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1 INTRODUCTION

In this paper we present a lossless coding scheme
for multispectral images. The algorithm di�ers from
classical lossless approaches of multispectral image
coding (1, 2, 3) in the fact that it is based on an in-
dependent coding of spectrally homogeneous regions.
Regions that present a common multispectral signa-
ture are segmented. Then, spectral prediction is per-
formed within these regions and �nally spatial pre-
diction removes the remaining correlation in the er-
ror images. This spatial prediction is also performed
inside the regions by a region growing prediction al-
gorithm that exploits the spatial correlation within
region boundaries.

The motivations of using a region-based approach are
twofold: i) to achieve better coding performances by
adaptively exploiting spectral redundancies and ii)
to introduce region scalability functionality to mul-
tispectral coding, where regions of interest are coded
di�erently according to user preferences.

In recent papers (4, 5), we already suggested the
use of arbitrarily shaped regions of support in order
to compress multispectral images. In a lossy frame-
work, we proposed a region-based KLT resulting in
better performances than classical block-based KLT
approaches. Lossy algorithms are not applicable in
many scienti�c �elds due to precision constraints.
For this reason we present a lossless method for the
compression of multispectral images with arbitrarily
shaped segments.

Typically, lossless multispectral image coding meth-
ods are based on linear prediction between spectral
bands in order to remove the spectral redundancy.
Pixels from a given band are used to predict the
pixel values for another band. The prediction co-
e�cients are usually calculated from the statistics
of both images by least-square criteria. Such a pre-
diction is optimal in the least-square sense for the
whole image but, due to the di�erent spectral signa-
tures present in the scene, a considerable error may
be produced in some regions. By introducing the no-
tion of region-based spectral prediction, regions with
similar spectral signature are taken as support for
prediction. Optimality for each region is obtained
and the prediction error is substantially reduced.

This paper is organized as follows. Section 2 dis-
cusses the possible multispectral segmentations. Sec-
tion 3 proposes an ordering of the spectral bands

before spectral prediction. Spectral prediction is ex-
plained in Section 4 and a clustering method that
optimizes this prediction is presented in Section 5.
Finally, the spatial decorrelation step is discussed in
Section 6 and simulation results are given in Sec-
tion 7.

2 MULTISPECTRAL SEGMENTATION

Spectrally homogeneous regions can be obtained by
multidimensional clustering in the spectral dimen-
sions. Since one of the goals of the method is to in-
troduce region functionalities according to the user
needs, the segmentation part should be left up to
the speci�c application. In this paper we report re-
sults for meteorological (6) and biological (7) appli-
cations. Obviously, the determination of the regions
has a direct inuence on the overall performance of
the algorithm. For this reason, Section 5 discusses
the use of a clustering algorithm that aims at opti-
mizing the coding performances at the expense of a
loss in region functionality.

3 BAND ORDERING

An ordering of the spectral bands is proposed before
the actual spectral prediction. The fact is that the
natural order 1 of the spectral bands does not nec-
essarily produce the best prediction performances.
For instance, in remote sensing applications, bands
located in the vapor absorption window (600-700nm)
present very poor correlation with respect to the
rest of the bands. However, bands located in the
neighboring wavelengths, even if not being consecu-
tive bands, present higher correlation. Moreover, it
may happen that a given band is the best predictor
for several bands. The simple natural ordering would
never allow multiple prediction of several bands from
a single band.

To cope with these problems an ordering based on a
weighted directed graph was proposed by Tate (2).
Graph weights were equal to the costs related to code
the images with or without a given band. The draw-
back of this method was the need of computing all
the coding costs possibilities beforehand.

We propose a band ordering based on the mutual
information between bands. Mutual information (8)

1
Natural order refers to the order given by the spectral

wavelengths.



of two random variables X and Y (I(X ;Y )) can be
interpreted as a measure of reduction of uncertainty
of a variable X due to the knowledge of Y . It can be
expressed as:

I(X ;Y ) = H(X)�H(X=Y ) = H(Y )�H(Y=X);
(1)

whereH() andH(=) are respectively the entropy and
conditional entropy. I(X ;Y ) is symmetrical, since X
reduces the uncertainty of Y as much as Y reduces
it for X . In other words, I(X ;Y ) expresses the max-
imum number of bits per sample that can be saved
by predicting X from Y and vice-versa.

