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We present a group-theoretical derivation of the continuous wavelet transform (CWT) on 
the 2-sphere S2, based on the construction of coherent states associated to square integrable 
group representations. The parameter space X is the product of SO(3) x J&, embedded into 
the Lorentz group S00(3, 1) via the Iwasawa decomposition, and X Y SO,(3,1)/C. The 
space L2(S2, a!~) carries a unitary irreducible representation of S00(3, l), which is square 
integrable over X, and thus yields the wavelets on S2 and the associated CWT. 

1. The problem 

In most cases of physical interest, experimental data are given on the line (signal 
processing), on the plane (image analysis), or occasionally in IQ3 (e.g. in fluid dynam- 
ics). However, there are situations where data are given on a sphere, for instance, 
geophysical data, statistical problems, computer vision or medical imaging (see [l] for 
precise references). The standard methods are based on Fourier analysis, but analyz- 
ing data with the continuous wavelet transform (CWT) is by now a well-established 
procedure (see [2] for a survey of applications in physics). So the question arises, 
how does one extend the CWT to the sphere or another manifold? 

Let us first make that statement precise. We may speak of a genuine spherical 
CWT if (i) the signals and the wavelets live on the sphere; (ii) the transform involves 
(local) dilations of some kind; and (iii) for small scales, the spherical CWT reduces 
to the usual CWT on the (tangent) plane (Euclidean limit). 

The problem has attracted a lot of interest in the last couple of years and many 
proposals have been made, but, in our opinion, none of them is fully satisfactory. 
For instance: 

One may extend to S2 the discrete wavelet scheme based on a multiresolution 
analysis, but this approach leads often to numerical difficulties around the poles 
[3-6]. A different technique is to use second generation wavelets [7]. 
One may exploit the geometry of the sphere, as encoded in the system of spher- 
ical harmonics [all], but the resulting analyzing functions are poorly localized 
and do not really resemble wavelets. 
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In order to avoid the problem of defining proper dilations on the sphere, one 
defines a WT on the tangent bundle of the sphere [12] or instead a Gabor 
transform on the sphere itself [13]. 
The most satisfactory approach is that of Holschneider [14], who produces a 
CWT on S2 that satisfies the three criteria above. However, the role of di- 
lations is played by an abstract parameter that satisfies a number of ad hoc 
assumptions. The correct Euclidean limit is obtained, but it is essentially put by 
hand. 

As can be seen from this brief description, none of the proposed solutions fully 
qualifies for a genuine CWT on S 2. We will present here a new approach to the 
CWT on the 2-sphere, entirely derived from group theory, following the formalism 
of general coherent states developed in [15]. In particular, the Euclidean limit is 
obtained by a group contraction. A detailed treatment may be found in [16] and 

P71. 

2. General set-up: the CWT on a manifold 

We begin by a brief sketch of the method of construction of coherent states (CS) 
associated to a group representation. Further details may be found, for instance, in 
the review paper [15] and the references quoted there. 

Let Y be a manifold, such as space R”, the 2-sphere S2, space-time E&E% or R2x$ 
etc. In order to construct coherent states on Y, assume there is a (locally compact) 
group G of transformations acting transitively on Y. Then G has a natural unitary 
representation in the space L2(Y, &) of finite energy signals living on Y, namely the 
left quasi-regular representation (for simplicity, we assume that I_L is G-invariant): 

[~(g)fl(!J) = f(PY). (2.1) 

Then a system of CS on Y associated to G may be defined if U is square integrable, 
that is, U is irreducible and there exists a nonzero vector n E L2(Y,dp), called ad- 
missible, such that the matrix element (U(g)~]~) is square integrable as a function on 
G, with respect to the (left or right) Haar measure on G. When this is the case, the 
corresponding CS, indexed by G, are the vectors 71~ = U(g)q, g E G. Quite often, how- 
ever, the UIR U is not square integrable in the strict sense, but it becomes so when 
restricted to a homogeneous space X = G/H, for some closed subgroup H. More 
precisely, given a Bore1 section 0 : X + G, the nonzero vector 77 E L2(Y,cZp) is said 
to be admissible mod(H, a), and the representation U square integrable mod(H, a), if 
the following condition holds (we assume that v is a G-invariant measure on X): 

