbo_rhOOd and becomes prOhit_)itiV‘
entered in the bucket whose index is the square of their Euclidean distance with large ones. Second, there is no upper bound on the size
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FIG. 3. Neighborhoods used by PSN to propagate ppxel

the neighborhood to be used to ensure the connectivity of ptbopagation implies a strict increase of the distance value,
tiles regardless of the image. least one pixer € S must propagate to a pixel ¢ S, i.e. a

Nevertheless, it is possible to restrict the number of pixels fpixelr’ € VP(q) N N1(p). This is impossible sincg would then
which larger neighborhoods should be considered and the diee been propagated pousing N1, andD4(p) would then be
of these neighborhoods, thanks to the following properties. correct. m

ProrerTyl. Let Ny and N be two neighborhoods such that  In practice, the ordered propagation using bucket sorting—tt
N: C N,. Let D; and D, be the resulting distance maps generPSN algorithm—allows propagation to locations that are eithe
ated using N and N, respectively. If there is a pixel p suchin the same VP or in the neighborhood of this VP. Nevertheles
that Dy(p) # Do(p), i.e. Di(p) is inexact and B(p) > Da(p), the above proof remains correct since propagated pixels loca
then p has a Blneighbor q such that either in the wrong VP are corrected before being propagated and

not propagate themselves.

—Du(q) # (D2)(@) _ With this property, only pixels that did not propagate us

—Du(q) was not propagated usingiN ing the 4-direct neighborhood in the PSN algorithm need to &

Proof. Letusfirstconsiderthat pixels belonging to a Vorongtonsidered with a larger neighborhood. The size and shape
polygonVP(q) can only propagate to other locations belongin@ose neighborhoods is determined by Properties 2 and 3, r
to VP(q) with the samey, which is what ordered propagationP€ctively.

aims to achieve. Let us considgrsuch thatpe VP(Q), .. prooerry2. For any neighborhood N and a distance trans-
let g be the nearest object pixel f@ Let us consider the set¢, . iion Dv using this neighborhood, there is a valugNy

S=VP(q) N(N2(p)\N1(p)) (see Fig. 4). We know this set iSg,ch that for all pixels p with R(p) < d(N), Dn(p) is exact.
not empty since at least one pixel propagategtosing Ny,

but none did usingN;. Let us suppose that all pixetse S  Proof. The existence of such@N) is obvious, since any

have a correct valuB(r) and were propagated usifg. Since NneighborhoodN would at least give a perfect Euclidean DT
for d(N) =1, i.e. Dy(p) =0. For a neighborhoodll, the upper

bound ford(N) can be computed by extensive search. For a
error to occur at the locatiodp, of a pixel p relatively to its
Na(p) nearest object pixejp, there must be, for all pixelp + n in its

N neighborhood, an object pixgl closer top + n, but further
Ni(p) away fromp. Mathematically, there can be an error at the relativ
locationdpy if

vn € N 3dp; | diste(dpo) < distz(dpy) and
p diste(dpg +n) > diste(dp; +n) m

o
Applying this test for all possible coupled foy, d poy) with
VP(CI)/ dpsi < D, anN x N neighborhood, and restricting the possible
- couples @ pw, dp1y) to acircle on which digf{dp,) is just above
- distz(d o) is an algorithm of at mosi(D? - N) complexity. The
results for the 4-direct neighborhood aNdx N neighborhoods
FIG. 4. Proof of Property 1. The area in grepNi®(q) N (N2(p)\N1(p)). are found in Table 1.
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TABLE 1 it intersectspp; betweenp and pz, thus belowp; . Also, its an-
Smallest Errors for the 4-Direct and Square Neighborhoods gle must be lower thadpy /dp,. Otherwise, it would crosga
betweerg andq;, which is impossible for the midperpendicular

