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The analysis of oriented features in images requires two-dimensional directional
wavelets. Among these, we study in detail the class of Cauchy wavelets, which are
strictly supported in a (narrow) convex cone in spatial frequency space. They have
excellent angular selectivity, as shown by a standard calibration test, and they have
minimal uncertainty. In addition, we present a new application of directional
wavelets, namely a technique for determining the symmetries of a given pattern
with respect to rotations and dilatione 1999 Academic Press

1. INTRODUCTION

As is well known [12], the wavelet transform (WT) comes in two very differen
incarnations, based on mutually exclusive philosophies, namely the continuous
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(CWT) and the discrete or dyadic WT (DWT). According to conventional wisdom, tt
CWT is better adapted for the analysis of signals, in particular feature detection, whe
the DWT is preferred for signal synthesis and data compression. The reason is tha
DWT leads to orthonormal or biorthogonal wavelet bases, and (bi)orthogonality enst
a maximal decorrelation among the wavelet coefficients.

Specializing to the two-dimensional case, the 2-D CWT will be used mainly fi
detection, extraction, or classification of various features in images. But then a furt
choice must be made. If the aim is a pointwise analysis, without particular emphasis
directions, then an isotropic wavelet, such as the isotropic Mexican hat, will be m
economical. But if the features to be detected have a preferred direction (straight ec
filaments, oriented textures, velocity field, etc.), then one needs a wavelet with g
angular selectivity. In [2], we have definedlmectional waveleas a wavelety(X) whose
Fourier transformjs(k) has (essential) support in a convex cone in spatial frequency spa
with apex at the origin. The canonical example, of course, is the 2-D Morlet wavelet.
to Gaussian tails, it lives in an ellipse centered on the wave vigtand hence contained
in the convex cone defined by the tangents to that ellipse. The detection capability of
Morlet wavelet has been thoroughly analyzed in [1, 2] and it has been characterizec
two parameters, the scale resolving power (SRP) and the angular resolving power (Al
Taken together, these two parameters define a tiling of the spatial frequency plane,
leading to the determination of a complete filter bank suitable for image analysis.

However, the Morlet wavelet has a drawback. In order to make it more directiong
selective, one must increaﬁq)| (in addition to increasing the anisotropy parameter
which results in a further elongating of the supporting ellipse). But there is a price to p
When |k,| increases, the amplitude af(k) diminishes, since it contains a factor
exp(—|ko/?). Thus one has to find a directional compromise and kigp within
reasonable bounds, which implies that the ARP of the Morlet wavelet is in fact limite

As an alternative to the Morlet wavelet, we have introduced in [2] another class
directional wavelets, namely tli@auchy waveletshey are strictly contained in a convex
cone inR-space, with a fully controllable opening angle, independently of the amplituc
They have an arbitrary large number of vanishing moments on the boundary of
supporting cone and an exponential decay inside (alternatively, one may impos
Gaussian decay). These Cauchy wavelets generalize to two (or more) dimension:
wavelets of Paul [13, 30, 31] (actually, they were introduced by Klauder [27] and the na
“Cauchy” was given by Holschneider [22]).

One of the purposes of this paper is to study the 2-D Cauchy wavelets in a systen
way, both mathematically (Section 2) and in terms of their performances for analy
(Section 3). In addition, we will show in Section 4 that the Cauchy wavelets inavienal
uncertainty,in the sense that they saturate the uncertainty relations that result from
nonvanishing commutation relations among some of the infinitesimal generators of
transformations defining the 2-D CWT, namely translations, dilations, and rotations (
[1]). This property is familiar in the 1-D case, where it was introduced by Gabor [16]
his pioneering work on time—frequency analysis. The fact that the Gaussian has mini
uncertainty, either in the sense of quantum mechanics (Heisenberg uncertainty relat
or in the sense of signal processing (which is the same thing), has been invoked time
again for justifying its preeminent role, both in Gabor analysis and in wavelet analys
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In the final Section 5, we describe an application of directional wavelets that loc
extremely promising. We introduce the so-calledale-angle measuref an object,
namely the space integral of the square modulus of its WT, which may also be interpri
as the (partial) energy density of the CWT in the scale and angle variables. Using
concept, we show that a directional wavelet, for instance a Cauchy wavelet, is abl
determine the symmetry of a given object in a straightforward way. This applies
geometrical figures (a square, a hexagon), but also to tilings, which may have bo
rotational symmetry and a combined rotation—dilation symmetry. It is revealing that 1
tiling that was used for detecting a rotational symmetry (of order 8) had also sucl
combined symmetry—but the latter was discovered on the scale-angle meesorethe
tiling itself. We expect this technique to be useful, for instance, in the study of qua
crystals and other patterns with approximate symmetries.

We conclude this Introduction by fixing our conventions and recalling the bas
definitions concerning the 2-D CWT. An image is a finite energy signal L%(R?,
d?%). A wavelet is a signaky € L*[R? d?%) satisfying the familiar admissibility
condition

dk . .
c, = (2m)? Wltb(k)lz@o (1.1)

(we will putc,, = 1 throughout). Ify is regular enoughyt € LY(R?, d*%) N L*(R?, d°X)
suffices), the admissibility condition simply means that the wavelet has zero mean:

0 =0& f d2% Y(X) = 0. (1.2)

Given an images € L%(R?, d?%), its wavelet transform (with respect to the fixed
wavelety)) S= W,s is given, as usual, by the scalar productsakith the transformed
waveletyy , 4, considered as a function ob(a, 0):

S(B, a, 6) = <¢B,a,9|s> (13)
=al f d2% g(a lr_y(% — b))s(X) (1.4)
=a f d%k e Ki(ar_,(K)3(K). (1.5)

In these relationsh € R? is the displacement parameter;> 0 the dilation parameter,

and# the rotation angle, and the rotatiope SO(2) acts ork = (X, y) in the usual way.
Itis a basic aspect of the CWT that the transformed wawglgl, is obtained from

¥ by a unitary operatot(b, a, 6), which defines a square integrable representation

the two-dimensional Euclidean group with dilations, i.e., the similitude group SIM(:

of R?,
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Whao(X) = a (@ 'r (X = b)) = (U(b, a, 0)¥)(%), (1.6)

or, equivalently, in the space of Fourier transforms,

Ppao(K) = ae ®M(ar_,(k)) = (0(b, a, 6))(K). (1.7)

The formula (1.7) will be used in Section 4 for determining the effect of infinitesim:
transformations, that is, the representation of the Lie algebra sim(2) acting
wavelets.