0 < dv(z) I(u(+))nPN” = (41&d) < 007 ~~ E ‘H, 
I 

(2.2) 
X 

where A, is a positive, bounded, invertible operator [15]. Then CS indexed by X 
may be defined as 

%7(Z) = U(+))n, 2 6 X. (2.3) 
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If the operator A;l is also bounded, the family S, = {r]o(z), z E X} is called a 
frame, and a tight frame if A, = XI, for some X > 0. This terminology is familiar in 
the discrete case, for instance, in wavelet or Gabor analysis [18, 191. From now on, 
we shall assume for simplicity that the admissible vector n generates a frame S,. 

Under these assumptions, the CS defined in (2.3) form a total set in ‘H, i.e. 
(&)l = {0}, with the following properties: 

(1) 

(2) 

(3) 

The range, H,, of the linear map W, : 7-l + L2(X,dv), given by 

(24 

is complete with respect to the scalar product (@I 9), = (@I W, Al1 W;‘Q) and 
W, is unitary from ti onto ‘FI,. 
The orthogonal projection from L2(X,dv) onto 7-L, is an integral operator K,,, 
and 7-& is a reproducing kernel Iiilbert space of functions; the kernel is given 

explicitly by K&z, Y) = (v,(,) IK1 v+)). 
The map WV may be inverted on its range by the adjoint operator, W;’ = W; 

on fiFt,, to obtain the reconstruction formula: 

In other words, the vector 4 = W;“@ may be expanded in terms of CS TV. 

A particular case of this construction is that considered, independently, by Gilmore 
[20] and Perelomov [21], namely the situation where the subgroup H is the subgroup 
FH(h:f G that leaves the admissible vector n invariant up to a phase, U(h)q = 

7, h E I&, where w(h) is a real-valued function on H7). Then the admissibility 
condition (2.2) is independent of the choice of the section 0, and the frame is always 
tight, with A, = I. 

Familiar examples of this construction include the ‘uz + b’ group acting on $ 
which yields the usual 1D continuous wavelets; the Weyl-Heisenberg group, also act- 
ing on $ that gives the Windowed Fourier Transform, or Gabor transform; the simil- 
itude group of 1w”, consisting of translations, rotations and dilations, which yields the 
n-dimensional wavelets; or coherent states on the Galilei group or the Poincare group, 
both inaccessible to the standard Gilmore-Perelomov method [El. 

3. AfFme transformations on the sphere S2 

We shall apply this method to the sphere S2 and consider the space of finite 
energy signals 7-L = L2(S2, dp), where &u(w) = sin0 dl9dp is the usual (rotation in- 
variant) measure on S2. The first step for constructing a CWT on S2 is to identify 
the appropriate transformations. These are of two types: 

(i) Motions or displacements, given by elements of the rotation group SO(3), which 
indeed acts transitively on S2, and S2 E SO(3)/SO(2). 
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(ii) Dilations, that may be derived in two steps. First, dilations around the North 
Pole are obtained by considering usual dilations in the tangent plane and lifting 
them to S2 by inverse stereographic projection from the South Pole; in polar 
spherical coordinates w = (0, cp), this gives: 

0,” (0 > ‘p) = tea, cp> , with 
0, e 

tan - = a. tan - . 
2 2 (3.1) 

Then a dilation around any other point w E S2 is obtained by moving w to the 
North Pole by a rotation y E SO(3), performing a dilation DN as before and 
going back by the inverse rotation: D” = ylDNy. Clearly the dilations act also 
transitively on S2. 

