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ABSTRACT

This paper describes an extension of a vision model for vi-
deo that has been designed to estimate how speci�c features
in moving pictures are rendered as a consequence of a com-
pression process. The resulting model permits to evaluate
the distortions on contours and textures in a sequence, as
well as to estimate how strong the blocking e�ect (resulting
from a block-DCT compression scheme) is. The model has
been used to evaluate feature rendition in MPEG-2 com-
pressed sequences.
Keywords: Quality assessment, vision model, MPEG, test,
video

1. INTRODUCTION

There has been, over the past few years, a growing inter-
est in the �eld of test and measurement for digital video.
The reason is that the recent developments in digital com-
pression and communication techniques now make possible
the release of a new generation of products using digital
compression, such as the MPEG-1 and MPEG-2 standards.

Consequently, the question on how these new devices
and systems have to be tested became important and the
scienti�c community began to investigate possible solutions
[2, 6, 8]. The present work is the continuation of the ap-
proach proposed in [9]. In that later work, a spatio-temporal
vision model had been introduced and parameterized for
a video compression framework. A computational quality
metric had been built on the basis of this model and used
to assess the quality of MPEG-2 compressed sequences. A
key notion in [9] was the introduction of quality measure-
ments on image features. The principle of the approach is
that it is important to know how basic features in images,
such as contours, textures or uniform areas are rendered
in order to have better insights on a compression system's
performance. The implementation that had been proposed
in [9] was fairly simple, however, and this work proposes
new tools to carry out the proposed task.

The paper is divided as follows: The vision model is out-
lined in Sec. 2 and the speci�c metrics for feature distortions
are introduced in Sec. 3 along with computer simulations.
Section 4 eventually concludes the discussion.

�
Now with Hewlett-Packard Laboratories, Palo Alto, CA

z
Visiting student from Facult�e Polytechnique de Mons,

Belgium

2. THE VISION MODEL

The vision model used in this work is a multi-channel model
for video, introduced in [7]. It takes as input an original vi-
deo sequence and a distorted version of the precedent. The
sequences are convolved with a set of spatio-temporal �lters
that emulates the collection of detection mechanisms of the
visual cortex (termed channels). There are �ve spatial fre-
quency bands (organized in octave bands), four orientation
bands and two temporal channels. After the convolution,
a model of pattern sensitivity is then applied to the data.
This is done by computing the detection threshold (i.e the
probability of seeing the distortion) for the distortion on a
pixel and channel basis, accounting for contrast sensitivity
of the eye and visual masking (interferences between two
stimuli, i.e. between the original scene and the distortion).
Further details are described in [7].

3. METRICS FOR IMAGE FEATURES

The proposed system is based on the block diagram out-
lined in Fig. 1. The front end vision model, identical to
the one described in [9] assesses visibility of the distortion,
accounting for the multi-resolution architecture of the pri-
mary visual cortex, of contrast sensitivity and visual mask-
ing. Once the amount of perceived distortion is known, the
assessment of the visibility of distortion on image features
is re�ned by proceeding as follows: a simple segmentation
scheme is applied in order to determine which areas are tex-
tures, contours and uniform areas. The segmentation tool
is the one described in [3]. Then, having a model of the dis-
tortion, we better assess how visible it is by robust spectral
estimation. The three tools that are proposed are:

3.1. Contour Distortion

Contour distortion in DCT-based coding scheme is known
as \mosquito noise", which gives the impression of a fake
contour, perpendicular to the actual one. This e�ect is ac-
tually due to an ambiguity on the phase of the reconstructed
DCT values. Let Bn;m be a DCT basis function, de�ned
over an 8� 8 block, the expression of which is:

Bn;m(k; l) = K cos
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where K is a constant, n, m de�ne the index of the basis
function and k, l are the coordinates within the 8�8 block.
The above expression can be written, expanding the cosines
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Figure 1: General block diagram of the feature quality metrics: the front end is a vision model for video that assesses pattern
sensitivity, followed by spectral estimator applied on the segmented areas of the perceived distortion.
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Figure 2: Estimated power spectral density of the distortion
around an edge for the edge rendition sequence compressed
with MPEG-2. The distortion was found to be exactly per-
pendicular to the actual contour.

product, in vector notation as [1]:
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where � denotes the dot product. The above formulation
shows the appearance of a signal in the directions (k; l)T and
(k;�l)T that are conjugate. This causes the appearance of a
noise, correlated with the signal, in the conjugate direction,
i.e. the impression of a contour perpendicular to the actual
one.

The false contour can be modeled by a sum of decaying
exponentials in frequency that we estimate by a principal-
component spectral estimator (the MUSIC 2Dmethod [10]).
A side advantage of such a method is that it also permits to
estimate the Gibbs phenomenon distortion if the coder were
based on subband decomposition [7]. It is to be noted that
the spectral estimator is applied on small regions around

the contours (so that the signal of interest corresponds to
the model).

An example of the metric estimation is shown in Fig. 2.
The MUSIC spectral estimator has been applied on the out-
put of the vision model around a contour and estimated the
mosquito noise distortion. The sequence being evaluated
was a synthetic test sequence meant to test contour ren-
dition [8]. The sequence has been MPEG-2 encoded at a
medium bitrate. It is to be noted that the measured distor-
tion was exactly perpendicular to the actual contour, the
orientation of which was unknown to the spectral estimator.

