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The analysis of oriented features in images requires two-dimensional directional
wavelets. Among these, we study in detail the class of Cauchy wavelets, which are
strictly supported in a (narrow) convex cone in spatial frequency space. They have
excellent angular selectivity, as shown by a standard calibration test, and they have
minimal uncertainty. In addition, we present a new application of directional
wavelets, namely a technique for determining the symmetries of a given pattern
with respect to rotations and dilation.© 1999 Academic Press

1. INTRODUCTION

As is well known [12], the wavelet transform (WT) comes in two very different
incarnations, based on mutually exclusive philosophies, namely the continuous WT
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(CWT) and the discrete or dyadic WT (DWT). According to conventional wisdom, the
CWT is better adapted for the analysis of signals, in particular feature detection, whereas
the DWT is preferred for signal synthesis and data compression. The reason is that the
DWT leads to orthonormal or biorthogonal wavelet bases, and (bi)orthogonality ensures
a maximal decorrelation among the wavelet coefficients.

Specializing to the two-dimensional case, the 2-D CWT will be used mainly for
detection, extraction, or classification of various features in images. But then a further
choice must be made. If the aim is a pointwise analysis, without particular emphasis on
directions, then an isotropic wavelet, such as the isotropic Mexican hat, will be more
economical. But if the features to be detected have a preferred direction (straight edges,
filaments, oriented textures, velocity field, etc.), then one needs a wavelet with good
angular selectivity. In [2], we have defined adirectional waveletas a waveletc( xW) whose
Fourier transformĉ(kW) has (essential) support in a convex cone in spatial frequency space,
with apex at the origin. The canonical example, of course, is the 2-D Morlet wavelet. Up
to Gaussian tails, it lives in an ellipse centered on the wave vectorkW0, and hence contained
in the convex cone defined by the tangents to that ellipse. The detection capability of the
Morlet wavelet has been thoroughly analyzed in [1, 2] and it has been characterized by
two parameters, the scale resolving power (SRP) and the angular resolving power (ARP).
Taken together, these two parameters define a tiling of the spatial frequency plane, thus
leading to the determination of a complete filter bank suitable for image analysis.

However, the Morlet wavelet has a drawback. In order to make it more directionally
selective, one must increaseukW0u (in addition to increasing the anisotropy parametere,
which results in a further elongating of the supporting ellipse). But there is a price to pay.
When ukW0u increases, the amplitude ofĉ(kW) diminishes, since it contains a factor
exp(2ukW0u2). Thus one has to find a directional compromise and keepukW0u within
reasonable bounds, which implies that the ARP of the Morlet wavelet is in fact limited.

As an alternative to the Morlet wavelet, we have introduced in [2] another class of
directional wavelets, namely theCauchy wavelets.They are strictly contained in a convex
cone inkW-space, with a fully controllable opening angle, independently of the amplitude.
They have an arbitrary large number of vanishing moments on the boundary of the
supporting cone and an exponential decay inside (alternatively, one may impose a
Gaussian decay). These Cauchy wavelets generalize to two (or more) dimensions the
wavelets of Paul [13, 30, 31] (actually, they were introduced by Klauder [27] and the name
“Cauchy” was given by Holschneider [22]).

One of the purposes of this paper is to study the 2-D Cauchy wavelets in a systematic
way, both mathematically (Section 2) and in terms of their performances for analysis
(Section 3). In addition, we will show in Section 4 that the Cauchy wavelets haveminimal
uncertainty,in the sense that they saturate the uncertainty relations that result from the
nonvanishing commutation relations among some of the infinitesimal generators of the
transformations defining the 2-D CWT, namely translations, dilations, and rotations (see
[1]). This property is familiar in the 1-D case, where it was introduced by Gabor [16] in
his pioneering work on time–frequency analysis. The fact that the Gaussian has minimal
uncertainty, either in the sense of quantum mechanics (Heisenberg uncertainty relations)
or in the sense of signal processing (which is the same thing), has been invoked time and
again for justifying its preeminent role, both in Gabor analysis and in wavelet analysis.
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In the final Section 5, we describe an application of directional wavelets that looks
extremely promising. We introduce the so-calledscale-angle measureof an object,
namely the space integral of the square modulus of its WT, which may also be interpreted
as the (partial) energy density of the CWT in the scale and angle variables. Using this
concept, we show that a directional wavelet, for instance a Cauchy wavelet, is able to
determine the symmetry of a given object in a straightforward way. This applies to
geometrical figures (a square, a hexagon), but also to tilings, which may have both a
rotational symmetry and a combined rotation–dilation symmetry. It is revealing that the
tiling that was used for detecting a rotational symmetry (of order 8) had also such a
combined symmetry—but the latter was discovered on the scale-angle measure,noton the
tiling itself. We expect this technique to be useful, for instance, in the study of quasi-
crystals and other patterns with approximate symmetries.

We conclude this Introduction by fixing our conventions and recalling the basic
definitions concerning the 2-D CWT. An image is a finite energy signals [ L2(R2,
d2xW). A wavelet is a signalc [ L2(R2, d2xW) satisfying the familiar admissibility
condition

cc ; ~2p!2 E d2kW

ukW u2
uĉ~kW!u2 , ` (1.1)

(we will put cc 5 1 throughout). Ifc is regular enough (c [ L1(R2, d2xW) ù L2(R2, d2xW)
suffices), the admissibility condition simply means that the wavelet has zero mean:

ĉ~0W ! 5 0N E d2xW c~ xW! 5 0. (1.2)

Given an images [ L2(R2, d2xW), its wavelet transform (with respect to the fixed
waveletc) S [ Wcs is given, as usual, by the scalar product ofs with the transformed
waveletcbW ,a,u, considered as a function of (bW , a, u ):

S~bW , a, u ! 5 ^c Wb,a,uus& (1.3)

5 a21 E d2xW c# ~a21r2u~ xW 2 bW !!s~ xW! (1.4)

5 a E d2kW ei Wb z Wkĉ#~ar2u~kW!!ŝ~kW!. (1.5)

In these relations,bW [ R2 is the displacement parameter,a . 0 the dilation parameter,
andu the rotation angle, and the rotationru [ SO(2) acts onxW 5 ( x, y) in the usual way.

It is a basic aspect of the CWT that the transformed waveletcbW,a,u is obtained from
c by a unitary operatorU(bW, a, u), which defines a square integrable representation of
the two-dimensional Euclidean group with dilations, i.e., the similitude group SIM(2)
of R2,
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c Wb,a,u~ xW! ; a21c~a21r2u~ xW 2 bW !! 5 ~U~bW , a, u !c!~ xW!, (1.6)

or, equivalently, in the space of Fourier transforms,

c Wb,a,u
ˆ~kW! ; ae2i Wb z Wkĉ~ar2u~kW!! 5 ~Û~bW , a, u !ĉ!~kW!. (1.7)

The formula (1.7) will be used in Section 4 for determining the effect of infinitesimal
transformations, that is, the representation of the Lie algebra sim(2) acting on
wavelets.

