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Abstract

This paper presents the EPFL proposal to MPEG-4 video coding standardization activity [1]. The

proposed technique is based on a novel approach to audio-visual data compression entitled dynamic

coding. The newly born multimedia environment supports a plethora of applications which can not

be covered adequately by a single compression technique. Dynamic coding o�ers the opportunity to

combine several compression techniques and segmentation strategies. Given a particular application,

these two degrees of freedom can be constrained and assembled in order to produce a particular pro�le

which meets the set of speci�cations dictated by the application.

The basic principles of this approach are presented together with the data representation system.

The major characteristics of dynamic coding are reviewed, along with simulation results showing the

performance of such an approach in a very low bitrate video coding environment.

1 Introduction

Early works addressing audio-visual data representation concentrated on speci�c and well-de�ned single

applications. Among others, one can mention the recommendation ITU-T H.261 for tele-conferencing

and video-telephony [2, 3], MPEG-1 for storage on CD-ROM [4, 5], MPEG-2 for higher quality generic

coding [6], and the recommendation ITU-T H.263 for very low bitrate coding [7]. These techniques exhibit

�Emmanuel Reusens is now with Logitech Inc., 6505 Kaiser Drive, Fremont, CA 94555

1



outstanding performance when demonstrated within the framework of their respective applications. This is

partially due to considerable e�orts that have been devoted for several years to the tuning of these systems

up to their performance limits.

The scope of audio-visual data representation has changed radically with the birth of multimedia appli-

cations. Multimedia is a platform for exchanging information coming from di�erent sources of possibly

di�erent nature. On this account, it will support a very broad spectrum of applications. Due to their

inherent rigidity, current standards can not adequately address the new expectations and requirements

that arisen from such a diversity of applications.

The variety of applications makes the audio-visual data representation problem a challenging issue. The

range of applications include tele-medicine, image data retrieval, video-telephony and video messaging,

remote monitoring, television, video-on-demand, to name a few. Each application dictates a set of speci�-

cations which may greatly vary from one application to another. Diversity of applications means diversity

of collection of speci�cations. Each application is characterized by: the type of data to be processed (still

pictures, video, stereo images, etc.), the nature of visual data (natural, synthetic, text, medical, graphics,

etc.), the targeted bitrate (low, medium, high), the maximum admissible delay (ranging from real time to

o�-line), the type of communication (point to point, point to multi-point, multi-point to multi-point), and

a set of functionalities (scalability, object manipulation, progressive transmission, editing, etc.).

The major di�culty resides in the fact that, as widely acknowledged, no universal coding technique exists.

In other words, no single coding technique will be able to meet the requirements of the entire range of

applications. A compression technique that is adequate for a given application may be totally inappropriate

for another. For example, a compression technique dedicated to medical imaging applications is likely to

be inappropriate for head-and-shoulder video-telephony.

In this context, a straightforward solution would be to design a compression algorithm for each speci�c

application. However, this option is not only technically infeasible, but also promotes a short-sighted

approach which would prohibit rapid integration of emerging applications.

This work proposes a uni�ed approach to audio-visual data representation called dynamic coding. This

denomination stands for the dynamic combination of multiple compression techniques within the same

framework. Dynamic coding is not a particular compression algorithm but rather a process enabling an

encoder to choose appropriate models for describing portions of given data, themselves obtained according

to a pre-de�ned or automatic procedure [8].
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This paper is structured as follows. Section 2 discusses the general dynamic coding approach. The basic

principles, the data representation system as well as the procedure of dynamic coding are described. In

Sec. 3, a particular implementation of dynamic coding for video compression in the framework of video-

telephone/conference applications is detailed. The proposed technique de�nes a set of admissible coding

strategies with respect to the collection of speci�cations associated to this type of applications. The best

solution is obtained by means of a rate-distortion optimization procedure. An extension of the proposed

technique enabling object-oriented functionality is also described. Eventually, experimental results of both

variants are reported in Sec. 4. Section 5 summarizes the major notions introduced in this paper.

2 Dynamic Coding - General Approach

2.1 Principles

The basic principle of dynamic coding stems from the observation that no coding technique alone is able

to properly handle the complete range of applications but rather that each technique is more particularly

suited to one particular application. The dynamic coding approach consists of a combination of several

compression techniques dynamically activated or discarded according to the environment de�ned by the

application. For instance, as a solution to the diversity of nature of processed data, the proposed approach

would allow to select representation techniques suited to the image characteristics. Typically, methods

using linear transforms are known to perform well on images with textures, whereas techniques based on

fractals perform well on images containing sharp edges and contours [9]. On the other hand, the above-

mentioned methods produce poor results on text or graphic images. To illustrate this assertion, Fig. 1

gives samples of typical images that could be processed in a multimedia environment. The three images

were compressed using techniques belonging to three major classes of algorithms, namely, a DCT based

algorithm (JPEG), a fractal-based technique, and a graphics-oriented method. As assessed by Figs. 2, 3

and 4, none of the three approaches outperforms the others over the three images but rather each of them

is more adapted to one type of data.

Dynamic coding is therefore a solution to avoid the weaknesses in a given scheme while maintaining its

strong performance when appropriate. The basic idea behind dynamic coding is simple yet very powerful.

The data is divided into several regions, each of them encoded using one representation model chosen

from a multitude of compression techniques. This approach selects the compression model adaptively

3



a b c

Figure 1: Illustration of disparity of data type: a few sample images (a) Poem (b) Fantasia (c) Heart

a b c

Figure 2: JPEG compression: (a) Poem (0.50 bit/pixel) (b) Fantasia (0.25 bit/pixel) (c) Heart (0.40

bit/pixel)

according to the region characteristics. As an example, in areas with texture, a wavelet/subband technique

would be used, while in areas containing strong edges and contours morphological methods or other more

appropriate techniques will be preferred. Similarly, text areas will trigger an encoding technique which is

most appropriate for e�cient compression of such data.