3.2. Blocking E�ect

The annoyance of blocking e�ect is estimated in the follow-
ing way. The distortion known as blocking e�ect is fairly
easy to estimate as it roughly is a periodic horizontal and
vertical signal. We are interested however in knowing how
much of its energy is being perceived. For this, we con-
sider all the non-diagonal bands at the output of the vision
model (the �lter bank that emulates the multi-resolution
structure of the visual cortex is orientation-selective). A
principal component method, known as the Tufts and Ku-
maresan (TK) algorithm [5], is then applied on the lines or
columns of the resulting signal in order to estimate the very
localized spectral lines that make the blocking e�ect. Let
ak's be the n poles estimated by the TK estimation. The
power spectral density Pb(e

j!) of the distortion related to
blocking e�ect can then be computed as:

Pb(e
j!
) =

1Qn

k=1
j1� akej!j

2
:

An example of performance of the metric has been ob-
tained with another synthetic test sequence, meant for this
purpose. The sequence is the \blocking e�ect sequence" in-
troduced in [8]. The sequence has been MPEG-2 encoded
at 3 Mbit/sec. in TV resolution. Figure 3 presents the
spectrum of the perceived distortion in the vertical and ho-
rizontal frequency bands (dashed line). The solid line is the
reconstructed spectrum, having determined the parameters
of the autoregressive model, by the Tufts and Kumaresan
method. The position of the peaks is very well estimated.
There is however a bias in the estimation of the peaks' am-
plitude, which is a known e�ect of the TK method. The
estimated spectrum represents the amount of visible block-
ing distortion.
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Figure 3: Example of performance of the TK estimation on
a distortion signal. The normalized magnitude of the spec-
trum is plotted as a function of the frequency. Dashed line
is the actual spectrum, solid line is the estimated spectrum.

3.3. Texture Distortion

The last proposed estimator addresses the visibility of tex-
tures. The method is based on the texton theory: a texton
blob detector introduced in [4] is used. Once the detection
of blob is carried out, the distortion related to them can be
computed by simple pooling [7].

The blob detection and attributes computation is per-
formed as follows: it operates on the content of a channel,
i.e. the output of a �lter and applies the following non-
linearity:

 (x) = tanh(�x) =
1� e�2�x

1 + e�2�x
;

where x is a pixel of the Gabor �ltered image and � is a
constant set to 0:1 in our model. The non-linear function
transforms the sinusoidal oscillations in the �ltered images
into square modulations, i.e. into blobs. A local texture
energy measure is then computed as the average absolute
deviation from the mean in small overlapping windows. Let
I(x; y) be a �ltered image and e(x; y) be the attribute image,
i.e. the image made of texture energy measures, e(x; y) is
computed as:

e(x; y) =
1

M2

X
(a;b)inWxy

j (I(a; b))j ;

where Wxy is an M �M window centered on the pixel at
position (x; y). The next stage is the segmentation itself
that is performed by a pattern-clustering algorithm in the
attributes' space.

As an example of this metric's performance, several
compressed versions of \Flower Garden" have been obtained
by varying the precision of the representation of the DCT
DC coe�cient, using the values of 8, 9 and 10 bits as per-
mitted in the MP@ML mode of MPEG-2. As most infor-
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Figure 4: Temporal evolution of the texture rendition met-
ric for the sequence Flower Garden compressed with three
di�erent precision for the DC coe�cients of the DCT. Solid
line is an 8 bits precision, dashed line a 9 bits precision and
dot-dashed line a 10 bits precision.

mation of textures is contained in the AC coe�cients, one
could expect few di�erences in texture rendition quality.
This is what the MSE captures as it can be seen in Fig. 5.
The texture rendition metric yields a di�erent judgment:
according to this metric, the 8-bit stream is rated as better
than the two others, as it can be deduced from Fig. 4.

The prediction by the MSE and texture rendition met-
ric are rather di�erent. Subjective data has been collected
on 5 subjects to con�rm the metric's results. The subjects
had to perform a 3-alternatives forced choice task: they
where presented with the original sequence (always at the
same place) and the three compressed sequences placed ran-
domly, Their task was to rank order the sequences by order
of visibility of the distortion on texture areas (the owers in
the sequence). The 8-bit stream has been rated as the best
nine out of �fteen times, the 9-bit stream four times and
the 10-bit stream only twice. The subjective data thus con-
�rms the results of the texture rendition metric. The MSE
was not able to correctly discriminate between the streams.

Looking at this result, it is important to explain why
a di�erence in subjective quality indeed appears. Varying
the DC precision should not a�ect the quality of textures as
most of the information is in the AC coe�cients. However,
the coder operated in constant bitrate mode. In this case,
when the DC coe�cients are encoded with more bits, a
smaller bandwidth is devoted to the AC coe�cients that
have to be quantized more coarsely, which results in a lower
quality of texture rendition.

4. CONCLUSION

In this paper, an extension to the vision model presented
in [9] has been introduced. The new model uses a seg-
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Figure 5: Temporal evolution of the MSE for the sequence
Flower Garden compressed with three di�erent precision
for the DC coe�cients of the DCT. Solid line is an 8 bits
precision, dashed line a 9 bits precision and dot-dashed line
a 10 bits precision.

mentation tool to partition the areas of the sequence into
classes. A particular metric is then run on each class to
estimate how the particular features of each class are ren-
dered. Three di�erent metrics have been introduced, one
addresses contour rendition, the second estimates the an-
noyance of blocking e�ect and the third assesses the qua-
lity of texture rendition. The �rst two metrics are based
on principal components spectral estimators, while the last
one uses the texton theory.

Further results have been reported in [7] along with
complete implementation details of the vision model and
the metrics.

5. REFERENCES

[1] Serge Comes, Marco Mattavelli, Olivier Bruyndoncks,
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