2. MATHEMATICAL PROPERTIES OF THE CAUCHY WAVELETS

2.1. Directional Wavelets

In frequency space, the 1-D (Cauchy) wavelets of Paul have the following form, w
m > 0:

o 0, forw < 0,
l!/m((,_)) = { wme—w’ for ) > 0 (21)

Now, in 1-D, the positive half-line is a convex cone. Thus a natural generalization to 2
will be a wavelet whose support in spatial frequency space is contained in a convex c
with apex at the origin. This is exactly the definition ofdaectional wavelet that we
introduced in [1], with the purpose of characterizing wavelets capable of detect
oriented features (segments, edges, vector field, etc.) in images (a review of directi
wavelets and their use may be found in [3]).

Since it may sound counterintuitive, this definition requires a word of justificatio
According to (1.5), the wavelet acts as a filterf<i+$pace (multiplication by the function
). Suppose the signalX) is strongly oriented, for instance, a long segment along t
positive x-axis. Then its Fourier transfor®(k) is a long segment along the positive
k,-axis. In order to detect such a signgl, with a good directional selectivity, one neec
waveletys supported in a narrow cone kaspace. Then the WT is negligible unlaggk)
is essentially aligned ontg(k): directional selectivity demands restriction of the suppor
of ¢, noty. In the same way, in signal processing, restrictions on the support of filters
imposed in thefrequencydomain (high pass, band pass, etc.). A case in point is tl
analysis oftextureswith directional wavelets. Both in [18] and in [24, 29] the algorithm
demands that the waveldtbe well localized in spatial frequency space. In particular, it
(essential) support must be contained in a rather narrow cone. Notice that a disc
version of wavelet analysis with a Morlet wavelet (called Gabor wavelet!) has been u
previously in texture analysis [25], with very good reconstruction results. On the contre
spatial localization properties of the directional wavelets are not important. Indeed,
wavelets of Paul have a poor localization in the time domain (they decrease as an inv
power fort — *o),

The best known directional wavelet is, of course, the 2-D Morlet wavelet that we he
analyzed in detail in [1]. Strictly speaking, it is only approximately directional, since it h
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Gaussian tails outside the cone of its essential support, but this makes no differe
numerically. Another example of directional wavelet has been proposed by Watson [
His fan filters are obtained by taking first the difference between two “mesa” functiot
which yields an angular wavelet, and then repeatedly bisecting the spatial frequency s
and taking only one side (i.e., the associated analytic signal). The allowed diregtoas
thus restricted to a fan-shaped region:

2w
OSZOSF(nZZ,S,...). (2.2)

This construction may then be generalized to arbitrary angles [32]. These fan filters h
all the properties of directional wavelets, including admissibility in the form (1.2
Applying to these filters discrete rotations and scaling, Watson builds a pyramid
oriented filters as a tool for data compression and signal reconstruction after coding,
model of human vision. This is, in fact, a discretized version (in polar geometry) of t
CWT. Another example, very similar to the previous one, is that ofsteerable filters,
introduced by Freeman and Adelson [15], and further developed by Perona [33]
Simoncelliet al.[34]. Here again one obtains a multiscale pyramid decomposition, whi
is quite efficient in a number of problems, mostly related to machine vision. Simil
technigues have been used with the Gabor transform [25].

By comparison with these (and related) works, the present paper shows two
differences. First, we use the precise mathematical definitiodirefctional wavelet
introduced in [2]. Accordingly, while (analytic) fan filters are directional, in the stric
sense, steerable filters cannot be, although they may be approximately directic
just like the Morlet wavelet. For instance, the simplest example given in [15] is
filter based on directional derivatives. Thus it is not supported in a convex cc
and therefore is not directional, although it is an oriented wavelet. Second, we
interested in feature detection and analysis. For this purpose, it is more efficien
use the continuous WT than the discrete one, as illustrated, for instance, in [18]
in [24, 29]. In particular, instead of using a dyadic discretization scheme (scaling
powers of 2), we use first a continuous scaling, and the values chosen for the e
tual discretization are arbitrary and, in fact, dictated by the signal itself (as in t
analysis of fractals [5, 6]). In that sense, we are closer to the scale-space philosc
of Witkin [42].

2.2. Cauchy Wavelets

With these preliminary remarks in mind, we may now proceed to the definition of t
new wavelets. Let = 6(«, B) be the convex cone determined by the unit veo@;[séﬁ,
wherea < B, B — a < mandé, = (cos v, sin y). The axis of the cone i§,; =
€(1/2)@+p)- Then one has

@(a, B) ={kE R?: a = argk) = B}

={kER?:Kk-{s=8, {op=8 Lup> O} (2.3)
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The dual cone, also convex, is
€=%a B)={keRLk-K >0, VK € %(a, B)}, (2.4)

whereB = a + w2, & = B — 72, and the[efo[é& ‘€ = €3 €, = 0, whereag; -
&, = &3 & = sin(8 — ). Thus the axis of6 is £,z again. (It might seem more natural
to use the variabled = B, B = &, as was done in [2], but the present definition make
things more symmetric and has the further advantage of extending to higher dimensi
as we shall see in a while.)

In these notations, we define a 2dauchy waveletwith support in€ = €(e, B), for
anyn € % andl, m € N*, through its Fourier transform:

sy _ [(K &) (k-8pme 7, KE €(a, B),
Yim™ (k) = { 0, otherwise. (2.5)
Clearly this function satisfies the admissibility condition (1.1) for 2-D wavelets. |
addition, the Cauchy wavelet itself, in position space, may also be obtained explicitly (1
result was announced, without proof, in [2]). Indeed:

ProposiTion2.1. For everys € € and |, me N*, the 2-D Cauchy waveleg{¢(x)
with support in¢ = €(«, B) belongs to E(R? dX and is given by

P il+m+2 [Sln(B _ ()L)]I+m+l
(%) = e S T STCESWa S T (2.6)
2m [(X+in) - €] (X +i7) - &]
Proof. From the definition (2.5), we get
. 1 I - - -
e I 3 C I C A
Cap)
Y
O e St T [ e
L .
The integral on the rhs is convergent, sifce?n > 0. Write &€ = 1 — iX = —i(X +

in) and letA be the matrix that maps the unit vectd@s &, ontoe,, &5, respectively:
(&))" = AL(§)', so thatk’ = A\ k” (contravariant coordinates,= «, 8). Explicitly, we
have

A ( cosa cosp ) ' so that det A=sin(B — ).

sina sing
In the new (nonorthogonal) coordinates, the cone becomes

%(a, B) = {k€ R?: k*= 0, k¥ = 0},
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and the integral may be obtained immediately:
f d%k e = f dk'dk? exp(—A k’€)
©ap) Gp)