2.2 Data Representation System

As discussed above, when compressing a given data by the dynamic coding principle, the data is divided

into distinct regions each represented by an appropriate model for an e�ective compression. Therefore,

it becomes clear that dynamic coding is based on two main degrees of freedom, namely, (1) the data

segmentation, and (2) the representation model associated to every resulting segment. Figure 5 symbolically

illustrates these two degrees of freedom in a graph. The vertical axis corresponds to the data segmentation.

Any segmentation algorithm can be applied, ranging from �xed partition into regular blocks up to arbitrary
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Figure 3: Fractal-based compression : (a) Poem (0.50 bit/pixel) (b) Fantasia (0.25 bit/pixel) (c) Heart

(0.40 bit/pixel)

a b c

Figure 4: Graphic oriented compression (a) Poem (0.50 bit/pixel) (b) Fantasia (0.25 bit/pixel) (c) Heart

(0.40 bit/pixel)

shape segmentation through quadtree or polygon based division. The horizontal axis corresponds to the

set of coding tools used to describe each region resulting from a given segmentation. These two axes

span a plane which re
ects all possible coding strategies available within the dynamic coding framework.

Each point in the plane represents a very particular coding strategy in which a given scene is segmented

into regions of given shape and size, each represented by a given coding technique. Dynamic coding is

therefore not a particular compression scheme but rather a process ensuring segmentation and coding tools

to interact.

In the context of dynamic coding, a scene description is made up of three components:

� speci�cation of the scene segmentation,

� speci�cation of the representation model associated to each region, (this consists of a 
ag that informs
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the decoder which coding tools have been selected for a given region), and

� the coding parameters associated to each region with respect to the selected representation model.

Segmentation

Fixed partition

Adaptive quadtree

Adaptive polygonal

MPEG-1

Coding strategy
Arbitrary shape

Entire image

JPEG

Representation models

Figure 5: Symbolic description of the data representation system related to the dynamic coding approach

The description of these three components must respect normative requirements in order to specify how

a compliant decoder must interpret the compressed bitstream and how the elementary data stream must

be processed. For instance, several descriptions of a scene segmentation are possible (chain code, skeleton,

tree, polynomial approximation,etc.) and di�erent options may be chosen according to the application.

However the option must be speci�ed and each of them must deliver data stream interpretable by the

decoder. Similarly, the description produced within a given representation model must follow a syntax

known by the decoder. Given the 
ag specifying the representation model associated to a given region, the

decoder uses the appropriate protocol to interpret the data corresponding to the description of the region.

The two degrees of freedom allow one a simple and compact description of any speci�c pro�le. Compactness

is an important property, since the pro�le speci�cation is, in a certain sense, sent to the decoder. Even

if at the decoder side, no matter how the segmentation is performed or how the coding model associated

to each region are selected, the bitstream must contain information on the data segmentation and the

representation of each resulting regions along with their respective parameters. However the encoder must

seek out the best segmentation as well as the most appropriate representation model for every region in

the segmented data, taking into account all the constraints imposed by the application. Although dynamic

coding relies on two degrees of freedom, most conventional techniques can be seen as particular pro�les of
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a dynamic coding. As an example, a subband/wavelet based technique operating on an entire image can

be seen as a particular case of dynamic coding in which the entire image is seen as one single region which

is represented by subband/wavelet basis functions corresponding to the �lter bank used. Another example

would be the JPEG algorithm which can be seen as a particular pro�le of dynamic coding in which the

image is segmented into square regions corresponding to macroblocks and each is encoded using a DCT

representation model. The MPEG algorithms can be seen as yet another example which uses a similar

segmentation into square regions in which every region is represented by either a DCT representation

model or motion compensation models corresponding to coding modes existing in the MPEG approach

(see Fig. 5). Thanks to this property, the dynamic coding approach can be made backward compatible

with existing standards. On this account the dynamic coding approach can be fully incorporated within

the framework of the current veri�cation model (VM) of MPEG-4 [10].

2.3 Dynamic Coding Procedure

As illustrated in Fig. 6, dynamic coding operates along a two-step procedure. The two degrees of freedom

(segmentation and representation models) span a space of coding strategies among which many infringe

upon the requirements imposed by the application. The �rst issue is therefore to delimit a set of admissible

solutions where the term admissible is de�ned with respect to the application in question. This task is

performed by scanning the two degrees of freedom and discarding inappropriate representation models and

segmentation strategies. This operation is signal-independent and de�nes a pro�le obeying the application

speci�cations by �ltering out inadequate coding strategies. For instance, if a particular application requires

real-time encoding, representation models and segmentation procedures judged too demanding in terms

of computational burden or resulting delays, may be discarded. Similarly, if the application requires

a progressive transmission, only representation models allowing such a feature will be activated. The

selection procedure may either be performed once in a supervised manner, and the pro�le pre-de�ned for

each application, or it can be realized automatically according to a list of requirements attached to the

application.