2. MATHEMATICAL PROPERTIES OF THE CAUCHY WAVELETS

2.1. Directional Wavelets

In frequency space, the 1-D (Cauchy) wavelets of Paul have the following form, with
m . 0:

ĉm~v! 5 H 0, for v , 0,
vme2v, for v $ 0. (2.1)

Now, in 1-D, the positive half-line is a convex cone. Thus a natural generalization to 2-D
will be a wavelet whose support in spatial frequency space is contained in a convex cone
with apex at the origin. This is exactly the definition of adirectional wavelet that we
introduced in [1], with the purpose of characterizing wavelets capable of detecting
oriented features (segments, edges, vector field, etc.) in images (a review of directional
wavelets and their use may be found in [3]).

Since it may sound counterintuitive, this definition requires a word of justification.
According to (1.5), the wavelet acts as a filter inkW-space (multiplication by the function
ĉ). Suppose the signals( xW) is strongly oriented, for instance, a long segment along the
positive x-axis. Then its Fourier transformŝ(kW) is a long segment along the positive
ky-axis. In order to detect such a signal, with a good directional selectivity, one needs a
waveletc supported in a narrow cone inkW-space. Then the WT is negligible unlessĉ(kW)
is essentially aligned ontoŝ(kW): directional selectivity demands restriction of the support
of ĉ, notc. In the same way, in signal processing, restrictions on the support of filters are
imposed in thefrequencydomain (high pass, band pass, etc.). A case in point is the
analysis oftextureswith directional wavelets. Both in [18] and in [24, 29] the algorithm
demands that the waveletĉ be well localized in spatial frequency space. In particular, its
(essential) support must be contained in a rather narrow cone. Notice that a discrete
version of wavelet analysis with a Morlet wavelet (called Gabor wavelet!) has been used
previously in texture analysis [25], with very good reconstruction results. On the contrary,
spatial localization properties of the directional wavelets are not important. Indeed, the
wavelets of Paul have a poor localization in the time domain (they decrease as an inverse
power for t 3 6`).

The best known directional wavelet is, of course, the 2-D Morlet wavelet that we have
analyzed in detail in [1]. Strictly speaking, it is only approximately directional, since it has
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Gaussian tails outside the cone of its essential support, but this makes no difference
numerically. Another example of directional wavelet has been proposed by Watson [39].
His fan filters are obtained by taking first the difference between two “mesa” functions,
which yields an angular wavelet, and then repeatedly bisecting the spatial frequency space
and taking only one side (i.e., the associated analytic signal). The allowed directionsu are
thus restricted to a fan-shaped region:

0 # 2u #
2p

2n21 ~n 5 2, 3, . . .!. (2.2)

This construction may then be generalized to arbitrary angles [32]. These fan filters have
all the properties of directional wavelets, including admissibility in the form (1.2).
Applying to these filters discrete rotations and scaling, Watson builds a pyramid of
oriented filters as a tool for data compression and signal reconstruction after coding, in a
model of human vision. This is, in fact, a discretized version (in polar geometry) of the
CWT. Another example, very similar to the previous one, is that of thesteerable filters,
introduced by Freeman and Adelson [15], and further developed by Perona [33] and
Simoncelliet al. [34]. Here again one obtains a multiscale pyramid decomposition, which
is quite efficient in a number of problems, mostly related to machine vision. Similar
techniques have been used with the Gabor transform [25].

By comparison with these (and related) works, the present paper shows two main
differences. First, we use the precise mathematical definition ofdirectional wavelet
introduced in [2]. Accordingly, while (analytic) fan filters are directional, in the strict
sense, steerable filters cannot be, although they may be approximately directional,
just like the Morlet wavelet. For instance, the simplest example given in [15] is a
filter based on directional derivatives. Thus it is not supported in a convex cone
and therefore is not directional, although it is an oriented wavelet. Second, we are
interested in feature detection and analysis. For this purpose, it is more efficient to
use the continuous WT than the discrete one, as illustrated, for instance, in [18] and
in [24, 29]. In particular, instead of using a dyadic discretization scheme (scaling by
powers of 2), we use first a continuous scaling, and the values chosen for the even-
tual discretization are arbitrary and, in fact, dictated by the signal itself (as in the
analysis of fractals [5, 6]). In that sense, we are closer to the scale-space philosophy
of Witkin [42].

2.2. Cauchy Wavelets

With these preliminary remarks in mind, we may now proceed to the definition of the
new wavelets. Let# [ #(a, b) be the convex cone determined by the unit vectorseWa, eWb,
where a , b, b 2 a , p and eWg [ (cos g, sin g). The axis of the cone iszWab 5
eW (1/ 2)(a1b). Then one has

#~a, b! 5 $kW [ R2 : a # arg~kW! # b%

5 $kW [ R2 : kW z zWab $ eWa z zWab 5 eWb z zWab . 0%. (2.3)
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The dual cone, also convex, is

#̃ ; #~ã, b̃! 5 $kW [ R2, kW z kW9 . 0, ; kW9 [ #~a, b!%, (2.4)

whereb̃ 5 a 1 p/2, ã 5 b 2 p/2, and thereforeeW ã z eWb 5 eW b̃ z eWa 5 0, whereaseW ã z

eWa 5 eW b̃ z eWb 5 sin(b 2 a). Thus the axis of̃# is zWab again. (It might seem more natural
to use the variablesǎ 5 b̃, b̌ 5 ã, as was done in [2], but the present definition makes
things more symmetric and has the further advantage of extending to higher dimensions,
as we shall see in a while.)

In these notations, we define a 2-DCauchy wavelet,with support in# 5 #(a, b), for
any hW [ #̃ and l , m [ N*, through its Fourier transform:

ĉ lm
~#,hW !~kW! 5 H~kW z eW ã!

l~kW z eW b̃!
me2 Wk z Wh, kW [ #~a, b!,

0, otherwise. (2.5)

Clearly this function satisfies the admissibility condition (1.1) for 2-D wavelets. In
addition, the Cauchy wavelet itself, in position space, may also be obtained explicitly (this
result was announced, without proof, in [2]). Indeed:

PROPOSITION2.1. For everyhW [ #̃ and l, m[ N*, the 2-D Cauchy waveletclm
(#,hW )(xW)

with support in# 5 #(a, b) belongs to L2(R2, dxW) and is given by

c lm
~#,hW !~ xW! 5

i l1m12

2p
l !m!

@sin~b 2 a!# l1m11

@~ xW 1 ihW ! z eWa#
l11@~ xW 1 ihW ! z eWb#

m11 . (2.6)

Proof. From the definition (2.5), we get

c lm
~#,hW !~ xW! 5

1

2p E
#~a,b!

d2kW ei Wk zxW~eW ã z kW! l~eW b̃ z kW!me2 Wk zhW

5
~2i ! l1m

2p
@eW ã z W¹xW#

l@eW b̃ z W¹xW#
m E

C~a,b!

d2kW e2 Wk z~hW2ixW!.

The integral on the rhs is convergent, sincekW z hW . 0. Write jW 5 hW 2 ixW 5 2i ( xW 1
ihW ) and letA be the matrix that maps the unit vectorseW1, eW2 onto eWa, eWb, respectively:
(eWa) i 5 Aa

j (eW j)
i, so thatkj 5 An

j kn (contravariant coordinates,n 5 a, b). Explicitly, we
have

A 5 S cosa cosb
sin a sin b D , so that det A5sin~b 2 a!.