= detA jm dke fw dkPexp(—K"¢,), where¢, = AL§
0 0

detA B sin(B — «) —sin(B — «)

T EE (R D@ [(xrim-ell(xrin) gl

Then the result follows by differentiation, if one remembers taté; = €; - €, = 0.
Indeed,

v, & & =0,
(8- X)[(X+In) 8] [(x+in) &
. 1 (D)™l (& &)™ (—1)™mi[sin(B — a)]"
[(x+in)-&] [(X+in)-&™"  [(X+in)-&]™"

and similarly for the other factor. As for the square integrability of the resulting functio
it is obvious. m

In the symmetric cask = m, (2.6) may be rewritten

T >m+1 s [sin(p — o)™
i (0 = M HGcr i) - ala, B+ i)™

2.7)

where

cosa cosB  sin(a + B)
o(a, B) = ( sinffa + B) sina sinB )

Two remarks are in order here. First we notice that Eq. (2.6) may be rewritten in-
form

P (X) = const(z-&,) "z &) ™, (2.8)

where we have introduced the complex variables X + in € R? + i¢. Thus the
Cauchy wavelet iseparablealbeit in a geometry where the coordinate axes are take
alongé,,

Then, |f We varyn € <€ the expression (2.8) shows th@f¢'™ extends to an analytic
function ofz. This follows from general theorems [36, 37]. Since the funcfigh™ (k)
has support in the convex coffe= 6(«, B) and is of fast decrease at infinity, its Fourier
transformys{ 5™ (X) is the boundary value of a functiaf,;’(Z), holomorphic in the tube
R? + i¢. What we have here is in fact an example of a 2-D progressive wavelet.
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In 1-D, a wavelety is calledprogressiveor a Hardy function [19, 22], ifi(w) = O for
® < 0. This in turn may be expressed in terms of the Hilbert transform, defined

ﬁf(w) = —isignow f(w), namely
Y= (1+iH)d, ¢ € LAR, dt)

(that is, ¢ is the analytic signal associated ¢9). Equivalently,ys belongs to the Hardy
spaceH? (R) of square integrable functions which extend analytically into the upp
half-plane. We claim that the directional wavelets are the 2-D analogues of this conc
that is, the genuine 2-D progressive wavelets.

In order to prove that statement, we first notice that the convex €¢agB) may also
be expressed in terms of the covariant coordin&tes (&, - K, v=a p:

%(a, B) ={kE R?: k; =0, k; = 0}. (2.9)

Consider the directional Hilbert transforms:

H; f(k) = —i signk;f (k). (2.10)

Given ¢ € L?(R?, d?%), define the function
Yp=(1+iHz;+iH;— HzHpd = (1 + iHy) (1 + iHp) . (2.12)
Then it is easy to see, as in [38], thigk) vanishes outside the coftde, B), and indeed,

~o 4p(k), ke €(a, B),
k) = { 4)0( , ) othe(rwisBe). (2.12)
Therefore the inverse Fourier transforaix) is the boundary value of a functiaf(2)
holomorphic in the tub&? + i, that is, a 2-D Hardy function. For a fixed convex cone
“%(a, B), the set of all such functions constitutes a Hilbert space, naturally th@gg,
which is unitary equivalent, via the complex Fourier transform, to the sp&cé(«, B),
d?k) [36, Thm. V1.3.1]. In this sense, directional wavelets are a genuine multidimensio
generalization of the 1-D Hardy functions, much more so than the so-called 2-D Ha
functions defined by Dallard and Spedding [11]. And among them Cauchy wavelets
particularly simple (they occupy a special niche, as we will see in Section 4). T\
concluding remarks are in order: first, all these considerations extend to higher dimens
n > 2; second, we are talking here of a Hardy spblégv,s), but similar considerations
may be made for Hardy spacbﬁ}a’B), in terms of the Riesz operators that are a natur:
multidimensional generalization of the Hilbert transform [38].

Let us give a few examples of 2-D Cauchy wavelets. For simplicity, we alwaysitake
along ZHB, the axis of the cone. In this case, o= m, the wavelet, writteny{&(%), is
symmetric under reflection with respect #o
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Take first¢, = €(0, w/2) andn = &_,, = (1, 1). Then, fol = m = 1, one gets the
function

1 1 1

Pii(%) = 20 (X T D2(y ¥ )2 (2.13)

i.e., the product of two 1-D Cauchy wavelets [22, 30], that is, derivatives of the Cauc
kernel (z + i)~ *—hence the name.
Similarly, for anym = 1, we get

((61)(5’() — (_1)m+l (ml)z 1 1 (2 14)
l»l’mm - 2 . (X+ i)m+1(y+ i)m+1- .

These wavelets are indeed symmetric under reflection in the main diagosaly, and
they are separable in the usual sense.
On the other hand, fo8, = €(w/4, 3m/4), we obtain

(_1)m+l 1 1
62) () —
ll’::im(x) - 24 (m!)z (U + inu)m+1 (V + inv)m+1:

(2.15)

where we have introduced the (light-cone) coordinates= 2~ Y2%(x + y), v =

27Y2(—x + y). In the axisymmetric casé = (0, 1), this gives
o (=pymt 1 mtL
U (%) =~ (m!)z[(y T Xz} : (2.16)

which is indeed an even function &f

Of course, in practical applications, one needs a reasonable directional selectivity,
therefore one chooses a narrower supporting cone. Indeed, for a Cauchy wavelet, the .
the parameter that measures the directional selectivity, as defined in [1], is simply
opening angle of the con® = B — «. We have found th&€,, = 6(—10°, 10°) is a good
choice (this will be confirmed by the calibration analysis given in Section 3 below).
addition, imposing sufficiently many vanishing moments also improves the performan
of the wavelet, as usual. We show in Fig. 1 the wavelgi® (k); this is manifestly a
highly directional filter.

An alternative possibility is to replace in (2.5) the exponential by a Gaussi
centered on the axis of the cone, exi — aOZaBF) (ag > 0). The resulting wavelet
is very similar to the previous one, except that it is more concentrated in spa
frequency space, since it is also sharply localized in scale, around the centragscal
We show an example in Fig. 2. In the applications of Section 5, we use§§thand
its Gaussian analogue, and the difference in scale selectivity between the two wil
manifest.

As a final remark, let us note that the definition (2.5) extends immediately to thr
or more dimensions. In 3-D, we consider the convex simplicial (or pyramidal) co
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-15 .

1.27 b

0.8 —
0.6 —
0.4 —

0.2 —

-5

15 0 _15

FIG. 1. The Cauchy wavele}$19(k) in spatial frequency space: (a) in level curves; (b) a 3-D view from
0 = 185°.

