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Abstract

An algorithm for automatic and accurate segmentation of multi-dimensional images is presented in this paper. It improves
the classical watershed transform whose results are inaccurate when applied on noisy or anisotropic data. This algorithm
combines a watershed-like region growing with a very simple marker selection step. It is particularly well suited for accurate
segmentation of complex objects, such as the brain in 3D Magnetic Resonance (MR) images of the head since it provides
an accurate and fully 3D segmentation in a reasonable computation time. Comparative results of the segmentation obtained
by this algorithm and by the classical watershed transform are shown in the case of 3D MR images. Applications of this
technique to 3D visualisation and brain sulcii identification are also presented. © 1997 Elsevier Science B.V.

Zusammenfassung

Ein Algorithmus zur automatischen und genauen Aufteilung multi-dimensionaler Bilder wird in diesem Papier vorgestellt.
Er verbessert die klassische Wasserscheide (watershed)-Transformation, deren Resultate bei Anwendung auf verrauschte
oder anisotrope Daten ungenau werden. Dieser Algorithmus kombiniert das Wachstum der Region basierend auf dem
watershed-Prinzip mit einem sehr einfachen Merkmals-Selektionsschritt. Er ist besonders gut zur genauen Segmentierung
komplexer Objekte geeignet, wie das Gehirn in 3D-Magnetik-Resonanz (MR) Bildern des Kopfes und erlaubt eine genaue
und vollstindige 3D-Segmentierung in angemessener Rechenzeit. Vergleichende Resultate der Segmentierung mit Hilfe dieser
Methode und der klassischen watershed Transformation werden fiir 3D-MR Bilder vorgestellt. Anwendungen dieser Technik
im Bereich 3D-Visualisierung und Gehimn-(sulcii)-Identifikation werden ebenso présentiert. © 1997 Elsevier Science B.V.

Résumé

Dans cet article, nous présentons un algorithme de segmentation automatique et trés précise d’images multi-dimensionnelles.
Il améliore I’algorithme des Lignes de Partage des Eaux (Watershed) classique, dont les résultats sont imprécis lorsqu’on
traite des images bruitées ou anisotropiques. Cet algorithme combine une croissance de région basée sur le principe des
Lignes de Partage des Eaux avec une procédure trés simple de selection des marqueurs. Il est particuliérement bien adapte
a la segmentation précise d’objets complexes, comme le cerveau dans une image de Résonance Magnétique (IRM) 3D, car
il fournit une segmentation précise et complétement tridimensionnelle en un temps raisonnable. Des résultats comparatifs de
segmentations obtenues par cet algorithme et par les Lignes de Partage des Eaux classiques sont présentés, ainsi que des
exemples d’applications en visualisation 3D et en repérage de sulcii dans le cerveau. © 1997 Elsevier Science B.V.
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1. Introduction

In the field of pattern recognition and computer
vision, one of the main steps is the segmentation of the
objects or regions of interest. Segmentation techniques
of 2D images have been studied for many years. In 3D
computer vision, dynamic scene analysis has attracted
researchers interested in transforming a sequence of
noisy two-dimensional inputs into a description of
a scene in terms of objects, their three-dimensional
shape, their motion through space. Only recently has
the so-called spatio-temporal approach [16, 17, 25, 26]
started using long sequences. In this approach, pic-
tures are considered as time-varying stimuli occupy-
ing a three-dimensional space in which x and y are
two spatial dimensions and ¢ is the temporal dimen-
sion. In other applications, such as medical imaging,
a three-dimensional image forms an image solid which
is represented as a three-dimensional matrix of grey
levels, f(i,j, k). Each grey level represents a certain
relevant property associated with the location (i, j, k)
in the three-dimensional world. For instance, in Com-
puted Tomography (CT) images, the grey levels rep-
resent the average of the attenuation coefficient of X-
rays at point (7,7) in the kth cross-section image. In
Magnetic Resonance (MR ) images, every voxel (vol-
ume element) pictures a physical parameter, like the
concentration of hydrogen at this location in the vol-
ume.