In the new (nonorthogonal) coordinates, the cone becomes

#~a, b! 5 $kW [ R2 : ka $ 0, kb $ 0%,
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and the integral may be obtained immediately:

E
#~a,b!

d2kW e2 Wk z Wj 5 E
#~a,b!

dk1dk2 exp~2An
j knj j!

5 detA E
0

`

dka E
0

`

dkbexp~2knjn!, wherejn 5 An
j j j

5
detA

jajb

5
sin~b 2 a!

~eWa z jW!~eWb z jW!
5

2sin~b 2 a!

@~ xW 1 ihW ! z eWa#@~ xW 1 ihW ! z eWb#
.

Then the result follows by differentiation, if one remembers thateW ã z eWb 5 eW b̃ z eWa 5 0.
Indeed,

~eW b̃ z W¹xW!
1

@~ xW 1 ihW ! z eWa#
5

eW b̃ z eWa

@~ xW 1 ihW ! z eWa#
2 5 0,

~eW b̃ z W¹xW!
m

1

@~ xW 1 ihW ! z eWb#
5

~21!mm! ~eW b̃ z eWb!
m

@~ xW 1 ihW ! z eWb#
m11 5

~21!mm! @sin~b 2 a!#m

@~ xW 1 ihW ! z eWb#
m11 ,

and similarly for the other factor. As for the square integrability of the resulting function,
it is obvious. ■

In the symmetric casel 5 m, (2.6) may be rewritten

cmm
~#,hW !~ xW! 5

~21!m11

2p
~m! !2

@sin~b 2 a!#2m11

@~ xW 1 ihW ! z s~a, b!~ xW 1 ihW !#m11 , (2.7)

where

s~a, b! 5 S cosa cosb sin~a 1 b!
sin~a 1 b! sin a sin b D .

Two remarks are in order here. First we notice that Eq. (2.6) may be rewritten in the
form

c lm
~#,hW !~ xW! 5 const.~ zW z eWa!

2l21~ zW z eWb!
2m21, (2.8)

where we have introduced the complex variablezW 5 xW 1 ihW [ R2 1 i #̃. Thus the
Cauchy wavelet isseparable,albeit in a geometry where the coordinate axes are taken
alongeWa, eWb.

Then, if we varyhW [ #̃, the expression (2.8) shows thatc lm
(#,hW ) extends to an analytic

function of z. This follows from general theorems [36, 37]. Since the functionĉlm
(#,hW )(kW)

has support in the convex cone# 5 #(a, b) and is of fast decrease at infinity, its Fourier
transformclm

(#,hW )( xW) is the boundary value of a functionclm
(#)( zW), holomorphic in the tube

R2 1 i #̃. What we have here is in fact an example of a 2-D progressive wavelet.
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In 1-D, a waveletc is calledprogressiveor a Hardy function [19, 22], ifĉ(v) 5 0 for
v , 0. This in turn may be expressed in terms of the Hilbert transform, defined by

Hf̂ ~v! 5 2i signv f ~v!, namely

c 5 ~1 1 iH !f, f [ L2~R, dt!

(that is,c is the analytic signal associated tof). Equivalently,c belongs to the Hardy
spaceH1

2 (R) of square integrable functions which extend analytically into the upper
half-plane. We claim that the directional wavelets are the 2-D analogues of this concept,
that is, the genuine 2-D progressive wavelets.

In order to prove that statement, we first notice that the convex cone#(a, b) may also
be expressed in terms of the covariant coordinateskñ 5 (eW ñ z kW), n 5 a, b:

#~a, b! 5 $kW [ R2 : kã $ 0, kb̃ $ 0%. (2.9)

Consider the directional Hilbert transforms:

H ñ f̂ ~kW! 5 2i signkñ f ~kW!. (2.10)

Given f [ L2(R2, d2xW), define the function

c 5 ~1 1 iH ã 1 iH b̃ 2 HãH b̃!f 5 ~1 1 iH ã!~1 1 iH b̃!f. (2.11)

Then it is easy to see, as in [38], thatĝ(kW) vanishes outside the cone#(a, b), and indeed,

ĉ~kW! 5 H 4f̂~kW!, kW [ #~a, b!,
0, otherwise. (2.12)

Therefore the inverse Fourier transformc( xW) is the boundary value of a functionc( zW)
holomorphic in the tubeR2 1 i #̃, that is, a 2-D Hardy function. For a fixed convex cone
#(a, b), the set of all such functions constitutes a Hilbert space, naturally denotedH(a,b)

2 ,
which is unitary equivalent, via the complex Fourier transform, to the spaceL2( #̃(a, b),
d2kW) [36, Thm. VI.3.1]. In this sense, directional wavelets are a genuine multidimensional
generalization of the 1-D Hardy functions, much more so than the so-called 2-D Hardy
functions defined by Dallard and Spedding [11]. And among them Cauchy wavelets are
particularly simple (they occupy a special niche, as we will see in Section 4). Two
concluding remarks are in order: first, all these considerations extend to higher dimensions
n . 2; second, we are talking here of a Hardy spaceH(a,b)

2 , but similar considerations
may be made for Hardy spacesH(a,b)

1 , in terms of the Riesz operators that are a natural
multidimensional generalization of the Hilbert transform [38].

Let us give a few examples of 2-D Cauchy wavelets. For simplicity, we always takehW
alongzWab, the axis of the cone. In this case, forl 5 m, the wavelet, writtencmm

(#)( xW), is
symmetric under reflection with respect tohW .
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Take first#1 5 #(0, p/2) andhW 5 eWp/4 5 (1, 1). Then, forl 5 m 5 1, one gets the
function

c11
~#1!~ xW! 5

1

2p

1

~ x 1 i !2

1

~ y 1 i !2 , (2.13)

i.e., the product of two 1-D Cauchy wavelets [22, 30], that is, derivatives of the Cauchy
kernel (z 1 i )21—hence the name.

Similarly, for anym $ 1, we get

cmm
~#1!~ xW! 5

~21!m11

2p
~m! !2

1

~ x 1 i !m11

1

~ y 1 i !m11 . (2.14)

These wavelets are indeed symmetric under reflection in the main diagonal,x 7 y, and
they are separable in the usual sense.

On the other hand, for#2 5 #(p/4, 3p/4), we obtain

cmm
~#2!~ xW! 5

~21!m11

2p
~m! !2

1

~u 1 ihu!
m11

1

~v 1 ihv!
m11 , (2.15)

where we have introduced the (light-cone) coordinatesu 5 221/ 2( x 1 y), v 5
221/ 2(2x 1 y). In the axisymmetric case,hW 5 (0, 1), this gives

cmm
~#2!~ xW! 5

~21!m11

2p
~m! !2F 1

~ y 1 i !2 2 x2Gm11

, (2.16)

which is indeed an even function ofx.
Of course, in practical applications, one needs a reasonable directional selectivity, and

therefore one chooses a narrower supporting cone. Indeed, for a Cauchy wavelet, the ARP,
the parameter that measures the directional selectivity, as defined in [1], is simply the
opening angle of the cone,F 5 b 2 a. We have found that#10 5 #(210°, 10°) is a good
choice (this will be confirmed by the calibration analysis given in Section 3 below). In
addition, imposing sufficiently many vanishing moments also improves the performances
of the wavelet, as usual. We show in Fig. 1 the waveletĉ44

(#10)(kW); this is manifestly a
highly directional filter.