For obtaining such a band ordering the matrix of
the mutual information between all the bands must
be computed. Mutual information values are graph
weights of a weighted graph where each spectral band
is in a vertex. Figure 1.a shows a 5-band example.
Since I(X ;Y ) is symmetrical, the graph does not
need to be directed and the optimal sequence can be
obtained by the maximum-weight spanning tree (9).
In other words, the sequence that saves the maxi-
mum amount of bits per sample during the prediction
process is obtained. The algorithm ends up giving
a sequence of relationships between spectral bands.
Once the maximum weighted tree is obtained, pre-
diction starts from the band in the most weighted
edge that has lower entropy. Figure 1.b shows the
�nal directed tree.
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Figure 1: a. Mutual information weighted graph, b.
Maximum-weight (directed) spanning tree.

In order to be consistent with the region-based ap-
proach, band ordering is based on region statistics
rather than whole image statistics. Thus, the same
algorithm is applied using regions instead of com-
plete bands. In this way, di�erent regions in a given
band can be predicted from di�erent bands depend-
ing on region statistics.

The computation of the mutual information matrix
may imply and expensive and complex procedure,
especially for a large number of bands. Fortunately,
the relationships between spectral bands for a given
multispectral system do not change signi�cantly. In
this case, a non-adaptive band ordering can be pre-
computed and optimized from a training dataset.

Another possibility is to use the correlation factor
instead of mutual information. It is simpler to com-
pute, but its meaning is not directly connected to
uncertainty reduction.

4 SPECTRAL PREDICTION

Spectral prediction can be done by approximating
the predicted band by a polynomial function of the
reference one. For a (x; y) pixel position:

b̂a(x; y) =

MX

i=0

ai � bb(x; y)
i; (2)

where band ba is predicted from band bb by means of
anMth order polynomial. In our case, the prediction
order (M) is �xed to one, since inter-band correlation
is generally linear. Experimental results showed that
the improvements brought by adding a 2nd order
term to the prediction were not worth the complexity
and overhead cost (10). Thus, spectral prediction is
restricted to the following equation:

b̂a(x; y) = � � bb(x; y) + �; (3)

where � and � are the prediction coe�cients ob-
tained with a least-squares criterion (11), expressed
by:

Q = E[(ba � b̂a)
2] = E[(ba � (� � bb + �))2]: (4)

By canceling the partial derivatives of Q with respect
to � and �, the prediction values are extracted. This
procedure is exactly the same as the one of �tting a
set of data points to a straight-line model (known
as linear regression). Pixels belonging to the same
region are �tted with the same linear model and a
di�erent model is computed for each region. The
spectral homogeneity of the regions is a determining
factor for producing a successful prediction.

5 CLUSTERING FOR SPECTRAL

DECORRELATION OPTIMIZATION

In Section 2 it was mentioned that the multispectral
segmentation should be related to the application
needs. However, it is reasonable to expect that each
multispectral segmentation will perform di�erently
depending on the spectral homogeneity of the re-
gions. In this section we present a clustering scheme
that aims at optimizing the performances of the cod-
ing method. Obviously, the regions de�ned in this
way will loss the functionality feature with respect
to the application.

Ideally, in order to exploit the linear prediction
model, multispectral clusters should have a linear re-
lationship within all the bands. With that constraint
in mind, one can de�ne a clustering algorithm that



determines linear (ellipsoidal) shaped clusters in the
N -dimensional spectral space.

Such a clustering scheme works in the following way.
Given an arbitrary initial segmentation, a di�erent
Karhunen-Lo�eve Transform (KLT) is computed in
the spectral dimension from the pixels of each class.
The method iteratively checks all pixels and it moves
them from one class to another if the coe�cients in
the KLT of the new class minimize the following ob-
jective function:

Ji =

NX

j=2

c2ij ; (5)

where N is the dimension of the space (number
of bands) and cij the jth coe�cient for the given
pixel computed for the ith KLT. In other words, the
clustering minimizes the variance over all the trans-
formed components except the main one, leading to
ellipsoidal clusters centered around their main com-
ponent vector. KLTs are recomputed after all pix-
els have been checked and the process starts again
until the obtained main vectors do not change at a
certain precision. The resulting segmentation pro-
vides classes whose spectral relationship is approxi-
matively linear.