This �rst step of a priori selection de�nes a set of solutions in which the system is allowed to search for

an appropriate coding scenario. Each coding strategy belonging to the set of admissible solutions is a very

particular way of representing a set of data and results in di�erent characteristics such as rate, distortion,

error signal statistics, number of segmented regions, and so on. The second step is therefore to point out
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Figure 6: Dynamic coding procedure. The �rst step de�nes the set of admissible solutions with respect to

the application, whereas the second step identi�es the best admissible strategy.

the coding scenario which is optimal with respect to a prede�ned criterion. This requires the de�nition

of a criterion together with a procedure for determining the optimal solution. However, this procedure is

transparent to the decoder.

3 Dynamic Coding of Video - An Illustrative Example

Dynamic coding is a global approach to visual data representation and many variations on the same theme

are possible. If we refer to the dynamic coding data representation system, any particular compression

algorithm which segments the data and describes each data portion with a particular representation model

can be viewed as a particular pro�le of dynamic coding. Speci�c pro�les di�erentiate themselves by their

particular set of admissible solutions and the criterion with respect to which the optimal admissible solution

is de�ned. This section aims at providing an illustrative example of the dynamic coding approach, a video

compression system for video-telephone/conference applications, based on the principles presented in the

previous section.

As summarized in Fig. 6, the �rst operation consists of delimiting the set of admissible solutions with

respect to the requirements imposed by video-telephone/conference applications. Section. 3.1 describes

the set of admissible coding strategies and justi�es the choices. Once the set of solutions is given, the best

coding strategy must be identi�ed. The procedure for determining the optimal solution is described in

section 3.2. In this example, the optimal admissible coding strategy is de�ned as the one which minimizes

the distortion subject to a maximum rate constraint. The procedure jointly optimizes the frame segmen-

8



tation and the representation model associated to each segment [11]. As further explained in section 3.3,

the optimization procedure leads to a multi-criterion frame segmentation which di�erentiates the system

from classical object-oriented compression algorithms by the opportunity to de�ne adaptively the notion

of object. Emerging multimedia applications demands for object-oriented functionalities, enabling object

manipulation at the bitstream level. Section 3.4 shows that the system is also capable, with minor modi�-

cations, of generating scalable bitstream made up of as many independent bitstream portions as there are

speci�ed objects.

3.1 Set of Admissible Solutions

The rest of the paper is devoted to illustrate the concept of dynamic coding in the framework of video-

conference/telephone applications. As depicted in Fig. 6, the �rst step is to de�ne the set of admissible

solutions with respect to this type of applications. The full-duplex nature of communications involved

in video-telephone/conference calls for low encoding/decoding delay. Moreover, very high compression is

required owing to narrow channel bandwidth supporting these applications. Accordingly, the set of coding

strategies is con�ned to solutions which ful�ll two major requirements, namely, low coding delay and very

high compression.

In order to achieve low coding delay, the segmentation is restricted to two-dimensional regions. This

means that the video stream is viewed as a sequence of images rather than as a three-dimensional data

set. Consequently, processing and compression of the video signal is performed on a frame by frame basis.

The segmentation is further limited to quadtree partitioning. The motivation is twofold. First, quadtree

segmentation constitutes a good trade-o� between low complexity and representation cost. Second, the

hierarchical structure of the quadtree segmentation greatly alleviates the succeeding problem of the optimal

solution selection, as will be seen in the next section.

In the perspective of maintaining a reasonable encoding/decoding delay, representation models exploiting

forward temporal redundancy are a priori discarded. Only spatial (intra) and backward temporal re-

dundancy removal are permitted. Five representation models in agreement with these requirements and

acknowledged as e�ective for high compression have been selected.

These representation models are brie
y described hereafter as we assume that most readers are familiar

with these techniques:

� Motion compensation model: consists in performing a half pixel accuracy backward motion estimation
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and compensation between the current region and the previously decoded frame. A translational

motion model is assumed. Error resulting from the motion compensation is computed and encoded

using the discrete cosine transform (DCT).

� Background model: is a degenerate case of the previous model where a region is compensated by the

region at the same location in the previously decoded frame. No prediction error coding is performed.

� Text and graphics model: consists in representing a region as binary data. The original region is

mapped into a segment displaying only two di�erent grey-level values. Original grey-level values

are discriminated into two clusters and set to the value of their corresponding centroids [12]. The

resulting two-level region is represented by the two quantized centroid values and a binary mask

locating the two clusters. This model is specially appropriate for video-conference where text or

graphics may form a signi�cant portion of the scene.

� DCT model: describes a region by its discrete cosine transform. The DCT coe�cients are line-

arly quantized according to one of the available quantization tables. Only the non-zero quantized

coe�cients are transmitted while the location of zero coe�cients is speci�ed by run-length coding

performed along a zig-zag scanning pattern.

� Fractal model: Each region is expressed as a contractive transformation of another part of the picture.

Readers interested in a more detailed description of this model are referred to [13].

Within the fractal model, the graphic-oriented technique and the background model, the description of

a given region is unique, since the quantization of the parameters is �xed. By contrast, the DCT and

the motion compensation models may result in di�erent possible region approximations since di�erent

quantization tables can be utilized. Throughout the rest of the paper, we will consider that there are

as many representation models associated to the DCT and motion compensation modes as there are

quantization tables. This terminology is slightly abusive but will greatly simplify the understanding of the

approach.

These representation models constitute the upper limit of possible models associated to each region. Ho-

wever some of these models can be a priori discarded either on a frame basis or even at a region level.