An alternative possibility is to replace in (2.5) the exponential by a Gaussian
centered on the axis of the cone, exp(2ukW 2 a0zWabu2) (a0 . 0). The resulting wavelet
is very similar to the previous one, except that it is more concentrated in spatial
frequency space, since it is also sharply localized in scale, around the central scalea0.
We show an example in Fig. 2. In the applications of Section 5, we use bothc44

(#10) and
its Gaussian analogue, and the difference in scale selectivity between the two will be
manifest.

As a final remark, let us note that the definition (2.5) extends immediately to three
or more dimensions. In 3-D, we consider the convex simplicial (or pyramidal) cone
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#(a, b, g) defined by the three unit vectorseWa, eWb, eWg, the angle between any two of
them being smaller thanp. The dual cone is also simplicial, namely#̃ 5 #(ã, b̃, g̃),
whereeWã 5 eWb ` eWg is orthogonal to theb–g face, etc. With these notations, given a
vectorhW [ #̃ and l, m, n [ N*, we define a 3-D Cauchy wavelet in spatial frequency
space as

ĉ lmn
~#,hW !~kW! 5 H~kW z eW ã!

l~kW z eW b̃!
m~kW z eW g̃!

ne2 Wk zhW, kW [ #~a, b, g!,
0, otherwise. (2.17)

FIG. 1. The Cauchy waveletĉ44
(#10)(kW) in spatial frequency space: (a) in level curves; (b) a 3-D view from

u 5 185°.
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Then, with exactly the same proof as for Proposition 2.1, we get the explicit expression
for the 3-D wavelet in position space,

c lmn
~#,hW !~ xW! 5

i l1m1n13

2p
l !m!n! z detA z

~eW ã z eWa!
l~eW b̃ z eWb!

m~eW g̃ z eWg!
n

~ zW z eWa!
l11~ zW z eWb!

m11~ zW z eWg!
n11 , (2.18)

where, as in the 2-D case,A is the matrix that transforms the unit vectors into the triple
eWa, eWb, eWg and we have writtenzW 5 xW 1 ihW . All the other comments remain valid. From
the expressions (2.17) and (2.18), one may then obtain other 3-D Cauchy wavelets, for
instance, one supported in a circular cone. And the whole construction extends to any
number of dimensions.

3. CALIBRATION OF THE CAUCHY WAVELET

It is clear from Fig. 1 that, if the supporting cone is narrow enough, the Cauchy wavelet
is a highly directional filter. But, of course, for practical applications, we must convert this
assertion into quantitative terms. In other words, the wavelet must becalibrated.

As for any directional wavelet, the crucial property is directional selectivity. In order to
estimate this, we submit the Cauchy wavelet to the same test that we used in [1] for the
Morlet wavelet. The test (benchmark) signal is a semi-infinite rod, sitting along the
positivex-axis, and modeled as usual with a delta function,

s~ xW! 5 q~ x!d~ y!, (3.1)

FIG. 2. A Gaussian Cauchy wavelet, with support in the cone#10, l 5 m 5 4, a0 5 1.
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whereq( x) is the step function. Then one takes a Cauchy wavelet and computes the
modulus of the CWT ofs as a function ofx, for the fixed scalea0 5 1 and orientation
u. Thusu is the “misorientation” of the wavelet with respect to the signal (the rod). As
expected, the result is entirely similar to that obtained in [1] for the Morlet wavelet. This
is shown in Fig. 3 for a Cauchy wavelet supported in the cone#10 5 #(210°, 10°), with
axishW 5 (1, 0), that is, an angular resolving powerF 5 20°. Foru 5 0, the modulus of
the WT is a “wall,” increasing smoothly from 0, forx # 25, to its asymptotic value
(normalized to 1) forx $ 5. Then, for increasing misorientationu, the wall gradually
collapses and essentially disappears foru . 10°. Only the tip of the rod remains visible,
and for largeu (u . 45°), it gives a sharp peak. This is exactly the property used crucially
in the measurement of the velocity field of a turbulent fluid [3, 40, 41].

Thus, on this count, the Cauchy wavelet behaves exactly as the Morlet wavelet. But it has
in fact an additional advantage. In the Morlet case, tightening the supporting cone means
increasing the modulus of the wave vectorkW0, but this also means decreasing the amplitude,
becausekW0 enters in the exponent of the Gaussian. ThuskW0 cannot be taken too large. For the
Cauchy wavelet, on the contrary, the opening angle of the coneF and the amplitude of the
wavelet are almost independent parameters. The latter decreases very slowly asF3 0, as a
fixed power of sinF. Thus one may take a cone as narrow as one wishes, with almost constant
amplitude. As an example, we show in Fig. 4 the result of narrowing the cone, for a fixed
misorientation angleu 5 20° between the wavelet and the rod. Of course, exactly the same
conclusion applies to the Gaussian version of the Cauchy wavelet.

The outcome of this analysis is that Cauchy wavelets, with a narrow supporting cone,
are excellent directional wavelets. They are easier to implement than the 2-D Morlet

FIG. 3. Angular selectivity ofĉ44
(#10) as a function of the misorientation angleu. The graph shows the

modulusuS( x, a0, u )u as a function of positionx along the rod, for various values ofu.
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wavelet and have a fully controllable angular selectivity. As shown above, a Cauchy
wavelet with opening angleF 5 20° is a good replacement for the usual 2-D Morlet
wavelet withukW0u 5 5.5, and in ourgroup we are now using that kind of wavelet almost
exclusively.

4. CAUCHY WAVELETS HAVE MINIMAL UNCERTAINTY

4.1. Minimal Wavelets

In his pioneering paper on time–frequency analysis, Gabor [16] stresses the notion of
a signal with minimal uncertainty. The latter is defined as the product of the variances of
the position and the frequency, in other words, the product of the widths of the signal in
the time and the frequency variables. It is always bounded below, as a result of the Fourier
theorem, and the minimal uncertainty signals are those for which the lower bound is
attained. This concept is identical to that of uncertainty in a quantum mechanical system,
which is governed by the celebrated Heisenberg relations [9, 17]. For the usual time–
frequency pair, the minimum is reached for a Gaussian signal, a fact that is often invoked
for justifying its choice, in particular by Gabor himself (the “elementary signal”) [16].

Now, in the standard case, the time and frequency widths are simply the variances of the
operators of infinitesimal modulation and translation, respectively. In other words, finding the
signal with minimal uncertainty is a Lie algebra problem, in a Hilbert space representation. For
the canonical case, the Lie algebra in question is, of course, that of the canonical commutation
relations. Let us formulate the problem in precise mathematical terms.

FIG. 4. Angular selectivity ofĉ44
(#10) as a function of the opening angleF of the cone#. The graph shows

the modulusuS( x, a0, 208)u as a function ofx, for various values ofF.
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Let A andB be two densely defined, essentially self-adjoint operators of a Hilbert space
with scalar product̂ z u z &. Let f be a normalized vector (\f\ 5 1) in the domains of both
A andB. The variance ofA in the statef is defined as

DA ; DfA 5 Î^ A2& 2 ^ A&2, (4.1)

where^C& 5 ^fuCf& denotes the average of the operatorC in the statef. Then we have
the well-known proposition.

