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ABSTRACT

In this paper we present a new approach in the compres-
sion of multispectral images. It is based on the merging of
two main tendencies such as the use of KLT as a spectral
decorrelator and object based image coding schemes. The
use of the principal component in multispectral imagery is
described and used to perform a multispectral segmenta-
tion. This segmentation is taken as the basis for a speci�c
spectral decorrelation for each segmented class. The re-
sulting eigen images present lower variance than classical
KLT approaches. Each of the eigen regions is coded spa-
tially using a shape adaptive DCT algorithm. The method
outperforms non-region multispectral KLT+DCT schemes
as well as JPEG, while adding the region based functiona-
lities.

1. INTRODUCTION

Multispectral image compression has for many years been
a topic of interest to image processing and remote sensing
researchers. From the image processing point of view it
is a challenging �eld, where one faces trade-o�s between
data size, coding complexity, and reconstruction �delity.
The reason that multispectral image compression provides
a di�erent solution than standard still image compression
is the possibility of exploiting the spectral correlation.

Many e�orts have been made in the compression of
multispectral images. Algorithms have been applied for
lossless[1], near-lossless and lossy applications. Most of
them use the spectral correlation between spectral bands in
order to achieve better compression ratios. Among others,
classical algorithms are based on Vector Quantization[2], 3-
dimensional transformations, spectral prediction[3], wave-
lets or hybrid methods such as DPCM-DCT[4] or KLT-
DCT[5]. The use of KLT (Karhunen-Lo�eve Transform also
known as Hotelling or Principal Component) as spectral de-
correlator has been shown to be one of the most e�ective[6].

On the other hand, in still and video coding �elds, the
introduction of region based methods[7, 8] has been an im-
portant new development. These coding schemes' main
advantage is the use of arbitrarily shaped regions of sup-
port allowing better adapted transformations in the spatial
domain. The region based coding yields reconstructed ima-
ges with artifacts that are less bothersome to the Human

Visual System than block based artifacts. Another advan-
tage of region based methods is object scalability, where
objects are coded according to di�erent criteria.

No work has been reported in the merging of these two
�elds. This is the goal of this paper, we present a region
based method for multispectral images. Where spectral de-
correlation is done internally for each spectrally homoge-
neous region and the spatial coding takes advantage of the
existing techniques of object based coding. The paper is
presented in three main parts: i) a �rst part devoted to the
analysis of multispectral datasets in order to determine the
spectral homogeneous classes, ii) the spectral decorrelation
applied to each class and iii) the exploitation of the spatial
correlation by coding the inside of each class.

2. MULTISPECTRAL SEGMENTATION

2.1. KLT and multispectral imagery

One very successful application of the KL transformation
is in multispectral images. The transformation is applied
in the spectral dimension taking each one of the pixels of
the scene as N dimensional vectors N being the number
of spectral bands. Let X be the vector containing the N
components for a given pixel and U the mean vector U =
E[X]. The covariance matrix Cx is de�ned as:

Cx = E[(X � U)(X � U)t] (1)

The Karhunen-Lo�eve Transfomation (T ) is de�ned as the
one that diagonalizes Cx in the following way:

Cy = TCxT
t = � (2)

where Cy is the covariance of the transformed vector (Y )
and � the diagonal matrix representing eigenvalues. Y can
then be obtained by the equation:

Y = T (X � U) (3)

Since the transformation optimally diagonalizes the co-
variance matrix between spectral bands, the spectral corre-
lation of the transformed components is removed.

The images in the transformed domain are sorted in
order of importance or with decreasing variance (value of the
eigenvalues). This energy compaction in the spectral axis is
quite suitable for selection of the main spectral components
for analysis as well as for image compression.



2.2. Multispectral segmentation

Given a multispectral dataset the KLT is applied across the
spectral dimension. From the obtained main components,
one selects the most important. Experimental results show
that selecting the �rst three main components is a good
trade-o� between complexity of the subsequent analysis and
spectral information retrieval. Of course, this may vary
with the nature of the scene. The advantage of using KLT
is twofold in the following sense: it reduces the problem of
band selection for the classi�cation to a simple choice of the
total number of images. And, it assures that the selected
images for classi�cation are the most representatives of the
spectral content in the scene.