%(a, B, ) defined by the three unit vectogs, &, €,, the angle between any two of
them being smaller tham. The dual cone is also simplicial, namey = €(&, B, ¥),
whereg; = &; /\ &, is orthogonal to thgg—y face, etc. With these notations, given a

vectorn € 6 andl, m, n € N*, we define a 3-D Cauchy wavelet in spatial frequency
space as

67 = {(R-é;)'(ﬁ'éé)m(k'éa)"eMv KE Gl By, (519

0, otherwise.
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0.8

0.6 —

0.4 —

0.2

0

/ I I / 7 7 7
/-
-8 -6 _4 2 0 5 4 5 g 10

FIG. 2. A Gaussian Cauchy wavelet, with support in the chg, | = m = 4,a, = 1.

Then, with exactly the same proof as for Proposition 2.1, we get the explicit express
for the 3-D wavelet in position space,

iz = i - deta. (88 @ &)@ &)
Imn 2 s (-z.éa)Hl(?,éﬁ)m+1(z,éy)n+1v

(2.18)

where, as in the 2-D casA, is the matrix that transforms the unit vectors into the triple
€, €, &, and we have writte = X + in. All the other comments remain valid. From
the expressions (2.17) and (2.18), one may then obtain other 3-D Cauchy wavelets
instance, one supported in a circular cone. And the whole construction extends to
number of dimensions.

3. CALIBRATION OF THE CAUCHY WAVELET

Itis clear from Fig. 1 that, if the supporting cone is narrow enough, the Cauchy wave
is a highly directional filter. But, of course, for practical applications, we must convert tt
assertion into quantitative terms. In other words, the wavelet musalierated.

As for any directional wavelet, the crucial property is directional selectivity. In order
estimate this, we submit the Cauchy wavelet to the same test that we used in [1] for
Morlet wavelet. The test (benchmark) signal is a semi-infinite rod, sitting along t
positive x-axis, and modeled as usual with a delta function,

s(x) = 9(x)8(y), (3.1
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| S(x,ao,e) |

0.9

0.8

0.7

06

05

0.4r

031

02r

0.1

-5 0 5 10

FIG. 3. Angular selectivity ofy5!® as a function of the misorientation angle The graph shows the
modulus|S(x, a,, 0)| as a function of positiox along the rod, for various values 6f

where 9(X) is the step function. Then one takes a Cauchy wavelet and computes
modulus of the CWT o8 as a function ok, for the fixed scale, = 1 and orientation
6. Thus#6 is the “misorientation” of the wavelet with respect to the signal (the rod). A
expected, the result is entirely similar to that obtained in [1] for the Morlet wavelet. Tt
is shown in Fig. 3 for a Cauchy wavelet supported in the cépeg= 6(—10°, 10°), with
axism = (1, 0), that is, an angular resolving power= 20°. For6 = 0, the modulus of
the WT is a “wall,” increasing smoothly from 0, for = —5, to its asymptotic value
(normalized to 1) forx = 5. Then, for increasing misorientatiah the wall gradually
collapses and essentially disappearséfor 10°. Only the tip of the rod remains visible,
and for larged (0 > 45°), it gives a sharp peak. This is exactly the property used crucia
in the measurement of the velocity field of a turbulent fluid [3, 40, 41].

Thus, on this count, the Cauchy wavelet behaves exactly as the Morlet wavelet. But it
in fact an additional advantage. In the Morlet case, tightening the supporting cone me
increasing the modulus of the wave vedkgrbut this also means decreasing the amplitude
becausé, enters in the exponent of the Gaussian. Thkyssannot be taken too large. For the
Cauchy wavelet, on the contrary, the opening angle of the doaad the amplitude of the
wavelet are almost independent parameters. The latter decreases very sldwy 8sas a
fixed power of sinb. Thus one may take a cone as narrow as one wishes, with almost cons
amplitude. As an example, we show in Fig. 4 the result of narrowing the cone, for a fi
misorientation angl® = 20° between the wavelet and the rod. Of course, exactly the sal
conclusion applies to the Gaussian version of the Cauchy wavelet.

The outcome of this analysis is that Cauchy wavelets, with a narrow supporting cc
are excellent directional wavelets. They are easier to implement than the 2-D Mo
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I S(x,a,,20) |
1

misorientation angle 6 = 20°
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FIG. 4. Angular selectivity ofA£{41°) as a function of the opening angle of the cone6. The graph shows
the modulugS(x, a,, 20°)| as a function ok, for various values ofb.

wavelet and have a fully controllable angular selectivity. As shown above, a Cauc
wavelet with opening anglé = 20° is a good replacement for the usual 2-D Morle
wavelet with|ko| = 5.5, and in ougroup we are now using that kind of wavelet almos
exclusively.

4. CAUCHY WAVELETS HAVE MINIMAL UNCERTAINTY

4.1. Minimal Wavelets

In his pioneering paper on time—frequency analysis, Gabor [16] stresses the notio
a signal with minimal uncertainty. The latter is defined as the product of the variance:
the position and the frequency, in other words, the product of the widths of the signa
the time and the frequency variables. It is always bounded below, as a result of the Fou
theorem, and the minimal uncertainty signals are those for which the lower bounc
attained. This concept is identical to that of uncertainty in a quantum mechanical syst
which is governed by the celebrated Heisenberg relations [9, 17]. For the usual tir
frequency pair, the minimum is reached for a Gaussian signal, a fact that is often invo
for justifying its choice, in particular by Gabor himself (the “elementary signal”) [16].

Now, in the standard case, the time and frequency widths are simply the variances o
operators of infinitesimal modulation and translation, respectively. In other words, finding
signal with minimal uncertainty is a Lie algebra problem, in a Hilbert space representation.
the canonical case, the Lie algebra in question is, of course, that of the canonical commut
relations. Let us formulate the problem in precise mathematical terms.
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Let A andB be two densely defined, essentially self-adjoint operators of a Hilbert spe
with scalar product - | - ). Let ¢ be a normalized vectofi¢| = 1) in the domains of both
A andB. The variance of in the state¢ is defined as

AA=AA= (A —(A? (4.1)

where(C) = (¢$|C¢) denotes the average of the operafan the statep. Then we have
the well-known proposition.

ProrosiTion4.1. Let A, B, and$ be as above. Then one has
1
AA-ABzi IK[A, B])|. (4.2)

The equality holds ir{4.2) iff

(A= (A)d = —ir(B —(B), (4.3)

for somer, > 0.
The proof can be found in Gabor’'s paper [16] or in any standard quantum mechal

d
textbook, for instance [9, 17]. Note that= —i &andB = X gives the usual Heisenberg

inequalities, that is, the canonical case discussed above. Aftataéich saturates the
inequality (4.2), that is, which verifies (4.3), is called a statengfimal uncertaintyor
sometimes an intelligent state [28]. In the Heisenberg case, one gets of course the fan
canonical coherent states.