Smallest error Nonpropagating pixel  of o v with g’ on an integer location. The proof for the lower
Neighborhood dpx, dpy) diste (dpx, dpy) disg  boundis similar. m
4-direct @ 2) 8 1 1) > Applying this property reduces the computational cost of
8-direct=3x 3 (12, 5) 169 (10, 4) 116 Nn x n neighborhood frono(n?) to o(n). From these three prop-
5x5 (25,7) 674 (22, 6) 520 erties, we propose a new algorithm for the exact Euclidean DT
7x7 (48,10) 2404 (44, 9) 2017 First, we apply the above PSN algorithm and store all nonprop
9x9 (12, 12) 5328 (67, 11) 4610 agating pixels into a new bucket data structure bucket 2(). Thi
11x 11 (108, 15) 11889 (102, 14) 10600 ) e ) . .
13x 13 (143, 17) 20738 (136, 16) 18752 approximation is corrected using a family of neighborhobils
15x 15 (192, 20) 37264 (184, 19) 34217 made of balls of increasing sizes, for which the limits of va-
17x17 (238,22) 57128 (229, 21) 52882 |idity valid(N;) have been precomputed. For instance, the righ
19x19 (300, 25) 90525 (290, 24) 84676 column in Table 1 gives validy;) for the 4-direct anch x n
21x21 (357, 27) 128178 (346, 26) 120302 ghborhoods.
23x 23 (420, 29) 177241 (408, 28) 167248
25x 25 (500, 32) 251024 (487, 31) 238130 1. Initialization
27x 27 (574, 34) 330632 (560, 33) 314689 2 PSN algorithm with nonpropagating pixels stored
29x 29 (667, 37) 446258 (652, 36) 426400 in bucket2().
33t (768, 40) o9taz (752, 39) 567025 3. Propagation with larger neighborhoodsN;:
Note The first two lines correspond to the errors illustrated at Fig. 1. i =1; d =valid(Ns.direc) — 1;
while all buckets in bucket2() are not empty
{d=d+1;
In Table 1, the right column, we also find the smallest rela- if d > valid(N;)
tive location where a pixel could fail to propagate using each {i=i+1;}
neighborhood. Using this table, we know the size of the neigh- for all (p, dp) in bucket2¢)
borhood to consider for which nonpropagating pixel selected for all n € N; with direction within bounds
by Property 1. For instance, if its value is gi&tp) = 1000, we of property 3
find in Table 1 that 1000 is between 512 and 2017. Therefore, {newD=dist(dp + n);
propagatingp with a 7x 7 neighborhood is enough to ensure if newD< D(p + n)
an exact result, but ao 5 neighborhood may be too small. {D(p+ n)=newD

(p, dp) — bucket2fewD);
b g

ProPerTY3. For a pixel p whose relative location from the
nearest object pixel igdpy, dpy), the only neighborgny, ny)
that need to be considered are those “in the same direction” as
(dpx, dpy). More precisely, if we consider ¢ jand d g, positive,
without loss of generality the neighbdrs,, ny) to consider are
such that

d d
(nx+1)-£sny51+nx.£.

Proof. In Fig. 5, we wish to determine which neighbors "
(nx, ny) should be considered when propagating pixeihose
location relative to the nearest object pixgis (dpy, dpy). Let
us first consider the upper bound. If pixgl = p+ (0, 1) be-
longs to the sam¥P(q), the upper bound for neighbors pf
is higher than for those gf, which guarantees no neighbor will
be missed. Q

On the other hand, we considpr € VP(Q') with g’ #q. The
limit between the tile¥P(q) andVP(q’) is on the midperpendic- g o
ular ofq’g. This midperpendicular would be a good upper bound <
for neighbors of, since the information frorg only needs to be

propagated to pixels belonging¥(q). This midperpendicular riG. 5. Proof of Property 3. In PMNp only needs to propagate to neighbors
itself is bounded by the second inequality of Property 3. Indeedihin the grey area.