Di�erent clustering techniques can be applied for se-
gmentation. We have chosen the multidimensional histogra-
ming of the three main components because it does not re-
quire any recursive calculation that would slow down the
system. Once the 3-dimensional histogram is built (a sca-
led version due to storage constrains), some morphological
operations are applied to the four dimensional surface that
represents the histogram, these are: smoothing and peak
detection by morphological opening operators. Maximal
peaks are extracted, sorted in order of importance and se-
lected depending on the number of required classes. All
the pixels are classi�ed following the criterion of maximum
correlation and a segmentation map is generated. This se-
gmentation map is cleaned by an opening by reconstruction
morphological �lter [9] in order to remove small sized re-
gions and avoiding their ine�cient coding. An application
of this segmentation has been successfully applied to cloud
extraction for a 3D cloud visualization[10].

3. SPECTRAL DECORRELATION

3.1. Classical spectral decorrelation approaches

The KLT applied to multispectral images for image compres-
sion has been used in several approaches. The basic ap-
proach is the one that takes all the spectral images and
computes the KLT in the spectral axis. Since the resul-
ting components are sorted in order of importance they can
be easily quantized with criteria that take into account the
importance factor, achieving high compression ratios. Bet-
ter results have been obtained when the images are parti-
tioned in regular blocks and the KLT is computed within
these blocks[11]. The drawback of the latter approach is
the high overhead information needed when the number of
bands increases (images can contain hundreds of blocks and
hundreds of bands).

3.2. Region based spectral decorrelation

We introduce a new approach to the application of KLT for
multispectral image compression. Taking the multispectral
segmentation described in section 2.2, a di�erent transfor-
mation is calculated for each class in the following way:

Cyi = TiCxiT
t
i = �i (4)

where i is the class number and Cxi is the covariance
matrix calculated from the pixels belonging to the class i.

Since the obtained segmentation is the result of the clas-
si�cation of the principal components, all the pixels of the
same class are likely to have a similar KLT transformation,
thus the transformation is going to be better adapted to sta-
tistics of the set. If we apply a di�erent KLT to each class,
the energy is going to be optimally compacted for each re-
gion, giving highly energy compacted eigen images with less
variance than the obtained by a simple KLT. Since a di�e-
rent transformation is computed for each class (not objects)
the overhead data volume does not increase substantially as
discussed in the following subsection. Figure 1 illustrates
the region based KLT approach.
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Figure 1: Example of two di�erent KL transformations ap-
plied to two spectral clusters.

3.3. Overhead information

The overhead information is all data needed for the deco-
der not directly related to the pixel values. In a KLT ba-
sed algorithm this information is reduced to the covariance
CX matrix and the mean vector U of eq. 1. The volume
of this overhead will depend on the number of bands and
the number of transformations needed in the algorithm (i.e.
the number of blocks in a block based scheme or classes in
our approach). Note that in the presented region based
transform, a di�erent KLT is applied to each class and not
to each single region. That means that in a satellite image
we de�ne a KLT for the class of clouds, one for the class
of land, etc... and not for every single cloud. Since all the
clouds have similar spectral signatures, the KLT is always
optimal but the overhead information to encode does not
substantially increase.

In the presented algorithm, a second overhead compo-
nent is the coding of the segmentation information. We
have to point out that this overhead information can be
highly compressed (few classes are usually de�ned), and
that its cost is divided by the number of bands to compress
leading to minimal overhead in the case of hyperspectral
images.

Figure 2 shows the evolution of the overhead informa-
tion as the number of bands to code increases. Values are
plotted for a block based KLT (64 � 64 block size) and for
3 and 6 region KLTs. Note that for a given number of
bands, the overhead of the block based scheme is largely
above the region based ones even if the latter ones include
the segmentation cost.
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Figure 2: Overhead information when increasing the num-
ber of spectral bands.