For instance, temporal modes must be discarded when compressing a reference frame (for which temporal

prediction is prohibited). Similarly, some models may not be appropriate for small regions and can be a

priori discarded at a region level.
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The set of admissible solutions includes all possible quadtree frame segmentations together with one repre-

sentation model associated to each resulting region. The cardinality of the set is very large and grows as

O(K4d) as a function of the maximal allowed tree depth d. However, it is possible to build, at reasonable

computational cost, the spine of the set of solutions thanks to its hierarchical structure. The spine is

constructed as follows. Starting from the entire picture, the image is recursively split into four equally-

sized subblocks. At each recursion step, the descriptions of the corresponding blocks are computed with

respect to each of the representation models activated at this level of the tree. The recursion stops when

the tree attains the maximally allowed tree depth1. This operation generates a complete tree where to

each node is associated the parameters of the description within the �ve considered representation models.

This spine allows a fast evaluation of the characteristics of any admissible solution. Indeed, the set of

admissible solutions corresponds to all possible subtrees together with one representation model associated

to each terminal node. Given the speci�cation of a particular subtree, along with the speci�cation of

the representation model at each terminal node, we can rapidly evaluate the solution characteristics from

the pre-computed spine. This step simply requires the combination of the speci�ed representation models

associated to each region of the solution.

Since the objective is to determine the optimal solution in a rate-distortion sense, these two values must be

computed for each node with respect to each representation model in use. As required by the optimization

procedure (see next section), the distortion must be evaluated not only over the entire block but also for

its quadrants. The distortion can be readily evaluated by measuring the distance between the original data

portion and its approximation with respect to a given model. The ideal distortion measure is obviously

the subjective visual quality but no objective function has been acknowledged as encompassing the human

visual system characteristics. The distortion measure used in this work is the popular square-error criterion

given by:

D(I; �I) =
NX

i=0

MX

j=0

(I(i; j)� �I(i; j))2; (1)

where I is the original data, �I its decoded version and N , M are the vertical and horizontal size of the

data segment.

The rate is computed as the sum of the cost of each parameter necessary for the description of the block.

1The maximal tree depth depends on parameters such as maximal allowed complexity, picture resolution and targeted

bitrate.
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In many cases, the cost attached to each parameter can be readily evaluated except if an adaptive entropy

coder is employed. In this case, the current probability table associated to each parameter must be known

along with the cost of each parameter estimated on the basis of its probability. A fair estimation of the

resulting cost for a given parameter is given by its self-information:

Rp(a) = �log(Pp(a))=log(2); (2)

where Rp(a) is the estimated rate of parameter p whenever it takes the value a and Pp(a) the corresponding

probability.

The computational complexity of the entire system is mostly concentrated in the construction of the spine

of the set of solutions. For each block in the tree, the algorithm must compute its description within the

di�erent available representation models. As the number of nodes at level k in the tree is 4k, the total

computational complexity associated to the construction of a tree of maximal depth d is given by:

C(d) =
dX

k=0

4kc(k); (3)

where c(k) is the complexity associated to one node at level k. and directly related to the computa-

tional complexity of the description of a block within each representation model as the sum of individual

complexities:

c(k) =

n(k)X

i=1

ci(k) (4)

where n(k) is the number of available representation models at level k and ci(k) is the computational

complexity of the description of a block at level k within representation model i. The complexity of

the construction of the set of solutions is therefore adjustable by controlling the maximal tree depth d,

by discarding some representation models at certain level of the tree to reduce c(k), or by decreasing the

individual complexities ci(�) associated to each representation model. The possibility to discard some repre-

sentation models from certain regions based on the statistics of the block is currently under investigation.

For instance, the fractal model could be a priori discarded from regions identi�ed as �ne textures. This pre-

processing step would result in a dramatic reduction of the computational complexity while maintaining

the performance of the system.
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3.2 Optimal Admissible Solution

The set of admissible solutions includes all the di�erent strategies that can be used to represent the

current frame. The remaining task now is to determine the optimal solution with respect to a prede�ned

criterion. It requires to de�ne a criterion with respect to which optimality is de�ned and a procedure for

the determination of the optimal solution.

In the context of source coding, the traditional framework is given by Shannon's rate-distortion theory [14]

where the overall source distortion is minimized subject to a channel rate constraint. Among admissible

strategies, the goal is to determine the coding scenario minimizing the distortion provided that a given

bitrate budget, Rbudget, is not exceeded. Mathematically, the optimization criterion may be formulated as

follows:

min
B2S

D(B) subject to R(B) � Rbudget; (5)

where S is the set of admissible solutions, D(B) is the distortion, and R(B) the bitrate resulting from

encoding according to the scenario B 2 S.

The optimal bit allocation problem has been extensively addressed in source compression literature [15, 16,

17, 18]. Early approaches used continuous optimization achieved on the basis of diverse models both for the

input signal and the quantizers characteristics [15, 16, 18]. Recently, the problem of discrete quantizer set

and arbitrary input have been addressed in the context of vector quantization [17] as well as wavelet packet

decomposition [19]. In these works, the rate-distortion optimization relies on a fundamental theorem of

Lagrange multipliers developed in the framework of optimal resources allocation theory [20].

The rate-distortion optimization technique consists of converting the constrained minimization of (5) into

an equivalent unconstrained problem by merging rate and distortion through the Lagrangian multiplier �.

The unconstrained problem comes down to selecting the coding strategy which gives the minimum of the

Lagrangian cost function expressed as :

J(�) = D(B) + �R(B): (6)

For a given multiplier �, the minimization of the cost function J(�) results in a solution B�(�), an associated

rate R�(�), and a distortion D�(�). It has been demonstrated [20, 17] that, as we sweep � over positive

values, the pairs (R�(�),D�(�)) trace out the optimal rate-distortion curve. In particular, if for a given �c,
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R�(�) happens to coincide with the targeted rate Rbudget, then B�(�) is the solution of the constrained

problem (5). Readers further interested in this theorem and its implications are referred to [20, 17].