>
dpx
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FIG. 6. Testimages. Object pixels are black; distances are computed in the white areas.

5. COMPLEXITY AND COMPUTATIONAL COST Among the methods published so far, those of Eggers al
Saito seem to be the fastest exact Euclidean DTs. Therefo
Comparing the complexity and computational costs of DWe compare our algorithm to those and to the chamfer 3-4 D
algorithms is a complex task. Forx nimages, simple approx- a commonly used approximatation of the Euclidean DT. Tw
imate algorithms such as Danielsson [2], chamfer DT [3] aersions of our algorithm were used for the comparison: tt
Leymarie [13] have a fixed(n?) cost, regardless of the im-approximate single neighborhood (PSN) algorithm of Section
age content. Yamada’s parallel algorithm [4] ha®(d-n?) and the exact multiple neighborhood (PMN) algorithm o
cost proportional to the maximum distanddound in the im- Section 4.
age. More complex exact algorithms such as Ragnemalm [14];The choice of images on which the tests are performed
Eggers [24], and Saito [19] have costs that are highly dependsnbjective and strongly affects the results. Thus, we perfor
of the image content and can vary betweém’) ando(n®). For three tests, illustrated at Fig. 6. Test 1, suggested by Saito, is
those, experiments give a better knowledge of their complexiynpty disk of variable diameter. Test 2, suggested by Egge
than theoretical considerations. is made of random squares covering 15% of the image in totz

Test 1: disks of various diameters

g T 1 1 T
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FIG.7. Test1: diameters vary from 40 to 1000 pixel®;” Chamfer 3, 4; 11,” PSN; “=,” PMN; “O,” Eggers; %,” Saito.
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Test 2: Random Squares
3 T T T T T T
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Orientation (°)

FIG. 8. Test 2: orientations varying fronf@o 90°: “O,” Chamfer 3, 4; I1,” PSN; “=,” PMN; “<,” Eggers; %,” Saito.

with an orientation varying betweer? @nd 90. Test 3, our  The algorithms were implemented in C on a Sun Sparc Ultra
suggestion, is the worst-case scenario foreseen by Eggers Afedcompare the CPU time required by each algorithm. Simila
Ragnemalm for propagation DTs: a straightline across the imagsults could be drawn comparing the number of comparisor
with an orientation varying betweeri @nd 90. All images are per pixel using each algorithm. All results are shown at Figs.
1024x 1024 pixels. to 9 for tests 1 to 3, respectively.

Test 3: Line with various orientations

2
10

-
o

CPU time (seconds)

0 10 20 30 40 50 60 70 80 90
Orientation (°)

-1
10 1 I 1 1 1 1

FIG.9. Test 3: orientation vary from®to 90°. Maxima for each curve are displayed’ Chamfer 3, 4; {],” PSN; “=," PMN; “<$,” Eggers; %,” Saito.
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FIG. 10. Left: object imageCentre:pixels propagated more than once by PMRght: pixels propagated more than once by Eggers’ DT.

Test 1 shows similar results for Eggers and Saito’s algorithms,Furthermore, PSN and PMN treat the data in a fully progre:
while both PSN and PMN perform much better. For a disk afive way; the computation can be stopped at any time and s
diameter 1000 pixels, both Eggers and Saito are more thaprévide a sensible result. If stopped during the first propagatio
times slower than PMN; PSN is between 1.5 and 3 times fastewill provide the DT in a region surrounding the objects only. If
than PMN. stopped during the second propagation, it will provide an erro

Test 2 gives more complex results. PSN is always faster thfiee DT up to a given value, and a good approximation of it fo
all exact algorithms. Those perform similarly with an optimdarger values. We can also create a class of PiMi\gorithms,
performance around°045°, and 90 orientations and poorer wherei is the size of the largest neighborhood used in the se
results for 22.5 and 67.5. The average performance of theond propagation. This provides us with a variety of trade-off
algorithms over the range of orientations is quite similar, withetween PSN and PMN, which can be seen as the PMN-0 a
Saito 5% and Eggers 10% slower than PMN. Finally, PMN BMN-co extrema of the class.
less orientation dependent. The ratio between maximum andrhis property makes our algorithm suitable for application
minimum CPU time requirements is 1.37 for PMN, comparedhere the computation time is fixed, such a real-time applic:
to Saito’s 1.78 and Eggers’ 2.15. tions, even though its cost is not entirely image-independent.