6 REGION GROWING SPATIAL PRE-

DICTION

Error images obtained after spectral prediction still
have spatial correlation to be exploited. Classical 2D
prediction as the one used in the lossless JPEG stan-
dard (12) do not allow an e�cient region-based spa-
tial coding because they are based on a �xed neigh-
borhood for predicting a pixel.

The classical spatial prediction can be summarized
as follows: in order to predict a pixel value, con-
sider its neighbors in a causal manner (left and top
side depending on the scan sequence), combine them
in order to produce an estimate of the present pixel
value, round this prediction to the nearest integer
and subtract it from the actual value. The obtained
error is called prediction error. Prediction algorithms
di�er in the way the neighbors are combined. For
instance, JPEG may combine the neighbors in 7 dif-
ferent ways. Performances of each predictor depend
upon image structure.

In the present compression scheme, spatial prediction
should be performed from pixel neighbors belonging
to the same region in order to avoid an erroneous es-
timation at region boundaries. The problem is that,
due to the arbitrary shape of the regions, classical
scanning sequences (as top-right/bottom-left) do not
assure a correct prediction for all pixels in the region.

For the mentioned reasons, a 2D decorrelation based
on a region growing algorithm is proposed. Pixels
inside the region are "scanned" in the same way as

in region growing but only the neighbor pixels that
have already been scanned are used for the spatial
prediction. The process is illustrated in Figure 2,
and can be summarized in the following steps:

(i) de�ne the spatial regions r1; r2; :::; rn;

(ii) locate the �rst point belonging to r1, put its

value on the �nal bit-stream (no prediction possible

for the �rst point);

(iii) put its 4-connected neighbors that belong to r1
on a queue and label them as \stacked". Label the

current pixel as \scanned" (dark region);

(iv) extract the next pixel from the queue in a FIFO

manner, look at the 4-connected neighbors and

make a prediction from the ones that are labeled

as \scanned". Round the prediction to the nearest

integer and compute the prediction error;

(v) back to (iii) until all pixels of r1 are scanned;

(vi) repeat the procedure for the other regions.

In the illustrated example of Figure 2, pixel 12 is
about to be predicted, its 4-connected neighbors are
stored in the stack (pixels 19 and 18, 17 was already
stacked by pixel 11 and 7 is labeled as \scanned").
The prediction is produced from the scanned neigh-
bor (pixel 7).
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Figure 2: Region growing spatial prediction, see text
for details.

With the presented method, spatial prediction is al-
ways performed from neighboring pixels belonging
to the same region. The number of neighbors used
for prediction is thus variable depending on the pixel
position inside a region. Neighbor connectivity can
be extended to 8 and the same method applies.

7 RESULTS

7.1 Spectral and spatial decorrelation

We report results for two multispectral datasets, the
5-band GOES imager instrument and the 7-band
Thematic Mapper.

We compare di�erent spectral decorrelators: predic-
tion without regions, prediction using a block-based



partition of 64 � 64 pixels and region-based predic-
tion using the clustering algorithm of Section 5 with
3 classes. Performance measures are given in terms
of entropy of prediction error images. Table 1 list
the results after spectral prediction. The gain of
ordering the bands is about 7% whereas the gains
of the region-based prediction with respect to non-
region or block-based prediction are 10.1% and 8.8%
respectively.

Table 1: Entropy of residual error after spectral pre-
diction.

5-band GOES 7-band TM
original 6.44 5.41
no regions, no order 6.78 4.75
no regions 6.13 4.60
block 6.01 4.56
3 regions 5.46 4.17

The following results are related to the region grow-
ing spatial prediction. Table 2 shows the entropy of
the error after spatial prediction. Averaged gains of
the region-based approach are of 4:85% and 4:65% in
entropy with respect to non-region and block-based
approaches.

Table 2: Entropy of residual error after spatial pre-
diction.