In the case of more than two operators, one obtains a system of inequalities, one
each nonvanishing commutator.

4.2. Two-Dimensional Minimal Wavelets

Coming back to 1-D wavelets, we have to remember that plays the role of a
frequency. Thus the operators to consider for applying Proposition 4.1 are the infinitesi
generators of dilations and translations, in the unitary representation aktteb group
that underlies wavelet theory. This was first done by Klauder [27], and then by Paul
Seip [30, 31] and by Dahlke and Maass [10], with the result that the 1-D Cauchy—P
wavelets (and their generalizations defined in the Appendix of [13]) have minirn
uncertainty. In the 2-D wavelet case, Dahlke and Maass have considered the isotr
solutions only and found that the 2-D isotropic Mexican hat is a minimal uncertair
wavelet.

Let us consider the case of a general 2-D wavelet. It is well known [1-3] that t
four-dimensional parameter space of the 2-D CWT is in fact the phase space assoc
to the similitude group of the plane. The variatilein (1.3) represents the position,
whereas the paira( %, 9) is interpreted as spatial frequency in polar coordinates. This
the basis for the privileged role played by the two standard representations of the C\
the position and the scale-angle representation, described at length in [1-3]. Thus, b
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same principle as in the 1-D case, the analogue of the canonical uncertainty relatiol
obtained by considering the commutators between infinitesimal generators of translati
on the one hand, and dilations and rotations, on the other.

In order to formulate this in a mathematically precise way, we consider the repres
tationU in the Fourier variables, as given in (1.7), and denote the infinitesimal generat
by P, for horizontal translations?, for vertical translationsD for dilations, andJ for
rotations. Then we have, with = (k,, k) = (p, ¢):

d
(P (k) =i T)( (b, a, 0)1)(K)|w00) = ka(K), (4.4)
d . o “ -
(Poh) (k) = Ty( (b, a, 0)¢)(K)| w00 = kyp(k), (4.5)
- d .. .
DY)k =1 - (U(b, &, 0)1) (K)|1.0)
= i(Kady, + ki, + DP(K) = i(pa, + Dis(p, @), (4.6)
s d . . o
() (k) =i a0 (U(b, a, 0)1)(K)|1.00)

= —i(kadi, — k)W) = =i d(p, @). (4.7)
The corresponding commutation relations are

[Py, P,] =0; [D, Py =iPy [J, P =iPy
[D,3]=0; [D,P,]=iPy [J,P,]=—iP, *.8)

ProprosiTion4.2. The four nonzero commutators split in two sets of two commutatol
[D, Py =iPy; [J, Pyl = —iPy, (4.9)
and
[D,P,]=iP,  [J,P]=iP, (4.10)

that transform into each other under the transformatior> ¢ — @/2.

Proof. In fact the considered transformation leax®@sndJ invariant, whereasR;,

P,) gointo (P,, —P,;). =
Thus it suffices to consider minimal wavelets for one pair of commutation relations;
shall choose (4.9) and write the corresponding system of inequalities. We obtain

AD - AP, = 2[(P))|

AJ-AP22§|<P1>|. (4.11)
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According to the second statement in Proposition 4.1, a vécsaturates the lower bound
of the above inequalities if and only if

(D + iMP) (k) = ((D) + iAg(P) (k)

(J+ IPYIR) = () + iN(PY)ky (Mo A2= 0. (4.12)

In polar coordinates, this system reads

(pd, + 1+ Aip cose)Pi(p, @) = —iB1(p, ¢)

(=9, + Aop sin@)d(p, @) = —iBaib(p, @), (4.13)
where
B1= <D> + i)\1<P1>7 B, = <J> + i)\2<P2>- (4-14)

The integrability of the system (4.13) requires that= A, = A > 0. Then the general
solution is given by

U(p, @) = cp PlgibzegArcose, (4.15)

The solution (4.15) must verify the following three conditions:

(1) 2m-periodicity in ¢ implies that
B2=(I) +iMP=m,  me/Z,

which in turn requires

<P2>=” d%kk/|$(K[?=0 and (I =meZ.

Thus, introducing<; = A(P;) — 1 andk, = —(D), the solution (4.15) becomes

Q,(p, (P) — Cpxﬁixzefim(pef)\pcos‘p_ (416)
(2) Square integrabilityimplies thatk, must be restricted to positive values only,
which means

Cose>0S || = @< /2. (4.17)

Therefore the wavelety is square integrable iff the support of its Fourier trans
form is restricted to a convex cone in the right half-plane. In addition, one nee
Kk, > —1.
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(3) Admissibility:Inserting the solution (4.16) in the admissibility integral (1.1), with
the condition (4.17), we obtain

c, < (2m)? jm p2algm2hecoseq (4.18)

0

The convergence of this integral then requikgs> 0.
Assume now(k) to be real. TheJ) = (D) = 0. Indeed,

1 . R 1 (= - o
(I = if pdp fz ded(p, @) b(p, @) = 2|f pdp F ded [P(p, ¢)|* =0,
0 0 0 0

since s is 2m-periodic. Hence we must have = 0.
In the same way,

(D) = F’T de Jw dp(p™¥(p, €)a,1(p, @) + plip, @)

1 (o -
=5 | deteito, Pl =0

sinceds is in the domain oD.
Thus we may state

ProposiTion 4.3. A real wavelety is minimal with respect to the commutation
relations(4.9)iff it vanishes outside some convex céh@ the half-plane k> 0 and is
exponentially decreasing inside:

" c|k[e k& (k > 0, A > 0), ke e,
v(k) :{ « 0, otherwise (4.19)

If we had chosen the pair (4.10) instead, we would have obtained a convex cone in
lower half—planeR - 8, < 0. Combining the two results, we see that the wavéiés
minimal with respect to the commutation relations (4.9) and (4.10) iff its support
contained in the lower right quarter-plarie; e, > 0, k - &, < 0. Since the whole
construction is rotation invariant, this in turn means that the opening angle of
supporting cone must be strictly smaller thaf2. Thus we state:

ProposiTiond.4. A real wavelet) has minimal uncertainty iff it vanishes outside some
convex coné&s with apex at the origin and opening angle < /2, and is exponentially
decreasing inside:

clk*e ¥ (k> 0,1 >0, 7 €€), ke

vk = { 0, otherwise (4.20)
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In other words,jy must be of the form
J(K) = cx(K)|k[e ™ " (k>0,\>0), (4.21)

wherey, is the characteristic function 66, or a smoothened version thereof.