Mathematically, the optimization follows a two-step unconstrained problem:

� Find �c such that R(B�) � Rbudget with B� minimizing D(B) + �cR(B) (7)

� Find B� minimizing J(�c) = D(B) + �cR(B) (8)

The optimization problem is solved by iterative minimization of J(�) for � values converging to the ap-

propriate �c. It therefore requires the minimization of J(�) for arbitrary � arguments. We �rst describe

in details this minimization procedure. Based on this procedure, the technique to determine �c and the

corresponding rate-distortion optimal solution will be presented.

� Minimization of J(�): Our objective is to determine the generalized quadtree frame partition together

with the coding models associated to each resulting cell minimizing J(�). The denomination generalized

stands for a partition in which each block can be represented by one of 16 possible geometric con�gurations,

as depicted in Fig. 7. As can be seen, generalized quadtree segmentation di�ers from mere quadtree

partition in which only two possible con�gurations coexist (one parent/no child, no parent/four children).

1 parent
no child

1 parent 1 parent
1 child 2 children

(1 configuration) (6 configurations)(4 configurations)

no parent
4 children

(1 configuration)(4 configurations)

1 parent
3 children

Figure 7: Possible con�gurations for representing a block. Dark areas denote block portions coded with

the child model whereas white ones represent block portions coded with the parent model.

The minimization procedure is reminiscent to [19] where a similar set structure was involved though in a

di�erent context. The problem is greatly simpli�ed thanks to the additivity property of J over distinct

portions of the signal. Consider an image support partition fPi; 0 � i < Ng of non-overlapping blocks Pi.

Then, since J(�) is always positive:

min(J(�)) = min(D + �R) =
N�1X

i=0

min(Di + �Ri) =
N�1X

i=0

min Ji(�); (9)
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where Di and Ri are respectively the distortion and the rate associated to block Pi and Ji(�) the resulting

cost function. The signi�cation of Eq. 9 is that, given a partition fPi; 0 � i < Ng, the minimization of

the cost function J(�) over the entire frame can therefore be performed independently over each segment

Pi. Since this property is valid for any picture partition, optimal coding models can be determined by

minimizing Ji(�) independently on each cell Pi.

However, the frame partition is itself a variable in the optimization procedure. The hierarchical structure

of the set of solutions enables us to determine the optimal frame segmentation together with the optimal

representation model associated to each segment. Each node in the tree symbolizes a block of a certain size

and location. Subtrees attached to a given node correspond to di�erent ways of representing the associated

block. At the limit, the root node corresponds the entire image and all subtrees attached to the root

correspond to the di�erent ways of representing the whole picture.

Let us consider a particular block or node in the tree and assume the knowledge of the best option

for representing its children. The block can be represented by the parent model as a whole or as the

conjunction of the best options for each of the four children , or as any combination of parent model and

children models as depicted in Fig. 7. For each of the sixteen con�gurations, we must determine the optimal

parent coding model. The parent coding model optimal for the entire block may not be optimal over a

sub-portion of the block. In other words, for grey-colored portions of block in Fig. 7, the optimal option

is known but we still have to determine the best parent representation model for white-colored portion of

the block. Therefore, given n active parent representation models, 15� n+ 1 options must be tested. For

each option the Lagrangian function must be evaluated and compared to the current best option. The

distortion is computed as the sum of the distortions for each independent quadrant when approximated by

the representation model speci�ed by the option. The rate is evaluated as the sum of the rates associated

with each representation model activated, either as parent model or as child model. Moreover, in order to

take into account the cost associated with the segmentation, the amount of bits necessary to describe the

geometrical con�guration (1 out of 16) must be included in the rate estimation of a given option.

Thanks to the hierarchical structure of the tree, the optimal coding strategy associated with a given frame

can rapidly be determined by means of dynamic programming [21]. Optimization is performed recursively

starting from bottom and by climbing up the tree to its root. The recursion starts with the parents of

the leaves. The characteristics of the best coding option are assigned to the node as the best way to

represent the corresponding region. The bottom-up approach allows, at each recursion step, to compare
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only 15� n+ 1 options. Rate-distortion characteristics of a con�guration can be rapidly computed owing

to the additive property of these quantities. The operation stops when the root of the tree is reached. At

this point, the partition, together with its associated coding models which minimize J(�), are identi�ed

for a given quality factor �. The distortion and rate corresponding to this solution are also determined.

� Determination of optimal strategy

As expressed by Eq. (8), the determination of the optimal strategy �rst requires to �nd the Lagrangian

factor, �c, such that the solution which minimizes J(�c) leads to a rate corresponding to the desired rate

budget. The factor �c can rapidly be identi�ed, thanks to the monotonic nature of optimal solution rate

R(B�) versus �. Indeed, the Lagrangian multiplier � plays the role of a quality factor and acts as a trade-

o� between distortion for rate. When � increases the distortion of optimal solution increases whereas its

rate decreases. The appropriate � leading to R(B�) = Rbudget can therefore be retrieved by intelligently

searching over � values by fast convex search such as the bisection technique [22]. The algorithm therefore

consists of iteratively determining the solution that minimizes J(�) for � values converging to �c. Rates

associated with these intermediate solutions help to determine subsequent estimates for �. The procedure

stops when � = �c is reached such that R(B�
�c
) ' Rbudget.

The remaining task, as expressed by Eq. (8), is to minimize J(�c) for the appropriate �c. This task is

trivial since it consists of minimizing J(�) for the particular argument � = �c. This last procedure leads

to the frame partition together with optimal associated representation models, which give the minimum

distortion without exceeding the rate budget Rbudget.