Nowadays, medical image analysis often requires
accurate segmentation of morphological data from
either Magnetic Resonance Imaging or X-ray Com-
puted Tomography. Most segmentation research in
computer vision has addressed the problem for 2D
images, and very little work has been done for the
3D case. The most widely used technique in attempts
to address this 3D segmentation problem is 3D edge
detection [18,33,36,2). Similar to two-dimensional
edge detector [20, 32], the three-dimensional edge de-
tection method tries to locate edges along the bound-
aries of volumes. These edges are then linked to form
groups of edge segments. These detected contours are
not guaranteed to form closed volume boundaries in
many cases. Therefore, the edge detection technique
does not always offer the suitable level of abstraction
for analysis of 3D images. Moreover, in many appli-
cations, a fast and accurate segmentation is needed,
specially in the case of noisy images. This is typically

the case in medical imaging. In many studies, fast
3D imaging sequences are acquired to prevent spa-
tial resolution losses due to patient motion but at the
price of an increased noise level. Applications such
as morphological shape analysis, automatic registra-
tion of different imaging modalities or visualisation
of volumetric data require accurate 3D segmentation
as an initial step.

Because of the great interest of an automatic seg-
mentation of the brain in MR images, several authors
have already proposed segmentation algorithms.
Many segmentation procedures rest on the use of
edge detection algorithms [2, 15, 3]. In these meth-
ods, the main problem is related to the choice of the
resolution of the detected contours. A low resolution
segmentation is not accurate enough for our applica-
tions, while with a high resolution segmentation, too
many non-relevant details are detected. On another
hand, procedures based on connectivity algorithms
have also been proposed [6, 13, 14] but in those cases,
different objects often remain connected by small
links. Other algorithms require operator intervention
during the segmentation process [15, 12, 31]. Neural
networks have also been used for MRI segmenta-
tion [24, 11,35] but in many cases the computation
time becomes prohibitive.

In this paper, a complete image segmentation pro-
cedure is proposed. This algorithm will be illustrated
in the case of the segmentation of the brain in 3D MR
images of the head. This kind of segmentation has
to be bounded by strict constrains. First, a very good
accuracy is needed in this field of medicine where
the smallest error can lead to major consequences.
Secondly, the computation time for the complete
processing must be short enough to be acceptable for
the physician in a clinical routine procedure. And
finally, the segmentation process has to be fully ex-
ecuted in 3D, and not slice by slice, since the brain
is a complex organ whose surface presents many fis-
sures corresponding to the lobe folds. Some voxels
of a region could therefore be disconnected with the
others into a given slice but could though be con-
nected through adjacent slices. A fully 3D algorithm
is thus needed.

We propose an algorithm called Queue-based
Region Growing, whose mechanism is close to that
of the watersheds. The next section will present this
concept of watersheds as well as segmentation results
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obtained by means of a classical watershed transform
(WST). We will show that these results do not totally
answer the above-mentioned constrains, mainly be-
cause of the inaccuracy of the detected contours. We
will explain the origin of this inaccuracy. Section 3
will show how the Queue-based Region Growing al-
gorithm overcomes those issues. As we will see, the
major characteristic of this algorithm, compared with
the classical watershed implementations, is that the
processing is made in the pixel domain and not on
a gradient image. We will present the principle of our
algorithm, describe its two main steps and present
segmentation results. In Section 4 we will discuss
these results and introduce some interesting applica-
tions of this technique. Finally, conclusions will be
drawn in Section 5.

2. The classical watershed transform

The watershed transform (WST) is one of the most
efficient segmentation tools provided by Mathematical
Morphology. Coming from topography, the concept
of watersheds has been adapted to the field of image
processing [7, 5, 4, 19]. Like in other approaches, the
contours of an image are defined as lines where the
grey level varies quickly in comparison with the other
pixels of the neighbourhood. As the gradient of the
image represents this variation, edge detection can be
done by searching the local maxima of the positive
gradient image. The classical watershed transform re-
alises a partition of the pixels of the original image
into a set of regions (called catchment basins) sepa-
rated by lines which are the crest lines of the gradient
image.

