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ABSTRACT

This paper presents a new progressive contour coding
method based on digital polygonal approximation. By
applying digital geometry concepts such as digital
contours, segments and distances at the approximation
stage, it is possible to design an inherently progressive
encoding scheme which directly exploits the resulting
geometrical knowledge. Experimental results show a
performance similar to that of state of the art polygon
encoding methods that do not achieve progressive
transmission. Applications include indexing and
retrieval of arbitrarily shaped objects in image databases,
as well as composition and manipulation of such image
objects in the compressed domain as targeted by the
future video compression standard MPEG-4.

INTRODUCTION

Emerging multimedia applications, as targeted by the
future MPEG-4 standard (9), will offer independent
manipulation and transmission of different arbitrarily
shaped objects within a given audio-visua scene, where
natural video object planes (VOP) may be combined
with computer generated visual objects. The shape of
each image object (binary mask) will be encoded
together with the texture and motion information,
without any reference to other objects or the image
background, to facilitate scene composition. Various
shape coding methods are currently investigated in the
framework of MPEG-4 (8).

As a semantically meaningful information, shapeis aso
a key parameter for image database indexing and
retrieval. Such an application preferably requires a
progressive representation scheme, enabling rough
browsing as well as perfect final rendering, and a
semantic shape description, which is invariant to
rotation and scaling, to facilitate shape indexing,
matching and retrieval.

Among various existing shape representation schemes
(5), geometrical representations based on spline or
polygonal approximation of shape contours have been
applied in fields as various as pattern recognition,
computer graphics and image coding. Contours are
represented by their most salient points, called vertices,
which are transmitted to the decoder. Geometrical shape
manipulation can then be directly performed on those
vertices rather than on the whole shape, prior to shape
decoding and filling. While being intrinsically
geometrical and semantic, the resulting representations
achieve compression of the shape information over a

wide range of bitrates, controlled by the desired
approximation accuracy.

Existing polygon encoding methods compress the vertex
information by means of efficient relative addressing
methods, possibly combined with syntax adaptive
arithmetic coding (2). Vertices are encoded in the order
they are met along the contour. In accurate (possibly
lossless) representations, visually meaningful vertices
(at sharp angles for instance) cannot be distinguished
from noise-level vertices that accurately describe the
original contour: vertex saliency is not considered.

In shape indexing, retrieval and matching applications, a
simple yet salient representation of the shape
information is required, while accurate shape data also
needs to be stored for final image rendering. These
requirements may be fulfilled by a progressive
representation. In this paper, a new scaleable polygonal
approximation and encoding method is proposed. The
contour extraction and approximation algorithms are
described first. It is then explained how digital geometry
constraints may be used at the encoding stage to reduce
the information range and achieve efficient compression
of the vertex information in a progressive manner.
Experimental results are presented which show a good
performance of the proposed scheme when compared to
corresponding state of the art methods.

CONTOUR REPRESENTATION

The first step in any contour coding method is to
describe the shape in terms of its contours. Contour
definition in adigital image is a tough problem when an
exact reconstruction is desired for any existing shape,
possibly including thin details of one pixel width.

A classical contour representation approach maps
contour points onto digital image pixels. The shape
inner contour is considered in 8-adjacency, while the
outer contour is described in 4-adjacency. This dual
representation allows consistent contour extraction, but
faces some difficulties when thin details of width one
pixel need to be represented in a reversible manner, as
the contour crosses and overlaps itself. Existing
algorithms are quite complicated for both contour
extraction and region filling.

Another approach consists in considering contours as
they are intuitively and mathematically defined: the
shape contour is the boundary between the shape interior
and the shape exterior. The digital topology approach
recently developed by Kovalevsky (3) describes the
digital image in terms of cell-lists, consisting of a 2D



image pixel, associated 1D boundary segments (6-
adjacent crack edges, vertical and horizontal edges which
separate the shape interior and exterior pixels), which
bound the 2D pixel, and OD elements (corner points),
which bound the 1D elements. Contours in the 2D
digital space are then described as a set of connected
1D/0D elements (Fig.1). Corresponding contour
extraction and shape filling algorithms are simpler and
topologically more consistent with such an "inter-pixel"
representation. Moreover, some corresponding properties
may be directly exploited at the encoding stage, such as
the fact that contour points are unique.
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Figure 1. Inter-pixel contour representation.
DIGITAL POLYGONAL APPROXIMATION

Shape contours are first extracted. As points are more
suitable than crack edges for geometrical processing
(square grid), each contour is described in a compact
form by an ordered list of OD corner points with integral
coordinates. Since the 1D information is implicit in the
list order, this representation is complete.