We may now impose some degree of regularity (vanishing moments) at the bounc
of the cone, by taking an appropriate linear superposition of such minimal wavelets
Thus we obtain finally

F(K) = cx (k) F(ke* (A >0), (4.22)

whereF (k) is a polynomial irk,, ky, vanishing at the boundaries of the cébieincluding
the origin. Clearly a Cauchy wavelet with < 7/2 is of this type.

Note that other minimal wavelets may be obtained if one includes commutators w
elements of the enveloping algebra of the Lie algebra (4.8). For instance, taking
commutator betweeB and the Laplacian- A = P7 + P3, one finds a whole family of
minimal isotropic wavelets, among them all powers of the Laplacidh,acting on a
Gaussian [4]. Fon = 2, this gives the 2-D isotropic Mexican hat [10]. There exist mor
general solutions of the minimizing equations, but most of them are not square integre

As a conclusion of this section, we might say that the minimal uncertainty property
an important attribute of 2-D wavelets, exactly as in 1-D. What is important is not t
localization in position alone, but tr@multaneoudocalization in positiorﬁ and scale
orientation @, 0), that is, the localization in phase space. This is precisely the prope
that is optimized by the minimal wavelets given in Proposition 4.4, since they achie
equality in all four uncertainty relations derived from the commutation relations (4.9) a
(4.10). Thus minimal wavelets are as optimal for the 2-D wavelet transform as the Ga
function is for the Gabor or windowed Fourier transform, and for the same reason. -
Cauchy wavelets are thus linear combinations of optimal wavelets. However, this |
theoretical statement, and it is not clear to us whether it implies an operational mean
For instance, the 2-D Morlet wavelet and Gaussian Cauchy wavelets are not minimal,
they are extremely powerful for directional analysis. This is not new: in 1-D, too, tl
Cauchy—Paul wavelet (2.1) is minimal, but many other ones are at least as useft
practice, for instance, the derivatives of the Gaussian or the Morlet wavelet.

As a last remark, it may be interesting to notice that a concept closely related
minimality has been developed by Simoncedli al. [35] under the name ojointly
shiftable filters.First, shiftable filters are the natural generalization of steerable filters
variables other than rotations, such as translation or scaling. Then a filter is joir
shiftable in two variables simultaneously iff the corresponding operations commute (*
independent”). Thus strict joint shiftability is impossible for position and spatial fre
guency, and only approximately shiftable filters exist. And the optimal ones, that is, th
that minimize the “joint aliasing,” are the same as our minimal wavelets.

In any case, whatever the answer to the question of the operational meanin
minimality, if any, we emphasize that we are using the Cauchy wavet¢tsecause they
are minimal, but simply because they are simpler to implement and more efficient tf
say, the Morlet wavelets (although they have a slower decay in position space).



332 ANTOINE, MURENZI, AND VANDERGHEYNST

5. DETERMINING SYMMETRIES IN IMAGES AND 2-D PATTERNS

In general, directional wavelets are used for detecting oriented features in an image
instance, the vectors of the velocity field in a turbulent fluid [3, 40, 41] or oriented textul
[18, 24, 29], and they are quite efficient in that respect. In this section we will descr
another application that uses in an essential way the angular selectivity of the directi
wavelets, and we shall illustrate it with the Cauchy wavelet. Namely, we shall preser
simple method that allows one to evaluate the symmetry of a given object, and e
possibly a local or an approximate symmetry. 5, a, 6) be the wavelet transform of
the signals(X) with respect to a directional wavelet. On the space of transforms, \
introduce the following positive valued function:

uda, 0) = f dblS(B, a, 0)? (5.1)

_ (2ma)? f dlar o) ISR (5.2)

We call u g the scale-angle measuref the signal. This is different from using the
scale-angle representation [1, 2], which consists in fixing the position parametere,
on the contrary,u, averages over all points in the plane, in order to eliminate tf
dependence on the point of observation. This is a further confirmation of the fact that
localization properties in position space are unimportant for such applications. One |
also interpretug as the (partial) energy density of the signal in the scale and anc
variables, that is, in spatial frequency space, according to the phase space interpretati
the CWT given in [1, 2]. From the properties of the wavelet transform, it is clear that, 1
any signak of finite energy and any smooth wavelgt, is a bounded continuous function
of a and6. Furthermore, ify is directional i is supported in a narrow cone, and then (5.2
“probes” the behavior of the signal in the directiérmas the beam of a torchlight exploring
a target. This intuitively explains all the results that follow.

We begin with a simplified version and eliminate the scale dependence by integra
overa, thus ending with a functioa,(6) of the rotation angle only, called trengular
measureof the object. In generak is 2m-periodic. But when the analyzed object has
rotational symmetryn, that is, it is invariant under a rotation of angler/d, then the
angular measure is in factnZn-periodic. Note that, fon = 2, there are two different
operations of order 2, rotation af and reflection (mirror symmetry), which may also be
seen as a rotation af around an axis lying in the plane of the figu®x or Oy).

To give some examples, we consider simple geometrical figures (Fig. 5). Take fir
square, which has symmetny= 4. The angular measure,(0) is thus 27/4-periodic and
shows four equal, equidistant peakshat 0°, 90°, 180°, 270°. The width of these peaks
is simply the aperture of the core = ¢(«, B), namely,, in the example considered
(more generally, the ARP of the wavelet). Similarly, a regular hexagon has symmetry
6, and thus its angular measure shows six equal peaks. The case of the rectangle is
interesting. It has symmetry = 2 X 2 (two mirror symmetries, or rotations byaround
both Ox or Oy), and this is reflected on the graph of its angular measure. There are |
large peaks corresponding to the directions of the longest edges and two smaller
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0 [ 180 270 360
] % 180 270 360
[ 90 180 210 360

0 90 180 270 %0

FIG.5. Angular measure,(6) of some geometrical figures: (a) a square; (b) a hexagon; (c) a rectangle w
symmetry 2X 2; (d) a truncated rectangle, with symmetry 2.

corresponding to the directions of the shortest edges, and the ratio 2:1 between the
equals the ratio of the lengths of the corresponding edges. In contrast, for a trunc
rectangle, which has only one symmetry (rotationsbgiroundOZ), the angular measure

ag(6) shows only two main peaks, @ = 0° and 180° (smaller ones are visible,
corresponding to the other, shorter edges).
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Of course, these examples are toy problems that can be solved by plenty of meth
and they are included here only in order to check the validity of the approach
the case of a pure rotational symmetry. However using the full scale-angle meas
(5.1), (5.2) leads us much further. This technique also allows one to identify t
combined rotation—dilation symmetries of quasilattices or tilings. In order to test th
we show in Fig. 6 the analysis of a known “twisted snowflake.” This means
mathematical snowflake [5, 6] with the following modified construction rule: Upo
each downscaling by a factor of 3, the figure is turned by 36°. The scale-angle mea
of this object, computed with a Cauchy waveléf:®, shows precisely the combined
symmetry. The set of four maxima at a given scajés reproduced, at scabg/3, but
translated ing by 36°. And reconstructing the WT at the values ) corresponding
to these maxima yields successive approximations of the original signal, as with
usual snowflake.