Thanks to recent works, efficient algorithms have
been developed, based on a flooding definition of
watersheds, allowing a general use of the watershed
transform for image segmentation. The Vincent and
Soile algorithm [34] is one of the oldest of the flooding
methods. This algorithm examines all the pixels in the
image at successive greyscale values, and operates in
two stages, a sorting step followed by a flooding step.
The sorting step produces a list of the pixels sorted in
order of ascending greyscale value. Once the pixels
have been sorted it is possible to operate on them at
successive colour levels as if a flood were progressing
up through the levels of the image. Each minimum

is given a unique label. The following procedure is
applied to the pixels of each colour level in turn.
All pixels at the current level that have a neighbour
at a lower level are put in a first-in-first-out (FIFO)
queue and are labelled with their neighbour’s mini-
mum identifier and distance to that minimum plus 1.
The queue is then processed. Each pixel, a, is taken
from the queue and its unmarked neighbours at the
current height level are put at end of the queue and
labelled with a’s identifier. This allows the minima
to spread or flood within the confines of the height
level. Extra logic identifies pixels on the boundaries
equidistant from two flooding minima and then labels
them as watershed pixels. A final scan of the grey
level identifies and labels new minima [10]. More re-
cently, optimum processing speed in the computation
of this watersheds has been achieved by the use of
hierarchical waiting queues [21, 22]. Meyer presented
two watershed algorithms in [8]. These algorithms are
based on a flooding definition of watersheds and a two
level ordering relation provided by an ordered queue.

These watershed transforms fulfil two constraints
imposed by the problem of the brain segmentation in
MR images: they are quite fast and easily applicable
to 3D images. But as it is well-known, the result of the
rough application of the WST on the original gradient
image suffers from oversegmentation, due to the noise
affecting the original image. If we consider a grey level
profile ( for instance an horizontal line in a Magnetic
Resonance Image of a human head), and if we com-
pute the (1D) positive gradient of this profile, we can
see that the noise causes many local minima, as illus-
trated in Fig. 1. Computed in 2D or in 3D, each local
minimum will be the starting point of a basin and thus
will cause oversegmentation.

Various solutions can be used to improve this
situation. The most efficient one is the use of makers,
as firstly proposed in [23]. The first 3D watershed
algorithm using markers and hierarchical queues was
proposed by Gratin [9]. This leads to efficient 3D seg-
mentation of medical images. But the use of markers
often requires various pre-processing steps, such as
filtering, contrast enhancement or definition of inner
and outer markers. Those steps can be quite complex,
increasing the total computation time.

In this paper, we will introduce an accurate queue-
based watershed-like region growing algorithm. In this
two-step algorithm, the marker selection phase will be
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Fig. 1. (a) Grey level profile of a single line of a MR Image, (b) its 1D gradient.

very simple, and embedded into the first step of the
algorithm, and not in a pre-processing step. In order to
introduce this method, we will first analyse the results
obtained by a classical watershed algorithm.

When working with the classical watershed (with-
out markers), important pre-processing tasks have
to be applied in order to achieve acceptable results.
Pre-processing can be applied to the image before
the computation of its gradient. The gradient image
can be filtered or thresholded to reduce the number
of catchment basins. The merging of basins after
the computation of the watersheds is also possible.
In fact, several processing have to be combined to
achieve an acceptable segmentation. Fig. 2 shows the
result obtained after application of the classical WST,
as described by Vincent and Soile [34], combined
with the following treatments. First, we threshold the
original image: every voxel with a grey level lower
than a given value (in this case: 8% of the maximum
intensity of the image) receives a value equal to zero.
By this way we get rid of a part of the noise which
affects the background of the image. After this, the
image is filtered by a 3 x 3 x 3 median filter [30]

and finally the gradient image is computed from this
filtered image. The WST is then computed on this
gradient image. The complete processing ends by
a region merging operation based on the region mean
grey levels, and similar to the one presented in [28].