PROPOSITION4.1. Let A, B, andf be as above. Then one has

DA z DB $
1

2
u^@A, B#&u. (4.2)

The equality holds in(4.2) iff

~ A 2 ^ A&!f 5 2il0~B 2 ^B&!f, (4.3)

for somel0 . 0.

The proof can be found in Gabor’s paper [16] or in any standard quantum mechanics

textbook, for instance [9, 17]. Note thatA 5 2i
d

dx
andB 5 x gives the usual Heisenberg

inequalities, that is, the canonical case discussed above. A statef which saturates the
inequality (4.2), that is, which verifies (4.3), is called a state ofminimal uncertainty,or
sometimes an intelligent state [28]. In the Heisenberg case, one gets of course the familiar
canonical coherent states.

In the case of more than two operators, one obtains a system of inequalities, one for
each nonvanishing commutator.

4.2. Two-Dimensional Minimal Wavelets

Coming back to 1-D wavelets, we have to remember thata21 plays the role of a
frequency. Thus the operators to consider for applying Proposition 4.1 are the infinitesimal
generators of dilations and translations, in the unitary representation of theax 1 b group
that underlies wavelet theory. This was first done by Klauder [27], and then by Paul and
Seip [30, 31] and by Dahlke and Maass [10], with the result that the 1-D Cauchy–Paul
wavelets (and their generalizations defined in the Appendix of [13]) have minimal
uncertainty. In the 2-D wavelet case, Dahlke and Maass have considered the isotropic
solutions only and found that the 2-D isotropic Mexican hat is a minimal uncertainty
wavelet.

Let us consider the case of a general 2-D wavelet. It is well known [1–3] that the
four-dimensional parameter space of the 2-D CWT is in fact the phase space associated
to the similitude group of the plane. The variablebW in (1.3) represents the position,
whereas the pair (a21, u ) is interpreted as spatial frequency in polar coordinates. This is
the basis for the privileged role played by the two standard representations of the CWT,
the position and the scale-angle representation, described at length in [1–3]. Thus, by the
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same principle as in the 1-D case, the analogue of the canonical uncertainty relations is
obtained by considering the commutators between infinitesimal generators of translations,
on the one hand, and dilations and rotations, on the other.

In order to formulate this in a mathematically precise way, we consider the represen-
tationÛ in the Fourier variables, as given in (1.7), and denote the infinitesimal generators
by P1 for horizontal translations,P2 for vertical translations,D for dilations, andJ for
rotations. Then we have, withkW 5 (kx, ky) [ (r, w):

~P1ĉ!~kW! 5 i
d

dbx
~Û~bW , a, u !ĉ!~kW!u~1,0,W0! 5 kxĉ~kW!, (4.4)

~P2ĉ!~kW! 5 i
d

dby
~Û~bW , a, u !ĉ!~kW!u~1,0,W0! 5 kyĉ~kW!, (4.5)

~Dĉ!~kW! 5 i
d

da
~Û~bW , a, u !ĉ!~kW!u~1,0,W0!

5 i ~kx­kx
1 ky­ky

1 1!ĉ~kW! 5 i ~r­r 1 1!ĉ~r, w!, (4.6)

~ Jĉ!~kW! 5 i
d

du
~Û~bW , a, u !ĉ!~kW!u~1,0,W0!

5 2i ~kx­ky
2 ky­kx

!ĉ~kW! 5 2i­wĉ~r, w!. (4.7)

The corresponding commutation relations are

@P1, P2# 5 0; @D, P1# 5 iP1; @ J, P1# 5 iP2;
@D, J# 5 0; @D, P2# 5 iP2; @ J, P2# 5 2iP1.

(4.8)

PROPOSITION4.2. The four nonzero commutators split in two sets of two commutators,

@D, P1# 5 iP1; @ J, P2# 5 2iP1, (4.9)

and

@D, P2# 5 iP2; @ J, P1# 5 iP2, (4.10)

that transform into each other under the transformationw ° w 2 p/2.

Proof. In fact the considered transformation leavesD andJ invariant, whereas (P1,
P2) go into (P2, 2P1). ■

Thus it suffices to consider minimal wavelets for one pair of commutation relations; we
shall choose (4.9) and write the corresponding system of inequalities. We obtain

DD z DP1 $
1
2
u^P1&u

DJ z DP2 $
1
2
u^P1&u. (4.11)
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According to the second statement in Proposition 4.1, a vectorĉ saturates the lower bound
of the above inequalities if and only if

~D 1 il1P1!ĉ~kW! 5 ~^D& 1 il1^P1&!ĉ~kW!
~ J 1 il2P2!ĉ~kW! 5 ~^J& 1 il2^P1&!ĉ~kW!

~l1, l2 . 0!. (4.12)

In polar coordinates, this system reads

~r­r 1 1 1 l1r cosw!ĉ~r, w! 5 2ib1ĉ~r, w!

~2­w 1 l2r sin w!ĉ~r, w! 5 2ib2ĉ~r, w!, (4.13)

where

b1 5 ^D& 1 il1^P1&, b2 5 ^J& 1 il2^P2&. (4.14)

The integrability of the system (4.13) requires thatl1 5 l2 [ l . 0. Then the general
solution is given by

ĉ~r, w! 5 cr2ib121eib2we2lr cosw. (4.15)

The solution (4.15) must verify the following three conditions:

(1) 2p-periodicity in w implies that

b2 5 ^J& 1 il^P2& 5 m, m [ Z,

which in turn requires

^P2& 5 EE d2kWkyuĉ~kW!u2 5 0 and ^J& 5 m [ Z.

Thus, introducingk1 [ l^P1& 2 1 andk2 [ 2^D&, the solution (4.15) becomes

ĉ~r, w! 5 crk11ik2e2imwe2lr cosw. (4.16)

(2) Square integrabilityimplies thatkx must be restricted to positive values only,
which means

cosw . 0N uwu # w0 , p/ 2. (4.17)

Therefore the waveletc is square integrable iff the support of its Fourier trans-
form is restricted to a convex cone in the right half-plane. In addition, one needs
k1 . 21.
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(3) Admissibility:Inserting the solution (4.16) in the admissibility integral (1.1), with
the condition (4.17), we obtain

cc , ~2p!3 E
0

`

r2k121e22lr cosw0dr. (4.18)

The convergence of this integral then requiresk1 . 0.
Assume nowĉ(kW) to be real. Then̂J& 5 ^D& 5 0. Indeed,

^J& 5
1

i E
0

`

rdr E
0

2p

dwĉ~r, w!­wĉ~r, w! 5
1

2i E
0

`

rdr E
0

2p

dw­wuĉ~r, w!u2 5 0,

sinceĉ is 2p-periodic. Hence we must havem 5 0.
In the same way,

^D& 5 E
0

2p

dw E
0

`

dr~r2ĉ~r, w!­rĉ~r, w! 1 ruĉ~r, w!u2!