5-band GOES 7-band TM
no regions 4.16 3.56
block 4.11 3.59
3 regions 3.86 3.47

In summary, a region-based spectral and spatial
decorrelation after band ordering is the approach
that yields prediction errors with the lowest variance
and entropy. Globally, variance has been reduced
by more than 95% and entropy by 37%. This re-
duction is due to the three di�erent processing step:
band ordering, region-based spectral prediction and
region-based spatial prediction. Simulation results
show that spectral and spatial decorrelation each ac-
count for 40-50% of the total reduction, and that
band ordering is responsible for 10-20% of the over-
all reduction.

7.2 Compression results

Compression performances of each spectral decorre-
lation method are given in this section. Prediction
error is entropy-coded and it is compared with the
standard JPEG in its lossless form.

JPEG has 7 di�erent prediction modes, each one
giving di�erent performances depending upon im-
age structure. Each multispectral band was inde-
pendently coded by the predictor that gave the best

performance for the particular band. The average
compression ratio for all the bands was computed
for comparison with respect to the other algorithms.

In Table 3 compression ratios for each one of the
coders are presented. Results include overhead due
to spectral prediction parameters and segmentation
cost when needed. In the table, the inuence of
each processing step on the �nal bit-rate can be ob-
served. The simplest non-region/non band order-

ing approach already improves JPEG by a 5 � 11%
(e�ect of spectral prediction). By introducing the
features of band ordering and region-based predic-
tion the coder outperforms JPEG by 15%. The rel-
ative performances between the non-region, block-
based and region-based spectral prediction, can also
be compared.

Table 3: Compression ratio for several coding ap-
proaches and two di�erent datasets.

5-band GOES 7-band TM
jpeg 1.96 2.0
no regions, no order 2.07 2.23
no regions 2.14 2.27
block 2.15 2.25
3 regions 2.26 2.32

Figure 3: Regions of interest coded independently
from the background for the cloud (left) and cells
(right) application.

Finally, evaluation results for the region scalability
feature are given. Two multispectral applications
de�ne di�erent regions of interest (ROIs). The �rst
application is related to cloud analysis (6) with 5
bands whereas the second one is related to cellular
image analysis (7) with 3 bands. The regions of in-
terest (clouds and cells respectively) were extracted
from the background. The multispectral images were
coded with the di�erent approaches. Tables 4 and 5
show the composition in bytes of the bit-stream for
each method, as well as the compression ratio and
the average bit/pixel/band.

For the cloud example, the region-based approach
saves 137.3KB with respect to the standard lossless
JPEG (improvement of 41:1%) whereas for the cell



Table 4: Results of a lossless coding of the cloud
ROI.

JPEG no region block region
mask - - - 1962
overhead - 98 2204 98
data 342470 235806 264028 199751
total 342470 235904 266232 201811
cr. 3.82 5.55 4.92 6.495
b/p/b 2.090 1.439 1.624 1.231

Table 5: Results of a lossless coding of the cell ROI.
JPEG no region block region

mask - - - 2128
overhead - 84 1558 82
data 146008 73698 75013 37556
total 146008 73782 76571 39766
cr. 5.51 10.91 10.5 20.24
b/p/b 1.45 0.733 0.76 0.39

example the saving is of 103.75KB (improvement of
72:7%).

8 CONCLUSIONS

In this paper we have presented a new approach
for the lossless compression of multispectral images
based on arbitrarily shaped segments. The algorithm
is able to adaptively exploit the existing spectral cor-
relation between bands. A band ordering based on
mutual information is applied prior to linear spectral
prediction based on statistics of the regions. Finally,
regions are spatially decorrelated by an adaptive 2D
prediction. In addition to that, a clustering algo-
rithm that aims at optimizing the performances of
the coder has also been presented.

Results show that spectral prediction performed
within homogeneous regions is more e�cient than
performed on the whole image or even on a block-
based partition. Finally, after the shape adap-
tive spatial prediction stage, compression ratios are
slightly better than those of classical lossless multi-
spectral approaches. Standard lossless JPEG algo-
rithm is improved by 15%. To this improvement in
performance one may add the new functionality that
the presented algorithm introduces, where only the
regions of interest can be coded according to user
preferences.
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