The results obtained by this way are not very satis-
factory, mainly because of the inaccuracy on the loca-
tion of the edges of the brain. Typically, the fissures
on the surface of the brain are not well detected. As
they determine the position of the lobe folds (called
sulcii), their detection is very important in many ap-
plications.

This problem is due to the fact that the WST is
applied on a gradient image where each voxel is
computed as the mean value of the variation of the
luminance in the 6 different directions (4 directions
in the case of a 2D image). This leads to mistakes on
edge position when the grey level varies quickly from
one direction to another on a small number of pixels
(or voxels). Actually, there is a lack of definition in
the location of the contours which is a consequence of
the use of the gradient [27]. Other kinds of gradient
could be used, which should be more appropriate for
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Fig. 2. Segmentation of a 3D MR Image by the classical watershed transform combined with pre- and post-processing of the original
image: four slices of the original image (a) with the detected contours superimposed (b).

this situation, such as the maximal variation in the 6
directions, the difference between the maximal and
the minimal variation in the 6 directions, or the pix-
elwise difference between a unit-size morphological
dilation of the original image and the original image
itself. But still, they may fail in detecting small details
with the gradient. In the case of a segmentation of
a binary image made of alternative black and white
horizontal lines of thickness 1, the image is so full of
details that there is no space left for representing the
gradient. This can also be the case around the sulcii.
As the exact location of these sulcii is required, we
will define a modified version of the watershed algo-
rithm which will work directly on the original image
and not on its gradient.

This idea was proposed by Meyer in [22] to deal
with colour images. In [1], Adams and Bischof pro-
posed an algorithm called Seeded Region Growing,
build on a quite similar approach. In this algorithm,
the segmentation is controlled by choosing a set of

starting zones, called seeds. The region growing pro-
cess evolves inductively from the seeds; each step of
the algorithm involves the addition of one pixel to one
of the above sets until it meets another region. This
growing procedure is similar to the one of the water-
sheds, but in this case, the pixels are added to a re-
gion according to the difference between their grey
level and the mean grey level of the region, while in
the watershed approach, the region growing is mainly
governed by the local gradient level of the pixels.

In the next section, we will introduce our algorithm,
the Queue-based Region Growing.

3. The queue-based region growing algorithm

3.1. Principle

In a metaphoric way, comparing with the flooding
definition of the watersheds, we can summarise the
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principles of the Queue-based Region Growing by the
following statement: “The water should flood at the
same time to a voxel P and to its neighbour P’ if
these voxels have the same grey level”.

For the implementation, let us notice two impor-
tant points: first we will apply a watershed-like region
growing directly on the original image. Second it is
now impossible to sort the different voxels of the im-
age according to their gradient value, since the gradi-
ent is not computed any more: the height of a voxel
in the topographic relief depends on the path followed
by the water that floods to it.

The proposed algorithm rests on a set of FIFO
queues which will contain pointers to voxels and can
be decomposed into two main steps: the boring step
and the flooding step. The first step allows to determine
the different catchment basins called starting zones, or
seeds, which are the different sets of connected voxels
with the same luminance, corresponding to the local
minima of the gradient image in the classical WST.
All the basins receive different labels and the voxels
belonging to these basins are labelled. The second step
deals with the voxels not labelled after the first step,
and simulates the immersion.