5
1

2 E
0

2p

dw~r2uĉ~r, w!u2!u0` 5 0,

sinceĉ is in the domain ofD.
Thus we may state

PROPOSITION 4.3. A real wavelet ĉ is minimal with respect to the commutation
relations(4.9) iff it vanishes outside some convex cone# in the half-plane kx . 0 and is
exponentially decreasing inside:

ĉ~kW! 5 HcukW uke2l Wk zeW1 ~k . 0, l . 0!, kW [ #,
0, otherwise. (4.19)

If we had chosen the pair (4.10) instead, we would have obtained a convex cone in the
lower half-planekW z eW2 , 0. Combining the two results, we see that the waveletĉ is
minimal with respect to the commutation relations (4.9) and (4.10) iff its support is
contained in the lower right quarter-plane,kW z eW1 . 0, kW z eW2 , 0. Since the whole
construction is rotation invariant, this in turn means that the opening angle of the
supporting cone must be strictly smaller thanp/2. Thus we state:

PROPOSITION4.4. A real waveletĉ has minimal uncertainty iff it vanishes outside some
convex cone# with apex at the origin and opening angleF , p/2, and is exponentially
decreasing inside:

ĉ~kW! 5 HcukW uke2l Wk zhW ~k . 0, l . 0, hW [ #̃!, kW [ #
0, otherwise.

(4.20)
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In other words,ĉ must be of the form

ĉ~kW! 5 cxc~kW!ukW uke2l Wk zhW ~k . 0, l . 0!, (4.21)

wherexc is the characteristic function of#, or a smoothened version thereof.

We may now impose some degree of regularity (vanishing moments) at the boundary
of the cone, by taking an appropriate linear superposition of such minimal waveletsĉ.
Thus we obtain finally

ĉ#~kW! 5 cxc~kW! F~kW!e2l Wk zhW ~l . 0!, (4.22)

whereF(kW) is a polynomial inkx, ky, vanishing at the boundaries of the cone#, including
the origin. Clearly a Cauchy wavelet withF , p/2 is of this type.

Note that other minimal wavelets may be obtained if one includes commutators with
elements of the enveloping algebra of the Lie algebra (4.8). For instance, taking the
commutator betweenD and the Laplacian2D 5 P1

2 1 P2
2, one finds a whole family of

minimal isotropic wavelets, among them all powers of the Laplacian,Dn, acting on a
Gaussian [4]. Forn 5 2, this gives the 2-D isotropic Mexican hat [10]. There exist more
general solutions of the minimizing equations, but most of them are not square integrable.

As a conclusion of this section, we might say that the minimal uncertainty property is
an important attribute of 2-D wavelets, exactly as in 1-D. What is important is not the
localization in position alone, but thesimultaneouslocalization in positionbW and scale
orientation (a, u ), that is, the localization in phase space. This is precisely the property
that is optimized by the minimal wavelets given in Proposition 4.4, since they achieve
equality in all four uncertainty relations derived from the commutation relations (4.9) and
(4.10). Thus minimal wavelets are as optimal for the 2-D wavelet transform as the Gabor
function is for the Gabor or windowed Fourier transform, and for the same reason. The
Cauchy wavelets are thus linear combinations of optimal wavelets. However, this is a
theoretical statement, and it is not clear to us whether it implies an operational meaning.
For instance, the 2-D Morlet wavelet and Gaussian Cauchy wavelets are not minimal, yet
they are extremely powerful for directional analysis. This is not new: in 1-D, too, the
Cauchy–Paul wavelet (2.1) is minimal, but many other ones are at least as useful in
practice, for instance, the derivatives of the Gaussian or the Morlet wavelet.

As a last remark, it may be interesting to notice that a concept closely related to
minimality has been developed by Simoncelliet al. [35] under the name ofjointly
shiftable filters.First, shiftable filters are the natural generalization of steerable filters to
variables other than rotations, such as translation or scaling. Then a filter is jointly
shiftable in two variables simultaneously iff the corresponding operations commute (“are
independent”). Thus strict joint shiftability is impossible for position and spatial fre-
quency, and only approximately shiftable filters exist. And the optimal ones, that is, those
that minimize the “joint aliasing,” are the same as our minimal wavelets.

In any case, whatever the answer to the question of the operational meaning of
minimality, if any, we emphasize that we are using the Cauchy waveletsnot because they
are minimal, but simply because they are simpler to implement and more efficient than,
say, the Morlet wavelets (although they have a slower decay in position space).
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5. DETERMINING SYMMETRIES IN IMAGES AND 2-D PATTERNS

In general, directional wavelets are used for detecting oriented features in an image, for
instance, the vectors of the velocity field in a turbulent fluid [3, 40, 41] or oriented textures
[18, 24, 29], and they are quite efficient in that respect. In this section we will describe
another application that uses in an essential way the angular selectivity of the directional
wavelets, and we shall illustrate it with the Cauchy wavelet. Namely, we shall present a
simple method that allows one to evaluate the symmetry of a given object, and even
possibly a local or an approximate symmetry. LetS(bW , a, u ) be the wavelet transform of
the signals( xW) with respect to a directional wavelet. On the space of transforms, we
introduce the following positive valued function:

mS~a, u ! 5 E dbW uS~bW , a, u !u2 (5.1)

5 ~2pa!2 E d2kW uĉ~ar2u~kW!!u2uŝ~kW!u2. (5.2)

We call ms the scale-angle measureof the signal. This is different from using the
scale-angle representation [1, 2], which consists in fixing the position parameterbW . Here,
on the contrary,ms averages over all points in the plane, in order to eliminate the
dependence on the point of observation. This is a further confirmation of the fact that the
localization properties in position space are unimportant for such applications. One may
also interpretms as the (partial) energy density of the signal in the scale and angle
variables, that is, in spatial frequency space, according to the phase space interpretation of
the CWT given in [1, 2]. From the properties of the wavelet transform, it is clear that, for
any signals of finite energy and any smooth wavelet,ms is a bounded continuous function
of a andu. Furthermore, ifc is directional,ĉ is supported in a narrow cone, and then (5.2)
“probes” the behavior of the signal in the directionu, as the beam of a torchlight exploring
a target. This intuitively explains all the results that follow.

We begin with a simplified version and eliminate the scale dependence by integrating
over a, thus ending with a functionas(u ) of the rotation angle only, called theangular
measureof the object. In general,as is 2p-periodic. But when the analyzed object has
rotational symmetryn, that is, it is invariant under a rotation of angle 2p/n, then the
angular measure is in fact 2p/n-periodic. Note that, forn 5 2, there are two different
operations of order 2, rotation ofp and reflection (mirror symmetry), which may also be
seen as a rotation ofp around an axis lying in the plane of the figure (Ox or Oy).

To give some examples, we consider simple geometrical figures (Fig. 5). Take first a
square, which has symmetryn 5 4. The angular measureas(u ) is thus 2p/4-periodic and
shows four equal, equidistant peaks atu 5 0°, 90°, 180°, 270°. The width of these peaks
is simply the aperture of the cone# 5 #(a, b), namely#10 in the example considered
(more generally, the ARP of the wavelet). Similarly, a regular hexagon has symmetryn 5
6, and thus its angular measure shows six equal peaks. The case of the rectangle is more
interesting. It has symmetryn 5 2 3 2 (two mirror symmetries, or rotations byp around
both Ox or Oy), and this is reflected on the graph of its angular measure. There are two
large peaks corresponding to the directions of the longest edges and two smaller ones
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corresponding to the directions of the shortest edges, and the ratio 2:1 between the two
equals the ratio of the lengths of the corresponding edges. In contrast, for a truncated
rectangle, which has only one symmetry (rotation byp aroundOz), the angular measure
as(u ) shows only two main peaks, atu 5 0° and 180° (smaller ones are visible,
corresponding to the other, shorter edges).