Let us turn now to a nontrivial example, whose symmetries are not obvious, nam
the octagonal tiling given in Fig. 7a. It has a global symmetry 8, as shown in Fig.
7b, and is invariant, by construction, under dilation by a facter /2. But one may
go further and uncover combined rotation—dilation symmetries of the tiling, with tl
help of its scale-angle measuug(a, 6). This time we use a Gaussian Cauchy wavele
(I = m= 4), in order to get a better scale localization. The result is plotted in Fig.
(only half of the figure is shown, for the interval [@5]). As a function of#6, this
function is clearlym/4-periodic, which reflects the eightfold symmetry. But one see
in fact several sets of four equidistant maxima, corresponding to characteristic sc
a;, and some of them are shifted by8. This is even clearer if one replaces the full
measureu by its skeleton [14, 21], which reduces here to the set of local modul
maxima (Fig. 8b). On this set of points, one can measure more precisely the succe:
characteristic scaleg. Upon inspection, one may recognis& significant lines of
maxima, corresponding, fgr= 1toj = 6 (bottom to top), to Irg; = 0.32, 0.58, 0.95,
1.20, 1.81, 2.08.

Consider first the three pairs of equidistant lines of maxima (1, 2), (3, 4), a
(5, 6). In eachpair, the ratio between the two successive scales, is a_,/a =
1.31 = V2 cos(@/8), and the second line is shifted by/8 from the first one.
This means that one goes from the first line to the second by a rotation
7/8, combined with a dilation by a facto$;. In other words, the whole pattern
has, in addition to its eightfold symmetry, a combined rotation—dilation syn
metry. This is visible on the pattern itself: if one draws successive octagons, as sh
in Fig. 9a, the dilation factod, = /2 cos@@/8) is easily obtained by a geometrical
argument.

But there is more. Consider now the three lines of maxirsa2, 4, 5, at Ina; = 0.58,
1.20, 1.81.These are obtained from one another by a rotation/8f combined with a
dilation by a factors, = 1.85= 2 cos/8). The same is true for lines 1 and 3. And,
looking at the tiling, one readily observes that it is invariant under this second combit
rotation—dilation symmetry also, as may be seen in Fig. 9b! The remarkable fact is
these two additional symmetries were discovered on the graph of the scale-angle mea
andnot on the tiling itself!
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FIG. 6. Analysis of a pattern (“twisted snowflake”) with a combined rotation—dilation symmetry: (a) th
pattern; (b) the scale-angle measytga, 6), computed with a Cauchy wavelgf59. Corresponding local
maxima are shifted by 36° and a scaling ratio of 3.

At this stage, the method is still empirical. How are we sure that there istimer
combined symmetry present in the tiling? This question may be answered by adapti
technique introduced by Hwang and Mallat [23] in the context of the wavelet analysis
multifractals. The idea is to determine the (exact or approximate) renormalization par:
eters of a given 1-D multifractal by a voting algorithm on the CWT, or its skeleton. In o
case, this means writing the algorithm in tlee @) plane of the scale-angle measure. The
procedure runs as follows.
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FIG. 7. Analysis of an octagonal tiling: (a) the tiling; (b) its angular measugéd), showing then/4
periodicity.

o First we pass to logarithmic coordinates for the scaling variabke,e', and write
the scale-angle measure of the sighabu(t, 8). The renormalization operations on the
signal are given by

L(7, a)s(X) = e "s(e™r X), (5.3)
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FIG. 8. Further analysis of the octagonal tiling: (a) its scale-angle measyee 6); (b) the skeleton of the
latter, which consists of six successive lines of four equidistant local maxima. Lines 2, 4, and 6 are obtained
lines 1, 3, and 5, respectively, by a rotationm#8 combined with a dilation bg,. In the same way, lines 4 and
5 result from line 2 by repeated applications of the operation (8,, 7/8). Similarly for lines 1 and 3. For better
visibility, homologous maxima are linked by a line segment, continuous,f@nd dashed fo8,.
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FIG.9. Two sets of octagons on the octagonal tiling obtained by successive applications of a rotati@n by
combined with a dilation by, = V2 cosr/8) (a) ands, = 2 cos/8) (b).

and from this we get
Pieast, 0) = put = 7,0 — a). (5.4)
e Next the parameter spacg [, tmad X [Omin Omaxd 1S discretized on a linear grid

I'. For each pair%,, ag) € I', we computei(t, 8) = u(t — 79, 0 — ) (this requires
only shifting rows and columns of the matriuf{(i, j)}).
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e Then evaluate

tmax Omax
P(7o, &) = sz dt dofdt, 0)pdt, 0). (5.5)

tmin Omin

Finally the algorithm says: Fix a constaft> 0. Then, ifP(1g, «g) = K, doV(7,, ag)
:= V(1o, ag) + 1, whereV(7y, ap) is the voting matrix, indexed by and initialized
as the null matrix.

e Once a vote has been cast for a potff &), identify all its integer multiplesr{r,,
Nag) that lie withinT', and give all their votes tor§, «p). In other words, one identifies
the renormalization operationyr,, ag) andL"(7,, ag) for all n € N..

e Then proceed to the next renormalization point, if any, and repeat the previc
operation.

The result is a voting matrix whose nonzero entries correspond exactly to all values of
renormalization parameters admitted by the signal. Note that errors may be includec
declaring that a vote is cast fory( «p) if P(7g = 7¢, a9 £ o) = K, wherer, anda,
are fixed parameters. In this way small errors may be taken into account (this is ustL
called renormalization noise), for instance, those coming from sampling on a Carte:
grid in order to perform a FFT (this is the infamous gridding problem of NMR imaging

This method has been applied to the skeleton given in Fig. 8b. The result is given in |
10, which shows the renormalization parameters- (5, 0) of the figure (for better
visibility, we have added some of their multiples). This means that the latter is self-simi
after a dilation by a facto8 combined with a rotation of. Of course the whole diagram
is m/4-periodic, so that only five points are relevant: a pure rotationn(4); a pure
dilation py = (8, 0), with 8, = 1 + V/2; and three combined operatiopg = (8, 7/8),
po = (8, 78), andp; = (85, 7/8), whered; = (2 + V/2)cose/8). Taking into account
the w/4-periodicity, we see that the prodyst- p, coincides withp,, and furthermorep,
= pg * p1. In other words, there are no additional hidden symmetries.