Each contour may be approximated by a polygon at any
desired accuracy, possibly lossless (1). Polygonal
approximation is often obtained by a recursive
refinement algorithm. The main axis of the contour is
first extracted, providing the first two vertices. Each
polygon edge is then recursively split by introducing a
new vertex at the most distant associated contour point,
until the desired accuracy isreached (Fig.2).

Figure 2. Edge [v1lv2] is split by adding a new vertex
in P if the corresponding distance is larger
than the tolerated error.

This accuracy is often defined as the peak Euclidean
distance from the approximation to the original curve,
as it can be mathematically computed. However, this
distance measure does not take into account the intrinsic
image grid quantization, and is therefore too severe,
especially in the lossless case. Indeed, the computed
Euclidean error may be non-zero even when a lossless
reconstruction is obtained, due to final edge tracing in
the discrete image grid. By considering a digital distance
such as the chessboard distance rather than the Euclidean
distance, it is possible to save up to 40% in the total
number of vertices for lossless reconstruction (4):

dg(P1,P2)=max([Xo-X4/,]y2-Y1l) (Eq.1)
PROGRESSIVE APPROXIMATION

The use of a discrete distance also enables a progressive
contour approximation which can be further exploited at
the encoding stage. A progressive representation is
defined by a coarse approximation and its successive
refinements, possibly down to the maximal accuracy.
Each refinement is defined relative to its parent
approximation. Progressive polygonal approximation
consists in extracting first a coarse polygon, which
constitutes the upper approximation level defined by a
tolerated error dg=n. Starting from this coarse polygon,
the recursive refinement procedure is applied with a
decreased target accuracy dg=n-1. Thisyieldsthe level n-
1 polygon refinement. The procedure is repeated until
the final desired accuracy is reached, usually dg=0 for a
lossless representation. This progressive polygon
refinement results in n+1 representation levels, from the
coarsest (most salient vertices) to the most accurate one.

PROGRESSIVE ENCODING SCHEME
Overview

Progressive vertex encoding consists in transmitting
first the raw polygonal approximation obtained at the
upper level, then its successive refinements. A series of
vertex positions defining the first polygon must be sent
first. For refinement polygons, information about the
number of child vertices along the coarse polygon edges
must be transmitted, so that the decoder can correctly
produce the ordered list of vertices. The positions of
these refinement vertices can then be encoded relative to
their parent edge. The order of transmission isillustrated
in Fig.3, for an image containing P approximated
contours which are encoded with n+1-k scalability
levels.
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Figure 3. Progressive transmission of polygon
approximation.

Efficiently encoding a series of vertex coordinates is
difficult due to the lack of any underlying model. Raw
approximations consist in a reduced set of vertices
poorly correlated: it is not easy to guess where a vertex
is likely to be, even when the previous transmitted
vertices along the contour are known. EXxisting
polygonal encoding schemes use differential encoding of
the coordinates combined with sophisticated relative
addressing, such as decomposition into octants (6).



Adaptive arithmetic coding that dynamically fits the data
may also be used, at the price of an increased
complexity (2).

In order to improve the encoding performance, the
progressive polygonal approximation can be exploited at
the encoding stage. Indeed, while encoding as well as
decoding, information from already transmitted upper
levelsis available, except for the coarsest approximation
level. Corresponding upper level vertices can be directly
encoded (vertex position index in the contour image), in
order to reduce the associated decoding complexity in
applications where the salient polygon is often browsed
(shape matching and retrieval). More expensive lower
levels can then be encoded relatively to their parent
approximation, by exploiting the associated knowledge,
as explained in the following.

