000086617 001__ 86617
000086617 005__ 20190316233741.0
000086617 0247_ $$2doi$$a10.1016/S0034-4877(99)80011-1
000086617 037__ $$aARTICLE
000086617 245__ $$aWavelets on the 2-sphere and related manifolds
000086617 269__ $$a1999
000086617 260__ $$c1999
000086617 336__ $$aJournal Articles
000086617 520__ $$aWe present a group-theoretical derivation of the continuous wavelet transform (CWT) on the 2-sphere S2, based on the construction of coherent states associated to square integrable group representations. The parameter space X is the product of SO(3) × R*+, embedded into the Lorentz group SOo(3,1) via the Iwasawa decomposition, and X  -SOo(3,1)/. The space L2(S2,d) carries a unitary irreducible representation of SOo(3,1), which is square integrable over X, and thus yields the wavelets on S2 and the associated CWT.
000086617 6531_ $$aLTS2
000086617 700__ $$aAntoine, J.
000086617 700__ $$g120906$$aVandergheynst, P.$$0240428
000086617 773__ $$j43$$tReports on Mathematical Physics$$k1-2$$q13-24
000086617 8564_ $$uhttps://infoscience.epfl.ch/record/86617/files/Peotta1999_33.pdf$$zn/a$$s884669
000086617 909C0 $$xU10380$$0252392$$pLTS2
000086617 909CO $$qGLOBAL_SET$$pSTI$$ooai:infoscience.tind.io:86617$$particle
000086617 937__ $$aEPFL-ARTICLE-86617
000086617 970__ $$aPeotta1999_33/LTS
000086617 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000086617 980__ $$aARTICLE