Next we have to identify a group of affine transformations on S2. First we note that 
motions y E SO(3) and dilations by a E R, + do not commute. Also it is impossible to 
build a semidirect product SO(3) M l&!, since SO(3) has no outer automorphisms, and 
therefore the only extension of SO(3) by w is their direct product. A way out is to 
embed the two factors into the Lorentz group SO,(3, l), by the Iwasuwu decomposition: 

SO,(3,1) = SO(3). A. N, (3.2) 

where A N LR$ N SO,( 1,1) N R is the subgroup of Lorentz boosts in the z-direction 
and N N C is two-dimensional and abelian. 

Alternatively, one may consider the twofold covering SL(2, C) of SO,(3, l), which 
acts on the tangent plane by homographic transformations. The corresponding Iwasawa 
decomposition reads SL(2, C) = SU(2). A. N, where N now corresponds to translations 
of the plane. Therefore the stability subgroup of the North Pole is the minimal parabolic 
subgroup P = MAN, where A4 = SO(2) or U(1) is the subgroup of rotations around 
the z-axis, depending on the formulation chosen. Thus we get 

S2 = SO,(3,1)/P p SO(3)/SO(2). (3.3) 

This shows that SO,(3,1) acts transitively on S2, and so does SL(2, C), via the inverse 
stereographic projection. 

In order to compute explicitly the action of SL(2, C) on S2, one may use the Iwasawa 
decomposition (3.2). For a pure dilation by a, the result is precisely the usual dilation 
lifted on S2 by inverse stereographic projection, given in (3.1). 

4. The continuous wavelet transform on S2 

4.1. Principal series representations of the Lorentz group SO,(3,1) 

The next step towards constructing affine CS on S2 is to find a suitable UIR of 
the Lorentz group SO,(3,1) in the Hilbert space L2(S2, dp). Natural candidates are 
the representations of the continuous principal series [26, 271, which are given by the 
operators: 

[us(LJ)fl (WI = %4s’2 x(a) f (9-q 7 9 E SO0(3, I), s E @, f E L2(S2, &L), 
(4.1) 
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where g = yan is the Iwasawa decomposition, X is a character of A, and the multiplier 
X(g,w) is a Radon-Nikodym derivative (or a 1-cocycle), expressing the fact that the 
measure dp is not invariant under the full group SO,(3,1): 

x(g 
3 

w) = dl* k-‘w> 
G(w) ’ 

9 E SO&31 1). (4.2) 

Among these, we take the subset of class I representations. These are induced by 
UIRs of the minimal parabolic subgroup P = MAN, which are trivial on M (for 
these representations, the carrier Hilbert space contains a vector which is invariant 
under the action of the maximal compact subgroup SO(3)). For simplicity, we take 
the trivial character X(a) e 1. 

The corresponding representation U” of SO,(3,1) is cyclic when s # 0, -1: -2,. . . 
and it is unitary and irreducible if and only if Re s = 1 [27]. We choose s = 1 and 
write U E U’. 

Since we are only interested in the action of dilations and motions, we quotient 
out the subgroup N. Then, introducing a suitable section n : X = SO,(3,1)/N -+ 
SO,(3, l), we concentrate on the reduced expression 

[U(4~)>fl (WI = X(ds), WY f (44-q . (4.3) 

We choose the natural (Iwasawa) section al(y, CL) = y a, y E SO(3), a E A. Using the 
action (3.1) of dilations, one gets easily 

qm(r, a), w) = qa, e> = 4a2 

[(u” - 1). cost9 + (9 + l)]” ’ 
w = (0, PI. (4.4) 

In addition, from the choice of the section, we have U((TI(~, a)) = U(y a) = U(y)U(n), 
and therefore the representation (4.3) factorizes as 

tw4r7 a))fl (w) = (Uclr(Y> O D”f> (w> 1 (45) 

where U,,(y), y E SO(3) is the quasi-regular representation of SO(3) in L2(S2,dp), 
and D”, a E I@ is a pure dilation, that is, (D”f)(w) = A(u,~)~/~~(w~,,), with 
w, = (19,, cp). The quasi-regular representation of SO(3), (U,,(y)f)(w) = f(r-‘w), 
is infinite-dimensional and decomposes into the direct sum of all the familiar 
(21 + 1)-dimensional representations, 1 = 0, 1,2,. . . . 