Geometrically Constrained
Vertex Coding

Progressive

While encoding as well as decoding polygon
refinements, geometrical knowledge may be derived
from available coarser approximations. In particular:

e A level | vertex must be within a chessboard distance
[+1 from the previously encoded level 1+1 polygon,
otherwise it would have been introduced as a
necessary vertex at level 1+1 (Fig.4). @
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Figure 4. Stripe geometrical rule (1).

Figure 5. Reduced set of possible positions for child
vertices along a level 2 parent edge,
geometrical rule (1).

Thisyields adrastic reduction in the number of possible
positions for the corresponding vertices (Fig.5). By
reducing the data range for vertex indices, fewer bits are
required to encode the corresponding values, resulting in
a higher compression. It is possible to define a set of
additional geometrical rules that reduce even more the
set of possibilities for a vertex position, based on an
exhaustive analysis of the local geometrical context:

» Vertices necessary belong to their contour bounding
box. 2

¢ For asingle child vertex, the possible positions are at
achesshoard distance 1+1 from the parent edge.  (3)
¢ A child vertex cannot overlap its parent vertices. (4)

For each level |+1 edge, these geometrical constraints
initially reduce the discrete set of possible positions S
for the associated level | child vertices. Vertex positions
are then indexed left to right, top to bottom within S
and encoded with log,(Ng) bits, where Ng is the number
of positions in S: the smallest Ng, the highest the
compression.

As soon as one vertex is transmitted, it is possible
exploit the newly available knowledge: a
complementary set of geometrical rules are applied to
dynamically update the set of possible positions. These
rules exploit the fact that vertices are chosen along the
original contour, and therefore verify the corresponding
knowledge (no overlaps, no crossings, unique contour
points,...). Moreover, lossless edges also cover the
original contour, and therefore satisfy the associated
geometrical constraints. For these geometrical rules to
be always valid, it may be necessary to constrain the
polygonal approximation algorithm. For instance, the
recursive refinement method used is suboptimal and may
sometimes result in aligned vertices, as it is a split-only
procedure without edge merging capability. Thisrequires
detection and removal of redundant vertices after
polygonal approximation has been performed, and before
geometrical coding. Details about polygonal
approximation constraining can be found in (4).

Each time a new vertex has been transmitted, new
positions are invalidated for all the following vertices
while locally impossible positions, only invalid for the
next vertex, are aso filtered out. These dynamic rules
are the following:

e There cannot be two child vertices at the same
position. (5
* A new vertex cannot overlap an existing edge. (6)
* A new vertex cannot be redundant relatively to the
previous transmitted pair of vertices, that is the
positions yielding an edge digitally aligned with the
previous one are locally invalid (Fig.6). @)
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Figure 6. Dynamically reduced set of positions for
child vertices along a level 2 parent edge, 3
previously transmitted child vertices,
geometrical rules (5,6,7).

« A new edge cannot cross existing edges, that is the
positions on the other side of any previously
transmitted edge relatively to the previous vertex are
locally invalid (Fig.7). (8)
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Figure 7. Dynamically reduced set of positions for
child vertices along a level 2 parent edge, 3
previously transmitted child vertices,
geometrical rule (8).

* A child vertex must be connected with the second
parent vertex by avaid path. Consequently, dead-ends
are not allowed: any position with less than two 4-
connected valid or locally invalid neighbours is
definitely invalid. )

e The new vertex must generate a valid edge: in the
lossless case, any position yielding an edge
overlapping at least one invalid position is locally
invalid. In the lossy case, any position yielding an
edge containing one parent vertex or the previous
transmitted child vertex islocally invalid. (10)

Rules (7) and (10) can be applied to the last child vertex
relatively to the second parent vertex (last child edge),
thus providing two additional geometrical rules. At any
refinement level, for each vertex, both the encoder and
the decoder dynamically determine the discrete set of
possible positions by successively applying the four
static and eight dynamic rules. The vertex position is
then indexed within this set of possible positions,
resulting in efficient progressive vertex encoding.