Although in the given example, the distortion is minimized given a maximum rate budget, the algorithm

is capable to �nd out the strategy that gives the minimum rate for a desired quality. We simply swap the

rate and distortion functions in Eq. (5), which becomes,

min
B2S

R(B) subject to D(B) � Dtarget; (10)

where Dtarget is the limit of tolerable distortion. Equation 10 signi�es that the rate is minimized subject

to a maximal overall distortion. The dual Lagrangian cost function becomes �J(�) = R+�D. Since all the

properties of �J(�) remain valid, the optimization procedure can be conducted without any modi�cation

by simply inverting the rate and distortion functions. The system is therefore capable of switching from a

rate control to a distortion control mode.

The computational complexity of the entire optimization procedure is quite a�ordable. It must be un-
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derstood that, given the spine of the set of solutions, the optimization procedure only manipulates pre-

computed data and performs few additions and comparison tests. The determination of the appropriate

Lagrangian multiplier � requires in average ten iterations. Each iteration minimizes the Lagrangian cost

function over the entire tree. A tree of depth d contains (4d � 1) nodes and for each node 15 � n + 1

con�gurations must be tested (where n is the average number of activated representation models). Com-

putation of the Lagrangian function of one con�guration requires only �ve additions and one multiplication

since rate and distortion data are directly accessible. For typical values of tree depth d, and number of

representation models n, this leads to 4� 106 multiplications and 2� 107 additions.

3.3 Interpretation as a Multi-Criterion Segmentation

Conventional object-oriented coding methods rely on the premise that the scene to be coded can be

described as an union of objects. The sense of object may vary from one particular approach to another but

it is always de�ned a priori and its de�nition conditions the entire compression procedure. For compressing

visual data, classical object-based coding methods proceed in two distinct steps :

1. Scene analysis and object extraction. Typically, the data is segmented into uniform regions with

respect to a criterion chosen as representative of the a priori de�nition of object.

2. Independent compression of every object. The compression technique remains the same for all the

regions and is chosen to be particularly e�ective for the class of objects in question. This two step

process is depicted in Fig. 8.

Object definition
criterion

(segmentation)

Object creation
Object coding

Scene data Bitstream

Figure 8: Schematic description of conventional object oriented coding methods

As an example, second-generation coding algorithms de�ne an object to be any set of adjacent pixels

having similar grey-level intensities [23]. Accordingly, the image is segmented into nearly uniform grey-

level regions, and each region is ultimately approximated and encoded by polynomial �tting or some
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other technique appropriate for describing nearly uniform regions. As an additional example, some object-

based image sequence compression techniques de�ne an object as a set of adjacent pixels having similar

motion [24]. In this case, the algorithm segments the frames into regions having coherent motion (based

on the information provided by the motion vector �eld), and each region is approximated by motion

compensation on the basis of one unique motion vector.

In contrast to classical object-oriented approach, dynamic coding o�ers the possibility of considering,

jointly, the data segmentation and the region description. It is possible to design coding algorithms which

inherently and adaptively de�ne, locally, the notion of object instead of using an a priori object de�nition.

This is equivalent to a multi-criteria segmentation where the scene is now segmented into objects possibly

of di�erent families as opposed to objects of the same family. The illustrative coding technique presented

in the previous section is an example of such a coding algorithm. This algorithm de�nes the criterion by

which the objects are created from a library of criteria put in competition, as shown in Fig. 9.

(segmentation)

Object creation
Object coding

Optimization

Scene data Bitstream

Object definition
criteria

Figure 9: Schematic description of the proposed system

Since the de�nition of object is adaptive, the resulting regions created by this approach may not correspond

to actual objects in the scene, from a computer vision point of view. This is illustrated in Fig. 10,

where the di�erent objects created by the algorithm are depicted together with their representation model

for a particular frame. For instance, regions overlapping both a uniform background and part of the

foreground are more e�ciently represented as a whole by motion compensation rather than by segmenting

the region further into background and foreground. Typically, a two-step object-based approach would

have segmented the region into background and foreground and would have coded separately the two

resulting segments. However, if object interactivity features are desired, it is possible to bring them into

this scheme by special masking operations as demonstrated in the following section.

18



c d

a b

Figure 10: Example of frame segmentation (frame #86 Claire encoded at 8 kbit/sec.). Portion of the

original image appears where a given mode is selected. (a) Background mode (b) Motion compensation

mode (c) Fractal mode (d) Text mode

3.4 Object-Oriented Functionalities

Object scalability is the major functionality addressed by MPEG-4, and constitutes its speci�city with

regard to existing standards such as H.263. Designed for multimedia applications, MPEG-4 is expected to

provide an object-oriented structured bitstream, thus allowing object manipulation, editing, browsing and

modi�cation prior to the decoding process as well as enabling content-based coding and transmission.

Despite the fact that the proposed algorithm results in a scene segmentation which generally di�ers from

a semantic scene description, content-based interactivity functionalities can be easily incorporated. In this

section, we demonstrate that the functionality of object-oriented bitstream scalability can be incorporated

by minor extensions to the system. An object-based scalable bitstream is composed of as many independent

portions as there are objects speci�ed in the scene. The scene is therefore described object by object. This

functionality enables us for example, to transmit and decode only speci�c objects in the scene, in order to

obtain an absolute control over the amount of bits allocated to each object or to perform unequal error

protection on the di�erent streams depending on their relevance. The independent coding of a speci�c

object exploits the generalized quadtree structure by exploring the solutions only in data segments that

overlap the region of interest (ROI). In the recursive procedure of constructing of the set of solutions, two
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di�erent options are now possible:

� If the block does not overlap the object, the recursion along this branch is stopped and the block is

described using a speci�c representation model, namely, the grey mode. This representation model

consists in replacing a block with uniform grey color segment. The description of a block using this

model requires only one parameter (technique identi�er). The resulting distortions associated with

the block are set to 0.