4.2. Lorentz coherent states as wavelets on the sphere S2 

Following the general approach of [15], we will build in this section a system of 
CS for the Lorentz group, indexed by points of X = SO,(3,1)/N. Since N is not 
the isotropy subgroup of a particular vector in the representation Hilbert space, the 
resulting CS are not of the Gilmore-Perelomov type [21]. 
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First we show that the UIR (4.3) is indeed square integrable on X, that is, we 
check that there exists a nonzero vector n E L2(S2, &) such that 

where dv(y, u) = up3 cQ~(~)da, and c&(y) is the invariant (Haar) measure on SO(3). 
The result is given by the following theorem, proven in [16]. 

THEOREM 4.1. The representation U given in (4.3) is square integrable modulo the 
subgroup N and the section UI, that is, there exists a nonzero vector q E L2(S2, du) 
which is admissible mod(N, al). This means there is a constant c > 0, independent of 1, 
such that 

JT5_- 21 + 1 C 7 2 lfji(l,m)12 < c, 1 = 0,1,2..., 

Iml< 10 
(4.6) 

where ?j(Z, m) = (Yt”[q) stands for the Fourier coefficients of r] and 

71,(w) = Mm(e, a))771 GJ) = (W)(w) = X(a, W2 77(f-qa). (4.7) 
As usual, it follows from this theorem that there is a dense set of admissible vectors, 

and any one of them, n, generates a continuous family {nblcZ) = U(a(x))n, z E X} of 
CS. But in fact we have more: 

PROPOSITION 4.2. For any admissible vector 77 such that s,“” dv ~(0, cp) # 0 (for 
instance, if 77 is axisymmetric), the family {v,~(,), x E X} is a continuous frame, that is, 
there exist constants A > 0 and B < 00 such that 

A 114112 G s d+) l(r1c,&Y2 6 B 114112, v4 E L2(S2,44 (4.8) 
X 

Thus, for most admissible vectors n, we get a continuous frame, but not necessarily 
a tight frame. We conjecture that the resulting frame is never tight, that is, the frame 
operator A, has spectrum spread over a nontrivial interval. 

Theorem 4.1 yields the basic ingredient for writing the CWT on S2. Given an ad- 
missible vector $ E L2(S2, du), our wavelets on the sphere are the functions $J~,~ = 
V(ar(y, a))+, and the CWT reads, with Us(y, u) E V(al(r, u)): 

S(Y, a) = vJ(m(r, u>Mls) 

= 
J 

&(w) KJs(r, a)$l(w) 4~) 
SZ 

(4.9) 

= 
J 

Q(w) &(Y-~w) s(w). 
SZ 
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An explicit calculation [16] shows that the spherical CWT (4.9) is covariant under mo- 
tions on S*, but not covariant under dilations. For applications, of course, it is the 
covariance under motions that is essential, since it reduces to translation covariance in 
the Euclidean limit, as we shall see in Section 5. As for dilations, the negative result 
reflects the fact that the parameter space X of the spherical CWT is not a group. 

The condition (4.6), which was derived in [14] in a different way, is necessary and 
sufficient for the admissibility of n, but it is somewhat complicated to use in practice, 
since it requires the evaluation of nontrivial Fourier coefficients. Instead, there is a 
simpler, although only necessary, condition. 

PROPOSITION 4.3. A function 7 E L2(S2, dp) is admissible only if it satisfies the 
condition 

s 
dp(o, ‘p) 

v(e,cp) 0 
1+cose= . 

(4.10) 

SZ 

This necessary condition is the exact equivalent of the usual necessary condition 
for wavelets in the plane, J d2x $J(x) = 0, and it reduces to the latter in the Euclidean 
limit (see Section 5). The interesting point is that (4.10) is a zero-mean condition, 
as in the flat case. As such it has the same effect, namely it ensures that the CWT 
on S* given in (4.9) acts as a local filter. This is crucial for applications and it is 
one of the main reasons of the efficiency of the CWT, and the same holds here. 