FIG. 5. Angular measureas(u ) of some geometrical figures: (a) a square; (b) a hexagon; (c) a rectangle with
symmetry 23 2; (d) a truncated rectangle, with symmetry 2.

333DIRECTIONAL WAVELETS REVISITED



Of course, these examples are toy problems that can be solved by plenty of methods,
and they are included here only in order to check the validity of the approach in
the case of a pure rotational symmetry. However using the full scale-angle measure
(5.1), (5.2) leads us much further. This technique also allows one to identify the
combined rotation– dilation symmetries of quasilattices or tilings. In order to test this,
we show in Fig. 6 the analysis of a known “twisted snowflake.” This means a
mathematical snowflake [5, 6] with the following modified construction rule: Upon
each downscaling by a factor of 3, the figure is turned by 36°. The scale-angle measure
of this object, computed with a Cauchy waveletc44

(#10), shows precisely the combined
symmetry. The set of four maxima at a given scalea0 is reproduced, at scalea0/3, but
translated inu by 36°. And reconstructing the WT at the values (a, u ) corresponding
to these maxima yields successive approximations of the original signal, as with the
usual snowflake.

Let us turn now to a nontrivial example, whose symmetries are not obvious, namely
the octagonal tiling given in Fig. 7a. It has a global symmetryn 5 8, as shown in Fig.
7b, and is invariant, by construction, under dilation by a factor 11 =2. But one may
go further and uncover combined rotation– dilation symmetries of the tiling, with the
help of its scale-angle measurems(a, u). This time we use a Gaussian Cauchy wavelet
(l 5 m 5 4), in order to get a better scale localization. The result is plotted in Fig. 8a
(only half of the figure is shown, for the interval [0,p]). As a function ofu, this
function is clearlyp/4-periodic, which reflects the eightfold symmetry. But one sees
in fact several sets of four equidistant maxima, corresponding to characteristic scales
aj, and some of them are shifted byp/8. This is even clearer if one replaces the full
measurems by its skeleton [14, 21], which reduces here to the set of local modulus
maxima (Fig. 8b). On this set of points, one can measure more precisely the successive
characteristic scalesaj. Upon inspection, one may recognizesix significant lines of
maxima, corresponding, forj 5 1 to j 5 6 (bottom to top), to lnaj 5 0.32, 0.58, 0.95,
1.20, 1.81, 2.08.

Consider first the three pairs of equidistant lines of maxima (1, 2), (3, 4), and
(5, 6). In each pair, the ratio between the two successive scales isd1 5 aj11/aj .
1.31 . =2 cos(p/8), and the second line is shifted byp/8 from the first one.
This means that one goes from the first line to the second by a rotation of
p/8, combined with a dilation by a factord1. In other words, the whole pattern
has, in addition to its eightfold symmetry, a combined rotation– dilation sym-
metry. This is visible on the pattern itself: if one draws successive octagons, as shown
in Fig. 9a, the dilation factord1 5 =2 cos(p/8) is easily obtained by a geometrical
argument.

But there is more. Consider now the three lines of maximaj 5 2, 4, 5, at lnaj 5 0.58,
1.20, 1.81.These are obtained from one another by a rotation ofp/8, combined with a
dilation by a factord2 5 1.85 . 2 cos(p/8). The same is true for lines 1 and 3. And,
looking at the tiling, one readily observes that it is invariant under this second combined
rotation–dilation symmetry also, as may be seen in Fig. 9b! The remarkable fact is that
these two additional symmetries were discovered on the graph of the scale-angle measure,
andnot on the tiling itself!
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At this stage, the method is still empirical. How are we sure that there is noother
combined symmetry present in the tiling? This question may be answered by adapting a
technique introduced by Hwang and Mallat [23] in the context of the wavelet analysis of
multifractals. The idea is to determine the (exact or approximate) renormalization param-
eters of a given 1-D multifractal by a voting algorithm on the CWT, or its skeleton. In our
case, this means writing the algorithm in the (a, u ) plane of the scale-angle measure. The
procedure runs as follows.

FIG. 6. Analysis of a pattern (“twisted snowflake”) with a combined rotation–dilation symmetry: (a) the
pattern; (b) the scale-angle measurems(a, u ), computed with a Cauchy waveletc44

(#10). Corresponding local
maxima are shifted by 36° and a scaling ratio of 3.
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● First we pass to logarithmic coordinates for the scaling variable,a 5 et, and write
the scale-angle measure of the signals asms(t, u ). The renormalization operations on the
signal are given by

L~t, a!s~ xW! 5 e2ts~e2traxW!, (5.3)

FIG. 7. Analysis of an octagonal tiling: (a) the tiling; (b) its angular measureas(u ), showing thep/4
periodicity.
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FIG. 8. Further analysis of the octagonal tiling: (a) its scale-angle measurems(a, u ); (b) the skeleton of the
latter, which consists of six successive lines of four equidistant local maxima. Lines 2, 4, and 6 are obtained from
lines 1, 3, and 5, respectively, by a rotation ofp/8 combined with a dilation byd1. In the same way, lines 4 and
5 result from line 2 by repeated applications of the operationr2 5 (d2, p/8). Similarly for lines 1 and 3. For better
visibility, homologous maxima are linked by a line segment, continuous ford1 and dashed ford2.
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and from this we get

mL~t,a!s~t, u ! 5 ms~t 2 t, u 2 a!. (5.4)

● Next the parameter space [tmin, tmax] 3 [umin, umax] is discretized on a linear grid
G. For each pair (t0, a0) [ G, we computem̃s(t, u ) 5 ms(t 2 t0, u 2 a0) (this requires
only shifting rows and columns of the matrix {ms(i , j )}).

FIG. 9. Two sets of octagons on the octagonal tiling obtained by successive applications of a rotation byp/8
combined with a dilation byd1 5 =2 cos(p/8) (a) andd2 5 2 cos(p/8) (b).
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● Then evaluate

P~t0, a0! 5 \s\2
22 E

tmin

tmax

dt E
umin

umax

dum̃s~t, u !ms~t, u !. (5.5)

Finally the algorithm says: Fix a constantK . 0. Then, ifP(t0, a0) $ K, do V(t0, a0)
:5 V(t0, a0) 1 1, whereV(t0, a0) is the voting matrix, indexed byG and initialized
as the null matrix.

● Once a vote has been cast for a point (t0, a0), identify all its integer multiples (nt0,
na0) that lie within G, and give all their votes to (t0, a0). In other words, one identifies
the renormalization operationsL(t0, a0) andLn(t0, a0) for all n [ N* .

● Then proceed to the next renormalization point, if any, and repeat the previous
operation.