4. REGION CODING

4.1. Spatial coding approaches

After the spectral decorrelation, all the spatial correlation
existing in the principal components remains to be explo-
ited. Several approaches can be observed at this point
and they are related to classical still image coding ( DCT,
subband coding, ..). Regions can be coded by shape ada-
ptive methods based on subband coding or DCT[12, 13, 8].
Furthermore, the segmented regions belonging to the same
sort of terrain or clouds are likely to have homogeneous
textures, thus texture based coding methods can also be
applied. Simpler approaches can be DPCM inside the re-
gions. Two of these possible approaches have been adopted
in this paper, and they are explained in the following sub-
sections.

4.2. Runlength of regions

A simple spatial coding of the components has been adopted
in a �rst step, images are quantized di�erently depending on
its importance factor and a DPCM followed by run-length
coding is applied. Finally, the resulting bitstream is entropy
coded.

4.3. Region based DCT

The second spatial coding we use is the very well known
DCT. This spatial transformation is widely used in many
coding schemes for still images and video. In multispectral
images has also been frequently applied[11]. Most of these
methods use a block based partition of the image in or-
der to perform the DCT. In the new tendency of the use
of region based methods, a shape adaptive DCT has been
developed by [13]. This low complexity implementation of
the shape-adaptive DCT is able to code arbitrarily shaped
regions independently one to each other. Once the shape

DCT coe�cients are obtained, the following processing is
the classical: quantization, zig-zag scanning and entropy
coding. The quantization tables applied are di�erent de-
pending on the number of KL component.

5. RESULTS

The presented method was applied to multispectral images
of the imager and sounder instruments of GOES-8 NOAA
satellite. These datasets contain 5 and 19 spectral bands
respectively. The variance reduction in the main compo-
nent when the region based KLT is applied is more than
70% with respect to the normal KLT and 30-50% when
compared with the block based KLT (64 � 64 block size)
as listed in table 1. The algorithm quantizes the eigeni-
mages di�erently (using a given quality factor). The two
spatial coding approaches described in section4 have been
applied to the spectrally decorrelated components. Results
are shown in �gure 3 and compared to classical KLT and to
the standard JPEG when coding the bands separately. As
expected, DCT based methods outperform the simple run-
length. The proposed algorithm has a gain of 0-2dB over
non-region based KLT algorithms depending on the number
of bands and compression rate.

num. bands KLT type Var comp.1 reduction

sounder- classical 14677.76
19 banbs block 6122.71 58.28%

3 regions 4469.41 69.54%

imager- classical 7892.67
5 banbs block 4427.88 43.8%

3 regions 2180.92 72.36%

Table 1: Variance reduction of the main component for the
di�erent KLT spectral decorrelators

The performance of the proposed algorithm has to be
evaluated not only in rate/distortion terms but also in the
terms of functionalities and visual quality. For instance,
the region based approach did not present annoying block
artifacts. Furthermore, one of the main advantages of using
object based coding methods is the object scalability, where
regions can be compressed separately, or compressed by
di�erent methods depending on some user priorities. For
example, meteorologists specialized on cloud analysis may
be interested in compressing the multispectral information
related only to clouds and neglect other region information
by coding it with fewer bits or even not coding it.

6. CONCLUSIONS

In this paper we have presented a new approach on the co-
ding of multispectral images. It is based on the merging
of two tendencies in image coding and remote sensing co-
ding. The classical spectral decorrelator such as KLT is
combined with region based coding techniques, obtaining
the so-called region based KLT. The spatial coding of the
spectrally decorrelated regions is done by shape adaptive
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Figure 3: Rate distortion curves for imager (top) and soun-
der (bottom) instruments. 1 JPEG, 2. KLT + DPCM, 3.
block KLT + DPCM, 4. 3-region KLT+ DPCM, 5. KLT +
DCT, 6. block KLT + DCT, 7. 3-region KLT + SADCT

DCT. The algorithm outperforms di�erently the classical
KLT+DCT multispectral schemes depending on the num-
ber of bands, nature of the scene and quality of the se-
gmentation. Furthermore, the method has the advantage
of embedding a segmentation map and the possibility to
code each region di�erently.
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