As a matter of fact, the symmetry structure of the tiling is even more intricate. A clos
inspection reveals that it is invariant under the combined operégiailation + rotation
and that this operation generates a semigroup (every point has a successor, bu
necessarily a predecessor; i.e., the inverse operation is not a symmetry). This semic
has apparently infinitely many different orbits (on the portion of the tiling visible in th
figure, we have detected 10 different orbits). However, the other combined operat
8,-dilation + rotation, isnot an exact symmetry; it is only approximate. For instance
some orbits stop after a few iterations, or have gaps (this feature is easily observed in
9b, by visualizing the orbit of the summit of a given octagon). Clearly a systematic stt
would be needed here. In fact, the tiling analyzed here is closely related to the
guasicrystals, based on Pisot cyclotomic numbers, studied by Barache [7, 8]. Fur
results in this direction will be discussed elsewhere.

In addition to the intricate geometry of the tiling, one may notice some irregularities
the pattern ofw,, which are attributable to the numerical treatment. Indeed, although t
original tiling is perfectly regular, it is slightly distorted in order to fit a Cartesian grid, &
required by the FFT algorithm used in the computation of the WT, and this creates s
defects.
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FIG. 10. The set of renormalization parameters- (8, 6) obtained by the voting algorithm on the skeleton
of the WT of the octagonal tiling, given in Fig. 8b. The point on the horizontal axis corresponds to t
w/4-periodicity. The pointg, andp, correspond to the combined rotation—dilation operations with dilation rati
8, andd,, respectively, whereas, is a pure dilation, equivalent to the prodygt p, under ther/4-periodicity.
The other, unmarked, points are translates of the previous ones under both periodictas]éhand are added
for better readability of the diagram.

Incidentally, these examples show why it is safer to integrate over all scales in orde
isolate the angular behavior, rather than fix a certain statea, and considefg(ag, 6).

If a5 coincides with one of the characteristic scakes,a,, . . . , the result is correct, but
if a4 falls in between, no maximum will be seen, and the symmetry is not detected. T
effect is shown in Fig. 11 for the octagonal tiling of Fig. 7.

More important, the use of @directionalwavelet is essential here. Suppose we perforr
the same analysis with an isotropic wavelet. Then the scale-angle measure no o
depends or; it reduces to a functiog(a) of a alone. Figure 12 shows the result for the
tiling of Fig. 7. In Fig. 12a, we plot IrB,(a) as a function of Im, together with the best
linear fit, and in Fig. 12b, we plot the difference between the two, which represents
fluctuations around the linear trend. Now, if the pattern is invariant under dilation by
factor 8, it may be shown that these fluctuations &rperiodic. This technique is often
used for determining the inflation invariances of a 1-D quasiperiodic tiling, or the scali
factor of a fractal [6]. In the present case, three features are visible on the fluctuati
shown in Fig. 12b. First, there is a repetition with perid= 1 + V2, corresponding to
the global dilation invariance. In addition, there are two less prominent repetitions, w
ratios 8,, 8,. Clearly these scale ratios have a special role in the pattern, but such
analysis, ignoring the rotation angles, is unable to determine it without ambiguity. In ot
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s (a07 0)

a Inag = 1.20

150 1 i 1 1 1 1 L 1
0 20 40 60 80 100 120 140 160 180

s (a07 0)
270 T T T T T

b Inagg = 1.13

20 40 60 80 100 120 140 160 180

FIG. 11. The scale-angle measure of the octagonal tiling from Fig. 7, for fixed valyes the scale: (a)
forIn a, = 1.20, on dine of maxima, the periodicity is obvious; (b) for by, = 1.13, between two lines of
maxima, the symmetry is not seen.

words, detecting combined dilation—rotation invariances of the pattern requires a di
tional wavelet, which allows one to exploit the full power of the scale-angle measure

In conclusion, we have obtained a method for determining, in a straightforward &
economical way, the (possibly hidden) symmetries of a given pattern. Of course, rotatic
symmetry is easy and there are various methods for determining it. But, as far as we ki
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25

Ina

FIG. 12. Fluctuations of the scale measyg (a) In B4(a) as a function of Ira, together with the best linear
fit; (b) fluctuations ofB(a) around the linear fit—the three scaling factégs §,, and 8, are visible.

no method exists for determining the combined dilation—rotation invariances of a giv
pattern. Moreover, this applies not only to a genuine lattice, but also to a quasilattice,
which the symmetry is only local. The reason is that the local character of the wave
transform allows one precisely to treat exact and local symmetries on the same foot
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A typical application is the diffraction pattern of a quasicrystal [20, 26], which exhibi
a local n-fold point symmetry, withn = 5, 8, 10, or 12 (all forbidden as an exact
symmetry by the laws of crystallography, because they are incompatible with translatic
invariance). In addition, these diffraction patterns are organized into constellations
bright Bragg spots of unequal intensity, which are self-similar with an irrational scali
factor, namely:

e 8 = 2 cos(27/10) = %(1 + V/5) = 7 (the golden mean), fon = 5, 10;
e 8=1+ 2cos(2r/8) =1+ V2 forn = 8;
e 8=2+ 2cos(2r/12) = 2 + V3, forn = 12.

Similar structures are observed on quasicrystal surfaces by scanning microscopy. Thu
octagonal tiling has the same global symmetries asthe8 quasicrystals, but in addition
it has the two combined dilation—rotation invariances discussed above. It would
interesting to find similar helicoidal symmetries in genuine quasicrystals and underst
their physical origin.

More generally, the scale-angle measure is a natural tool for studying self-similar tilir
[7, 8]. These patterns have invariance properties under (discrete) rotations and dilat
but no translation invariance. In fact they can be characterized solely by their dilatio
rotation renormalization parameters, as discussed above in a particular example. Thu
space dependence of the wavelet transform is irrelevant for analyzing them, and it ma
averaged upon, as we precisely did in (5.1). Further work in this direction is in progre

Needless to say, directional wavelets, and in particular Cauchy wavelets, may
applied in other instances where high directional selectivity is needed. For instance,
of us (R.M.) is currently applying them to the detection and classification of targets
forward looking infrared imagery (FLIR). The preliminary results look very promising
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