Using Proposition 4.3, it is easy to build explicit wavelets on the sphere, namely 
‘Difference wavelets’, similar to the ‘Difference-of-Gaussians’ (DOG) wavelet com- 
monly used in vision. Given a square integrable function $, we define 

Then it is easily checked that VP’ satisfies the admissibility condition (4.10) that 
is, it is a spherical wavelet. A typical difference wavelet corresponds to the choice 
$(0, cp) = exp(- tan2 i), which is the inverse stereographic projection of a Gaussian 
in the tangent plane. 

5. The Euclidean limit 

According to Holschneider [14], a good wavelet transform on the sphere should 
be asymptotically Euclidean, that is, the spherical WT should match the usual CWT 
in the plane at small scales or, what amounts to the same, for large values of the 
radius of curvature. In this section, we will give a precise mathematical meaning to 
this statement using the technique of group contractions. 

5.1. Contracting the Lorentz group and its homogeneous spaces 

In the first step, we reformulate the theory on a sphere of radius R and let 
R + 00. In this limit, the Lorentz group S0,(3,1) is contracted into a semidirect 
product: 

Gi = S0,(3,1) R= Gz = IR2 N SIM(2), 
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where SIM(2) = R2 x(lR;f xSO(2)) is the similitude group of IR2, that is, the invariance 
group of the Euclidean CWT. 

Let us start at the level of Lie algebras. Given two Lie algebras gl = (V, [., .]I) and 
g2 = (V, [., .12) on the same vector space V, we say that g2 is a contraction of g1 if there 
exists a family of invertible linear mappings $n : V ---) V, R E [l, 00) such that 

j$rm$R1 [$JRX,~RYI~ = [X,Y12, v X,Y E V. (5.1) 

We apply this to the Lorentz Lie algebra g = so(3, l), with Iwasawa decomposition: 

50(3,1) = SO(~) $ a @ n. (5.2) 

The minimal parabolic subalgebra is p = SO(~) $ a $ n, which is isomorphic to sim(2) = 
SO(~) $ lR $ IR2, the Lie algebra of SIM(2). Introducing generators of so(3, l), we have : 

SO(~) = span{Xr,Xs,Xs}, a = span(Q) -Iw, n = span{Ni, Na} N I@. (5.3) 

Then we introduce the following contraction scheme 

$n(Xj) = R-lXj, j = 1,2, all the others fixed. (54 

When R -+ co, this contraction preserves the subalgebra p and maps 50(3,1) onto 

ga = i@ $ SO(~) $ R $ R2 = 0, + a, (5.5) 

where bc = span{Xr,Xa} N lR2 and 5 = span{Xs, Q, Ni, Na} N sim(2) N p. 
Next the contraction procedure is lifted to the corresponding Lie groups. Let S be 

the subgroup of Gr = SO,(3,1) with the Lie algebra 5, and V, = expnc si D,. Then 
the contraction maps Gr = SO,(3,1) onto the group Ga corresponding to g2, namely 
the semidirect product G2 E V, x S E Ift2 x SIM(2). The contraction preserves the 
minimal parabolic subgroup P = MAN N SIM(2). Concretely, one considers the family 
of contraction maps HR : Ga + Gr given by 

llR : (u, s) I--+ (expGl R-h) s. (5.6) 

They have the same function as the maps f$R of (5.1) at the group level, namely: 

(5.7) 

where A, 2 denote the product in Gr , Ga, respectively. Indeed TJIR = $n, 
The third step is to transfer the contraction process to the relevant homogeneous 

spaces. On one hand, the manifolds S2 = Gl/MAN and R2 = Gz/MAN, that carry the 
respective CWT, are related through contraction. On the other hand, since the abelian 
subgroup N is preserved under the contraction, the parameter space X = SO,(3,1)/N 
of the spherical CWT goes into that of the Euclidean CWT, namely SIM(2) = Ga/N. 
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In order to formulate the contraction directly on the two parameter spaces, we 
introduce a section 6 : SIM(2) + N x SIM(2) by the relation: 