� If a block overlaps the object, either partially or fully, only the pixels located inside the object are

considered when computing the description of the block within the di�erent representation models.

Pixels outside the region are irrelevant and error in their approximation is not taken into account.

Only distortions over pixels belonging to the object are computed.

The representation models must therefore be extended in order to allow the approximation of arbitrarily

shaped regions and also in order to guarantee that portions of the scene not belonging to the object are

not referenced, since they may not be available while decoding.

Extensions needed for object-based scalability a�ect only the procedure for constructing the set of admis-

sible solutions. The only di�erence in the optimal solution selection phase is that the optimization now

starts with an unbalanced pruned tree. Note that the distortion over the object is perfectly controllable

since approximation errors over pixels located outside the object were set to 0. It is possible for instance to

set a low limit of distortion to the most subjectively relevant object, and allocate the remaining available

rate to the rest of the scene.

This approach allows us to obtain a perfectly object-scalable bitstream and enables the transmission and

the decoding of the portion of the bitstream associated to the object of interest. The bitstream describing

the scene is then made up of as many independent bitstream layers as there are speci�ed objects. Fig. 11

illustrates the independent compression of two objects of the Akiyo scene, namely, the foreground and

the background. Given a budget of 15 kbit to encode the entire frame in intra-frame mode, 8 kbit were

allocated to the foreground object and 7 kbit to the background. Fig. 11 (a) gives the decoded picture when

only the portion of the scalable bitstream corresponding to the foreground is decoded whereas Fig. 11 (b)

gives the segmentation resulting from the encoding of the foreground object. As can be seen from Fig. 11

(a), the grey-level values of pixels lying outside the foreground object are arbitrary, since they are judged

as irrelevant during the encoding process. This is con�rmed by Fig. 11 (b) where we see that the recursive
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segmentation is stopped as soon as a block does not overlap at least partially the foreground area. Fig. 11

(c) and (d) provides the same results for the background object. The same comments apply.

c d

a b

Figure 11: Object oriented coding (a) Foreground decoded picture (8 kbit) (b) Foreground resulting se-

gmentation (c) Background decoded picture (7 kbit) (d) Background resulting segmentation

Fig. 11 shows that the shape and the location of the di�erent objects comprising the scene cannot be

retrieved from the bitstream. If this information is needed then the mask information locating the region

of interest, must be transmitted to the decoder. The compression of the mask information is performed

by a variant of the classical chain coding in which the redundancy between successive chain symbols is

reduced by high order adaptive entropy coding [25]. If the mask information is made available, the blocks

lying outside of the object of interest need not to be represented by the grey mode as the decoder can

retrieve this information from the shape speci�cation.
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4 Simulation Results

4.1 Full Frame Compression Mode

Experiments have been carried out on two color video sequences, Hall Monitor and News. The input format

is QCIF (144� 176), 4:2:0, at 30 Hz. Input sequences have been temporally down-sampled to 5 Hz. Some

frames extracted from the original sequences are shown in Fig 12 and 13. Simulations were performed on

10 seconds of the video signals.

a b c

Figure 12: Original frames of Hall monitor. (a) Frame #1 (b) Frame #300 (c) Zoom on face area frame

#300

a b c

Figure 13: Original frames of News. (a) Frame #1 (b) Frame #300 (c) Zoom on face area frame #300

The system have been con�gured so as to reach a minimum distortion over each decoded frame in order to

lead to a constant quality in the decoded sequences. In other terms, for each frame the rate is minimized

subject to a given constant distortion. However, for each test sequence, the distortion values have been

chosen in order to reach a speci�c overall bitrate. These distortion values leading to a speci�c bitrate have

been determined experimentally. Bitrates of 10 and 48 kbit/sec. were targeted for the Hall Monitor scene

whereas rates of 24 and 48 kbit/sec. were aimed at for the News sequence.
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Experimental results are reported in Fig. 14 and 15. These plots describe the distribution of the bitstream

around frames together with the peak signal-to-noise ratio (PSNR) behavior along the time axis. As

expected, there are signi�cant variations in the bitrate according to the local temporal and spatial scene

complexity. Since experiments are performed at constant distortion, the PSNR behavior remains 
at.
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Figure 14: Rate distribution and distortion behavior for Hall monitor. (Left) Rate distribution at 10 and

48 kbit/sec. (Right) Distortion behavior at 10 and 48 kbit/sec.

Figure 15: Rate distribution and distortion behavior for News. (Left) Rate distribution at 24 and 48

kbit/sec. (Right) Distortion behavior at 24 and 48 kbit/sec.

Fig. 16 to 19 gives some frames excerpted from the three reconstructed sequences for their two targeted

bitrates. The most noticeable degradation is the loss of details in intricate regions (see zoom on face

areas). However, edges remain sharp and motion rendition is natural. As at high compression, blocking

artifacts may become visible, a post-processing algorithm in charge of reducing this type of degradation

have been applied [26]. Interested readers are refered to [27] for more experimental results and performance

comparisons with current state-of-the-art video compression systems.
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a b c

Figure 16: Reconstructed frames of Hall monitor at 10 kbit/sec. (a) Frame #1 (b) Frame #300 (c) Zoom

on face area frame #300

a b c

Figure 17: Reconstructed frames of Hall monitor at 48 kbit/sec. (a) Frame #1 (b) Frame #300 (c) Zoom

on face area frame #300

4.2 Object-Oriented Scalability

To demonstrate the capability of object-oriented scalability, experiments have been performed on Hall

monitor sequence. The same input format as the one of the previous collection of simulations has been

used. Given a sequence of masks segmenting each frame into two objects, the system produces two

independent bitstreams, each corresponding to a speci�c object of the scene. In these simulations, only

two objects are considered namely the foreground (a man) and the background. The experiments reported

here, again target a constant distortion on the foreground and a constant distortion on the background.