The result is a voting matrix whose nonzero entries correspond exactly to all values of the
renormalization parameters admitted by the signal. Note that errors may be included, by
declaring that a vote is cast for (t0, a0) if P(t0 6 tc, a0 6 ac) $ K, wheretc andac

are fixed parameters. In this way small errors may be taken into account (this is usually
called renormalization noise), for instance, those coming from sampling on a Cartesian
grid in order to perform a FFT (this is the infamous gridding problem of NMR imaging).

This method has been applied to the skeleton given in Fig. 8b. The result is given in Fig.
10, which shows the renormalization parametersr 5 (d, u) of the figure (for better
visibility, we have added some of their multiples). This means that the latter is self-similar
after a dilation by a factord combined with a rotation ofu. Of course the whole diagram
is p/4-periodic, so that only five points are relevant: a pure rotation (1,p/4); a pure
dilation r0 5 (d0, 0), with d0 5 1 1 =2; and three combined operationsr1 5 (d1, p/8),
r2 5 (d2, p/8), andr3 5 (d3, p/8), whered3 5 (2 1 =2)cos(p/8). Taking into account
thep/4-periodicity, we see that the productr1 z r2 coincides withr0, and furthermore,r3

5 r0 z r1. In other words, there are no additional hidden symmetries.
As a matter of fact, the symmetry structure of the tiling is even more intricate. A closer

inspection reveals that it is invariant under the combined operationd2-dilation 1 rotation
and that this operation generates a semigroup (every point has a successor, but not
necessarily a predecessor; i.e., the inverse operation is not a symmetry). This semigroup
has apparently infinitely many different orbits (on the portion of the tiling visible in the
figure, we have detected 10 different orbits). However, the other combined operation,
d1-dilation 1 rotation, isnot an exact symmetry; it is only approximate. For instance,
some orbits stop after a few iterations, or have gaps (this feature is easily observed in Fig.
9b, by visualizing the orbit of the summit of a given octagon). Clearly a systematic study
would be needed here. In fact, the tiling analyzed here is closely related to the 2-D
quasicrystals, based on Pisot cyclotomic numbers, studied by Barache [7, 8]. Further
results in this direction will be discussed elsewhere.

In addition to the intricate geometry of the tiling, one may notice some irregularities in
the pattern ofms, which are attributable to the numerical treatment. Indeed, although the
original tiling is perfectly regular, it is slightly distorted in order to fit a Cartesian grid, as
required by the FFT algorithm used in the computation of the WT, and this creates some
defects.

339DIRECTIONAL WAVELETS REVISITED



Incidentally, these examples show why it is safer to integrate over all scales in order to
isolate the angular behavior, rather than fix a certain scalea 5 a0 and considerms(a0, u ).
If a0 coincides with one of the characteristic scales,a1, a2, . . . , the result is correct, but
if a0 falls in between, no maximum will be seen, and the symmetry is not detected. The
effect is shown in Fig. 11 for the octagonal tiling of Fig. 7.

More important, the use of adirectionalwavelet is essential here. Suppose we perform
the same analysis with an isotropic wavelet. Then the scale-angle measure no longer
depends onu; it reduces to a functionbs(a) of a alone. Figure 12 shows the result for the
tiling of Fig. 7. In Fig. 12a, we plot lnbs(a) as a function of lna, together with the best
linear fit, and in Fig. 12b, we plot the difference between the two, which represents the
fluctuations around the linear trend. Now, if the pattern is invariant under dilation by a
factor d, it may be shown that these fluctuations ared-periodic. This technique is often
used for determining the inflation invariances of a 1-D quasiperiodic tiling, or the scaling
factor of a fractal [6]. In the present case, three features are visible on the fluctuations
shown in Fig. 12b. First, there is a repetition with periodd0 5 1 1 =2, corresponding to
the global dilation invariance. In addition, there are two less prominent repetitions, with
ratios d1, d2. Clearly these scale ratios have a special role in the pattern, but such an
analysis, ignoring the rotation angles, is unable to determine it without ambiguity. In other

FIG. 10. The set of renormalization parametersr 5 (d, u) obtained by the voting algorithm on the skeleton
of the WT of the octagonal tiling, given in Fig. 8b. The point on the horizontal axis corresponds to the
p/4-periodicity. The pointsr1 andr2 correspond to the combined rotation–dilation operations with dilation ratio
d1 andd2, respectively, whereasr0 is a pure dilation, equivalent to the productr1 z r2 under thep/4-periodicity.
The other, unmarked, points are translates of the previous ones under both periodicities, ina andu, and are added
for better readability of the diagram.
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words, detecting combined dilation–rotation invariances of the pattern requires a direc-
tional wavelet, which allows one to exploit the full power of the scale-angle measure.

In conclusion, we have obtained a method for determining, in a straightforward and
economical way, the (possibly hidden) symmetries of a given pattern. Of course, rotational
symmetry is easy and there are various methods for determining it. But, as far as we know,

FIG. 11. The scale-angle measure of the octagonal tiling from Fig. 7, for fixed valuesa0 of the scale: (a)
for ln a0 5 1.20, on aline of maxima, the periodicity is obvious; (b) for lna0 5 1.13, between two lines of
maxima, the symmetry is not seen.
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no method exists for determining the combined dilation–rotation invariances of a given
pattern. Moreover, this applies not only to a genuine lattice, but also to a quasilattice, for
which the symmetry is only local. The reason is that the local character of the wavelet
transform allows one precisely to treat exact and local symmetries on the same footing.

FIG. 12. Fluctuations of the scale measurebs: (a) lnbs(a) as a function of lna, together with the best linear
fit; (b) fluctuations ofbs(a) around the linear fit—the three scaling factorsd0, d1, andd2 are visible.
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A typical application is the diffraction pattern of a quasicrystal [20, 26], which exhibits
a local n-fold point symmetry, withn 5 5, 8, 10, or 12 (all forbidden as an exact
symmetry by the laws of crystallography, because they are incompatible with translational
invariance). In addition, these diffraction patterns are organized into constellations of
bright Bragg spots of unequal intensity, which are self-similar with an irrational scaling
factor, namely:

● d 5 2 cos(2p/10) 5 1
2
(1 1 =5) [ t (the golden mean), forn 5 5, 10;

● d 5 1 1 2 cos(2p/8) 5 1 1 =2, for n 5 8;
● d 5 2 1 2 cos(2p/12) 5 2 1 =3, for n 5 12.

Similar structures are observed on quasicrystal surfaces by scanning microscopy. Thus our
octagonal tiling has the same global symmetries as then 5 8 quasicrystals, but in addition
it has the two combined dilation–rotation invariances discussed above. It would be
interesting to find similar helicoidal symmetries in genuine quasicrystals and understand
their physical origin.

More generally, the scale-angle measure is a natural tool for studying self-similar tilings
[7, 8]. These patterns have invariance properties under (discrete) rotations and dilations,
but no translation invariance. In fact they can be characterized solely by their dilation–
rotation renormalization parameters, as discussed above in a particular example. Thus the
space dependence of the wavelet transform is irrelevant for analyzing them, and it may be
averaged upon, as we precisely did in (5.1). Further work in this direction is in progress.

Needless to say, directional wavelets, and in particular Cauchy wavelets, may be
applied in other instances where high directional selectivity is needed. For instance, one
of us (R.M.) is currently applying them to the detection and classification of targets in
forward looking infrared imagery (FLIR). The preliminary results look very promising.
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