Combining this with the canonical projection of the Iwasawa bundle, I : KAN + X ‘v 
KA, we define the restricted contraction map fin : SIM(2) + X by 

SIM(2) 3 9 H II,(g) = I (II, ($9))) > 

where IIn : Gz + G1 is the contraction map (5.6). Altogether we have the following 
commutative diagram: 

G2 = R2 H SIM(2) -% Gi = SO,(3,1) 

T5 II (5.8) 

G2/N 11 SIM(2) 3 &90,(3,1)/N = x. 

Finally we notice that the parameter space of the spherical CWT, namely X = 
Gi/N 21 SO(3) . A, is not a group (and this forced us to use the general formalism 
of [15]), whereas, after contraction, we get G2/N N SIM(2). Thus the missing group 
structure is restored by the contraction! 

5.2. The Euclidean limit of the spherical CWT 

We may perform now the Euclidean limit itself, that will be formulated as a 
contraction at the level of group representations. Whereas contractions of Lie algebras 
and Lie groups are relatively ancient and well known [28, 291, the extension of the 
procedure to group representations is rather recent [30]. A rigorous version has been 
given by Dooley [31], which we follow. The additional difficulty here is that the 
representation space itself varies during the procedure. 

Let G2 be a contraction of Gi, defined by the contraction map IIn : G:! -+ G1 
and let U be a representation of G2 in a Hilbert space ‘H. Suppose that, for each 
R E [l , 0;)) we have a representation {‘FI n, UR} Of G1, a dense subspace DR Of ?f 
and a linear injective map In : tiR 4 DR. Then one says that the representation U 
of G2 is a contraction of the family of representations {uR} of G1 if there exists a 
dense subspace 27 of IFI such that, for all 4 E 27 and g E G2, one has: 

0 for every R large enough, 4 E 2)~ and UR @In(g)) Ii14 E Ii1 (DR) , 

l ~~mIllnv~(&g)r,-'4- ~tgMl17-1 = 0. (5.9) 

Using this definition, we show that the CWT on the sphere converges to the usual 2D 
CWT on IR2 in the geometrical limit of large radius, by proving that the associated 
series of square integrable representations of SO,(3,1) contracts to the usual wavelet 
representation of SIM(2), defined in [23, 241. 

Let RR = L2(Sg, dpR) be the Hilbert space of square integrable functions on a 
sphere of radius R and 3-1 = L2(IR2 , d2Z). Guided by the geometry of the problem, 
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we define the map In : %R --f fi as: 

(5.10) 

using polar coordinates (r, ‘p) in the plane. Then one checks that 1~ is unitary. 
For each R, we choose D, = D = Ca(R2)), the space of continuous functions of 

compact support. Let U be the usual wavelet representation of SIM(2) in 3-1 and UR 
the representation (4.3) of SO,(3,1) realized in ‘HR. Then one has 

THEOREM 5.1 (Euclidean limit). The representation U of SIM(2) k a contraction of 
the family of representations UR of SO,.@, 1) as R 4 co. 

The proof amounts to show that the strong limit (5.9) holds for every g E SIM(2), 
with respect to the contraction map IIR. This is done in two steps. First, an explicit 
calculation of the map IIn yields pointwise convergence. Then, using the fact that 1;’ 
is a unitary operator, one computes the strong limit in xn, where it results from an 
easy estimate and an application of Lebesgue’s dominated convergence theorem. 

This theorem yields the expected result that local wavelet analysis on the sphere 
as defined here is equivalent to local wavelet analysis in flat space. Indeed, the whole 
structure on the sphere Si goes into the corresponding one in R2 as R --) cm. Since 
UR + U, the corresponding matrix elements converge to one another, and so the square 
integrability condition (4.6) converges into the corresponding one for the CWT in R2, 

Admissible wavelets on S2 converge to admissible wavelets on R2, and the necessary 
condition (4.10) also goes into the usual one in the plane, namely Jd2a:$(z) = 0. 