These two distortions values were experimentally determined so as to lead to an overall bitrate of 48

kbit/sec. (namely 36.3 dB for the foreground and 36.8 dB for the background).

The results of this experiment are reported in Fig. 20. Fig. 20 (a) presents the bit distribution along the

di�erent frames and the di�erent bitstream components. As can be seen, the object-oriented bitstream

is made up of three layers: (1) the mask information, (2) the background compressed data and (3) the
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a b c

Figure 18: Reconstructed frames of News at 24 kbit/sec. (a) Frame #1 (b) Frame #300 (c) Zoom on face

area frame #300

a b c

Figure 19: Reconstructed frames of News at 48 kbit/sec. (a) Frame #1 (b) Frame #300 (c) Zoom on face

area frame #300

foreground compressed data. Note that the statistics related to the foreground object are only given

starting from the frame #75 since this object �rst appears in the scene in this frame. Fig. 20 (b) depicts

the distortion (PSNR) behavior of reconstructed frames along the time axis. The distortion values are

computed over each object. The PSNR values resulting from the full-frame compression are also reported

for the purpose of comparison. The variations in distortion originates from the discrete nature of the set

of solutions. The small surface of the object further emphasizes this behavior.

As can be observed, the object-oriented con�guration exhibits inferior rate-distortion performance when

compared to the full frame compression con�guration. However, since the object-oriented scheme enables a

perfect control of quality and rate associated to each object, the increase of distortion have been distributed

unequally among the two objects. The �delity of the foreground reproduction remains similar whereas the

background quality decreases by about 2 dB. Fig. 21 shows the decoded foreground and background objects

of the frame #300 retrieved independently from the scalable bitstream. Fig. 22 gives some frames excerpted
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Figure 20: Rate distribution and distortion behavior for Hall monitor encoded at 48 kbit/sec. in the

object-oriented con�guration. (Left) Distribution of rate along the di�erent bitstream components (Right)

Distortion over the di�erent objects composing the scene.

from the reconstructed sequence. The foreground and the background objects have been re-combined in

order to reconstruct the entire scene.

The lower rate-distortion performance of the object-oriented con�guration has multiple origins. First,

in full frame compression mode, the quadtree segmentation is optimized in a rate-distortion sense. By

enforcing an initial semantic segmentation, we move away from the frame partition optimal in terms of

rate-distortion. Secondly, the description of the two objects are slightly cross-redundant. Eventually, even

if the mask information constitutes a negligible portion of the bitstream, the amount of bits available to

represent the image data decreases. The inferior performance in terms of rate-distortion behavior is the

price to pay for object-oriented functionalities. The system is however capable of switching on the 
y,

from the object-oriented con�guration to the full frame compression mode. This property permits one to

employ the object-oriented mode only when strictly necessary.

Interested readers are referred to [28] for further experimental results both for full frame compression and

for the object-oriented con�guration.

5 Conclusion

This paper describes a novel approach to visual data compression called dynamic coding. Dynamic coding

o�ers the opportunity to combine several compression techniques and segmentation strategies. Given a

particular application, these two degrees of freedom can be constrained and assembled in order to produce

a particular pro�le which answers the set of speci�cations dictated by the application. The basic principles
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a b

Figure 21: Reconstructed frames of Hall monitor compressed at 48 kbit/sec with the object-oriented

con�guration. (a) Frame #300 foreground object only, (b) Frame #300 background object only

a b c

Figure 22: Reconstructed frames of Hall monitor compressed at 48 kbit/sec with the object-oriented

con�guration. (a) Frame #1 (b) Frame #300 (c) Zoom on face area frame #300

of this approach has been given together with the data representation system. Dynamic coding succeeds

in combining a priori contradictory properties such as openness, 
exibility, e�ciency, and genericity in an

optimal way.

In order to illustrate the concept of dynamic coding, an image sequence compression system, based on the

principles described in Sec. 2, has been presented. Referring to Fig. 6, the set of admissible solutions has

been constructed in the perspective of video-telephony and video-conference applications. Accordingly,

the segmentation strategy has been restricted to a generalized quadtree partitioning and the collection of

representation models has been con�ned to �ve compression techniques appropriate for very low bitrate

applications. The best strategy is de�ned as the one which minimizes the distortion subject to a maximum

rate budget or the inverse. The determination of the optimal solution relies on the theory of optimal

resources allocation. Given the skeleton of the set of solutions, the system is capable of determining, at low

computational cost, the optimal solution. The system operates a joint optimization of the segmentation

and the representation model associated with each segment. This operation leads to a multi-criteria
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segmentation which enables an adaptive de�nition of objects. As the system performs a rate-distortion

optimization, the control of the rate and of the quality of the decoded sequence is greatly simpli�ed. In

addition, the proposed scheme presents enough 
exibility to provide, with very few modi�cations, object-

oriented functionalities such as bitstream object scalability. Experiments have been carried out which

demonstrate the power of the approach and the promises of the concept of dynamic coding.
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