Test 3 shows the worst-case scenario where the methods of
Ragnemalm and Eggers are known to haaér&) complexity.

The disparity between CPU costs is such that the results are
here displayed using a logarithmic scale. Eggers’ DT performs
very poorly for any orientation but the horizontal, vertical, and
45 diagonal. Saito’s DT performs quite well for orientations
between 0 and 453, but very poorly for orientations around
60°. On average, Eggers and Saito are respectively 10 and 4
times slower than PMN. In the worst cases, Eggers and Saito
are respectively 12 and 10 times slower than PMN. Compared
to approximate DTs, PMN is only 2.5 times slower than PSN and
5 times slower than chamfer DT. Finally, our algorithms are less
orientation dependent since PSN varies from 1 to 2, PMN from
1 to 4 while both Eggers and Saito vary from 1 to 50. Chamfer
DT is of course orientation independent.

As a general conclusion of those tests, we see that—apart
from a few special cases—PMN is always faster than the fastest
published DTs, up to 10 times faster for worst-case images.
The additional cost of using the error-free PMN, compared {9G. 11. Counterexample of Property 1 in three dimensiopselongs to
the already good approximation of PSN is to multiply the CPUp(q) and has a relative position of (2, 2, 4). With the 6-direct neighborhooc
time by a factor between 1 and 3. These conclusions would bis disconnected from the rest éP(q) if there are object pixels for which the
even more favorable to PMN if the tests were performed wiffiafive position oipis (0, 0, 5). (4, 0, 3), and (0, 4, 3), respectively. The pixels

. . . in grey on the figure are then members of another tile. In a 3D PMshould
larger images. An explanation of the good behavior of PMN bset its correct value from either pixel orr, using a 3x 3 x 3 neighborhood.

illustrated in Fig. 10, where the pixels propagated more th@ffortunately, both are propagated with the 6-direct neighborhoad zodra,
once are displayed for PMN and Eggers’ DT. respectively.
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3D tests
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Imaae size (NxNxN pixels)

FIG.12. CPU time required per pixel for two sets of test images of sizes betwegrb86« 50 and 350« 350x 350. Test image 1 (dashed line) is an eighth of
a sphere. Testimage 2 (plain line) is a plane oriented gtt&@ worst case for Saito. The DTs considered are FINa(d Saito £). They-axis has a logarithmic
scale.

6. EXTENSION TO 3D AND ANISOTROPY 7. CONCLUSION

PSN can easily be extended to multidimensional or anisotropicWe have developed a new Euclidean DT algorithm using
data. The only restriction is that the metric—or a simple funordered propagation. First, a fast approximation is computec
tion of it such as its square for the EDT—should only includ&hen, larger neighborhoods are used to correct potential errot
integer values, providing an appropriate indexing of the lists iFhis algorithm is significantly faster and less image depender
the bucket sorting structure. than all previously published error-free DTs. Since results ar

Extending PMN to anisotropic data also requiresto re-evalugeduced in a progressive order, it can be used with a fixed con
the limits of validity of each neighbourhood at Table 1. Exputation time and provide significant results, which makes i
tending PMN to three or more dimensions is unfortunately nasable for real-time applications.
straightforward. Indeed, Property 1 of Section 4 is not valid in
more than_two dimen_sions. As iIIustratgd at Fig_. 11,_ itisin f[his_ ACKNOWLEDGMENT
case possible for a pixel to propagate in one direction, while it
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