EXPERIMENTAL RESULTS

The progressive transmission achieved with the
proposed method is illustrated in Fig.8 for the first
frame of the video sequence "News'. The decoder may
choose to decode only the beginning of the bitstream,
corresponding to a coarse approximation of the shape.

The proposed method has been implemented and
compared with various existing shape coding methods
experimented in the framework of MPEG-4 (8), in intra
coding mode. Detailed results can be found in (4). In
particular, performance has been compared with existing
polygon encoding schemes, both in scaleable and non-
scaleable modes. These methods are;

« Relative addressing combined with Syntax Adaptive
Arithmetic Coding (SAAC), as proposed by Gerken
in (2).

* Octant-based decomposition combined with dynamic
range relative addressing and generalised chain coding,
as proposed by O'Connell in (6).

e Adaptation of the former method to achieve
representation of salient vertices in a hierarchical
manner, as proposed by Qian and Sezan in (7).

Corresponding results are plotted in Fig.9: total shape
coding bits versus shape mismatch error (number of
erroneous pixels in the reconstructed binary shape image
normalised by the number of original shape pixels). The
progressive polygon encoding method uses three
scalability levels.

On one hand, the proposed scheme performs twice better
than the hierarchical vertex encoding method. Indeed the
latter technique encodes the vertex saliency information
as an additional data field for each vertex without
exploiting any progressive representation scheme, thus
resulting in an important extra cost for scalability. On
the other hand, the proposed method yields results very
similar to that of the state of the art SAAC technique,
while additionally offering progressive transmission.
This state of the art technique has been much improved
in the framework of MPEG-4 by octant-based relative
addressing and generalised chain coding (6). This method
achieves classical (Freeman) chain coding in the lossless
case, resulting in a much higher compression but at the
price of the loss of geometrical information: every
contour point is a vertex. The proposed technique is
outperformed by this method; in order to improve its
performance, it is possible to introduce a chain coding
mode at lossless level. Lossless refinement edges are
encoded rather than vertices. As opposed to the non-
scaleable generalised chain coding, geometrical
information remains available for coarser levels. About
20% of the lossless bitrate can be saved. In a
preliminary experiment, first order Huffman coding has
been used. A subset of the geometrical rules can still be
applied, resulting in the local removal of some possible
moves, and consequently in the reduction of the
associated chain code words length.

Figure 8. Progressive decoding of sequence 'News, frame 0. From left to right: coarse approximation (error 2, 341
bits), intermediate approximation (error 1, 416 bits), lossless representation (1087 bits).
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Figure 9. Comparison of various polygon encoding methods for two video sequences in intra mode, 100 frames,

QCIF format.

These preliminary results demonstrate that digital
geometrical knowledge can be exploited to perform
efficient progressive polygon encoding. The
compression performance may be further improved by
means of statistical entropy coding. The proposed
method can also be adapted to apply the efficient coding
syntax of the octant-based generalised chain coding
method, in order to reach the corresponding performance,
particularly for coarse level encoding (at the price of
additional complexity). Thiswould additionally provide
an efficient non-progressive mode for the proposed
method. Future work also includes the adaptation of the
scheme to perform temporal prediction and coding so
that it is suitable for video coding applications.

CONCLUSIONS

In this paper a new progressive polygon encoding
method for binary shapesis proposed. As a semantic and
geometrical representation, vertex-based coding is
particularly suitable for visual object coding,
manipulation in compressed domain, indexing and
retrieval, as targeted by the future video compression
standard MPEG-4. While most state of the art polygon
encoding schemes are non progressive, the proposed
method achieves scaleable polygon transmission. To
this aim, various concepts of digital geometry are
exploited, such as discrete straight lines and crack edges
to define shape contours. Progressive transmission is
then achieved by encoding each polygon refinement
relatively to the previously transmitted coarse polygonal
approximation. A set of static and dynamic geometrical
rules are applied to constrain the set of possible
positions for refinement vertices, resulting in a reduced
transmission cost for the corresponding indices. While
outperforming the scaleable hierarchical polygonal
encoding scheme which has been recently investigated in
the framework of MPEG-4 Core Experiments, the

proposed progressive method yields an intra coding
performance similar to that of state of the art shape
coding techniques which are non progressive.
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