6. Extension to other manifolds 

First we notice that the whole construction made so far extends almost verbatim 
to the (n - 1)-dimensional sphere S”-l = SO(n)/SO(n - l), with help of a similar 
class I representation of the generalized Lorentz group SO,(n, 1) [32]. Although the 
spheres are the manifolds on which a CWT is most desirable for applications, the math- 
ematical analysis made here invites to consider other manifolds with similar geometrical 
properties. 

We take first 12 = 3. The sphere S2 = SO(3)/SO(2) is a compact Riemannian 
symmetric space of constant curvature K = 1. It has a noncompact dual, H2 = SO,(2,1)/ 
SO(2), of constant curvature K = -1 [25]. H2 is a two-sheeted hyperboloid, symmetric 
around the ~-axis. Duality corresponds to the fact that SO(3) and SO,(2,1) are the 
two real forms of the complex group SO(3)@ N SL(2,C). 

As for the sphere, we can perform a stereographic projection @ from the South 
Pole onto the equatorial plane 23 = 0. Then + maps the upper sheet Ht onto the 
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interior V+ of the unit disk, and the lower sheet H?! onto the exterior. The domain 
V+, called the Lobachewskian disk, is conformally equivalent to H$ and both manifolds 
have SO,(2,1) as isometry group. 

Dilations on Hz may be obtained by lifting dilations in the equatorial plane by 
inverse stereographic projection. The resulting map has all the required properties 
for a dilation, but does not come directly from a linear group action. Thus it can 
only be used for constructing wavelets on Ht if one puts it by hand. 

An alternative way of introducing dilations via a group action is based on analytic 
continuation from the spherical case, that is, using the familiar Weyl trick, which 
in this case maps SO(~) to so(l,2). This yields the pseudo-Iwasawa decomposition 
G* = SO,(l, 3) = SO,(l, 2) . A . N*, which gives the action of G* on Ht. It remains 
to find a UIR U of SO&, 3) in L2(Ht, dp) and to show that it is square integrable 
modulo N* and a suitable section. 

In higher dimensions, the situation is exactly the same: 

S”-1 = SO(n)/SO(n - 1) and H”-1 = SO,(n - 1, l)/SO(n - 1) 

are dual Riemannian symmetric spaces, with constant curvature K = fl, respectively. 
Again SO(n) and SO,(n, 1) are two real forms of the complexified group SO(n)@. 
In addition, there are now additional noncompact real forms SO&, q), p + 4 = n, 
leading to pseudo-Riemannian symmetric spaces HPtQ = SO,(p,q)/(SO(p) x SO(q)). 
These are homogeneous spaces of higher rank, and few explicit results are available. 

7. Conclusion 

The construction presented here fulfills all the requirements stated in the intro- 
duction for a continuous wavelet transform on the sphere. It is entirely derived from 
group theory, following the formalism of general coherent states developed in [15]. 
In addition, the Euclidean limit is valid, with a precise group-theoretical formulation. 
Thus the formulae (4.9) yield a genuine CWT on the sphere, which has none of the 
defects of the other versions mentioned above. Preliminary tests with the spherical 
DOG wavelet show that it has the expected capability of detecting discontinuities, 
whether or not they lie at one of the poles of the sphere. The only remaining prob- 
lem is of a computational nature. Indeed Eq. (4.9) requires a pointwise convolution 
on the sphere, which is very time-consuming. However, this is not specific to wavelet 
analysis, it simply reflects the lack of an efficient convolution algorithm on the sphere, 
and in particular the difficulty of finding an appropriate discretization of the latter. 
Several methods have been proposed in the literature [l, 10, 331, but none of them 
is fully satisfactory. However, it seems reasonable to hope that faster algorithms will 
be available soon [17]. 
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