3.1.1. The boring step

In order to define the seeds, we examine all the suc-
cessive voxels of the image in a given order. Once
we find a non-labelled voxel which has the same lu-
minance as at least one of its neighbours, we give to
these voxels a new label and we extent this new basin
with the following recursive procedure. We compare
the luminance of a voxel of the basin with the lumi-
nance of each of its non-labelled neighbours. If one
of these neighbours has the same luminance, we label
it and apply the same procedure to it. Else the neigh-
bour is put into a queue whose identification number
corresponds to the absolute difference between the lu-
minances of these points. The neighbour receives then
a temporary label equal to the opposite value of the
identification number of the queue. So if a voxel is
put into a given queue, it means that it has an already
positively labelled neighbour and that the grey level
difference of these two voxels is to the identification
number of the queue. This number also represents the
value of the directional gradient of the voxel and thus
the step of the inflow during which the voxel will be
reached.

Now we have to be careful with the voxels that have
several neighbours with different positive labels. For
such a voxel, the above-mentioned recursive proce-
dure will first introduce it in a queue of identification
number equal to the grey level difference between this
voxel and the first encountered neighbour. The voxel
will be (negatively) labelled in consequence. Later in
the progression of the recursive procedure, this point
will be added in another queue only if the identifica-
tion number of this queue is lower than the opposite
of the label of the voxel. The label of this voxel will
then be changed.

This step results in a set of positively labelled voxels
surrounded by negative-labelled voxels. The untreated
voxels keep an initial label called init. An example
of the result of this boring step on a 7 x 7 matrix is
presented in Fig. 3.

Let us notice that we can choose other criteria for
the definition of the starting zones. Considering every
flat zone will result in an oversegmentation. We will
discuss this point in Section 3.3.

3.1.2. The flooding step

This second step realises the extension of the catch-
ment basins by simulating the flooding through a re-
cursive procedure which progressively empties the
queues and labels the voxels of the queues, starting
from the non-empty queue with the lowest identifi-
cation number. Each voxel extracted from a queue is
correctly labelled, taking into account that:

(1) Some voxels receive the label called WSHED.
For instance this is the case if the smallest differ-
ence between the luminance of a voxel and the
luminance of one of his positively labelled neigh-
bour is obtained for more than one direction.

(2) Some already positively labelled voxels can still
remain into a queue. This is the case of those
voxels with several positively labelled neigh-
bours, as we have seen in the boring step. They
have already been extracted from a queue and
labelled according to the corresponding iden-
tification number. But they remain in one or
several other queues, corresponding to their other
neighbours. In this case, those already positively
labelled voxels must be ignored.

After the extraction of a voxel, we have to ex-
amine its neighbours to determine when they will
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Fig. 3. Typical result of the boring step of the queue-based region growing: (a) example of the order used to examine the neighbours of
a pixel, (b) original grey level values, (c) label of the pixels (bold) an identification number of the corresponding queue (italic).

be reached by the water (if they are not yet). This
procedure is similar to the one used for the boring
step. In fact, when starting to empty a queue of iden-
tification number »n, we are sure that the queues of
identification number m (m <n) are empty. Progres-
sively, when treating voxels of queue n, it is probable
that voxels will be added to queues of identification
number lower or equal to ». Naturally, the voxels of
the queues of lower identification number have to be
examined before voxels of queue n + 1 and before the
lastly added voxels of queue n. To distinguish between
both types of voxels of queue n, we insert a fictitious
voxel ( fictv). All the voxels of this queue are treated
until we encounter a fictv and we continue to empty
this queue only when all the queues of lower identifi-
cation number are empty again.

After the application of this algorithm the result is
an image whose voxels are labelled according to the
catchment basin they belong to. The voxels with the
label WSHED can also be integrated to the catchment
basins as explained in [34].

3.2. Performances

The algorithm described in this paper runs in linear
time with respect to the number N of voxels in the
original image. For the boring step, only one scan of
the N voxels is necessary in order to label the voxels

with at least one neighbour with the same luminance.
During the flooding step we label all the voxels of the
queues. That means at most one scan of the image. But
for each voxel of the queue, we treat a part of its neigh-
bours. For a ¥'-connectivity underlying grid, we would
need ¥ scans if all the neighbours were put in the
queues. Now, a positively labelled voxel whose neigh-
bours are being treated, has at least one positively la-
belled voxel in its neighbourhood. Therefore the max-
imum number of scans is V. In fact the real number
of scans necessary for the flooding step is lower than
V because more and more voxels are labelled.

With regard to the memory requirements, we need:
(1) an output image of the same size as the initial
image.

a set of queues of pointers to voxels. The number
of queues depends on the number of grey levels
in the image (typically 256).

A solution to reduce the memory requirements con-
sists in limiting the number of objects of the result-
ing image. In many practical cases and principally in
medical imaging, the goal of the segmentation is to
isolate one object from the background and the num-
ber of labels can then be strongly reduced. Reduction
of memory requirements can also be achieved by lim-
iting the number of queues. In fact, the queues with
high identification numbers are rarely used except for
strongly noisy images.

()
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Fig. 4. Segmentation of a 3D MR image by the queue-based region growing: four slices of the original image with the detected contours

superimposed.

The total computation time of the segmentation of
a MR Images (256 x 256 x 90 voxels) is about 3 min
on a low-cost workstation.

3.3. Results

In this algorithm, the selection of the starting zones,
that can be called seeds or markers, is operated by
finding homogeneous zones in the original image.
This can be done by selecting every region with two
or more pixels of the same grey level, as explained
above. But this will of course lead to oversegmenta-
tion again. In our implementation, we consider that a
starting zone is made of points whose grey level dif-
ference is lower that a given threshold. Referring to
the classical watershed transform, this is equivalent
to a thresholding of the gradient image. For Magnetic

Resonance images of a head, where the brain is quite
homogeneous, this means that the boring step will
operate like a simple region growing procedure re-
sulting in a large starting zone, that will extend during
the flooding step, by a watershed-like procedure, to
achieve very accurate contours.

Fig. 4 presents four slices of the data set with the
contours of the segmented brain (white coloured)
superimposed. This result was obtained by the com-
putation of the Queue-based Region Growing with
a grey level difference threshold of 15.

4. Discussion and applications

Comparing Figs. 2 and 4 one can see that the ac-
curacy of the detected contours is much better on the

Fig. 5. Application of the 3D accurate segmentation by queuebased region growing: 3D surface rendering and interactive edition of brain

sulcii.
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latter, especially around the sulcii. These high quality
results can be used in morphometric applications (e.g.
localisation and characterisation of brain tumors), 3-D
rendering of the brain surface, or automatic labelling
of the brain regions (gyrii and sulcii). One of our most
successful application merges precise anatomy from
MRI with Positron Emission Tomography (PET) data.
PET is a functional imaging technique whose spatial
resolution is relatively poor as compared to MRI. One
may consequently merge the information from these
two modalities provided they are accurately registered
[29]. The precise description of the brain surface ob-
tained by the Queue-based Region Growing is used to
define (and label) sulcii as 3D polylines, using mul-
tiple views in a surface viewer (stereo definition) as
shown by Fig. 5. Rendering is operated by integral
shading [2]. The surface viewer is spatially connected
to a volume viewer containing the registered PET
data and the sulcii are merged into the functional PET
volume.

5. Conclusions

In this paper, we have shown how to solve a diffi-
cult segmentation problem by means of a watershed-
like transform, called Queue-based Region Grow-
ing. The results provided by the classical watershed
algorithm suffers from oversegmentation and inac-
curacy. By working on the original image and not
on a gradient image, we have gone beyond these
limits when still preserving all its advantages (i.e. fully
3D-segmentation, short computation time, etc.).

The result obtained can be used for visualisation but
can also serve as preliminary step of a more complex
analysis of brains such as assisted diagnostic of differ-
ent brain illnesses, localisation and characterisation of
brain tumors or automatic identification of the various
regions of the brain by the detection of specific sulcii.
All these applications need an accurate segmentation
of the brain as an initial step.
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