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ABSTRACT

This work addresses quality assessment of motion rendition
in digital video coding. Motion estimation and compensa-
tion are critical modules in video coders. A computational
metric, based on a spatio-temporal model of the human vi-
sual system and of human motion sensing, is proposed and
used to evaluate MPEG-2 compressed video. The metric is
able to assess the quality of motion rendition and exhibits
a good correlation with subjective data.
Keywords: Quality assessment, vision model, motion sen-
sing, motion estimation, MPEG, test

1. INTRODUCTION

Video transmission systems are currently in a state of tran-
sition from a completely analog system to a digital system.
The digital system which will be extensively deployed will
incorporate source coders employing the MPEG compres-
sion standards. Testing of such systems is problematic as
the methodology to test digital video transmission systems
has not been formalized and the analog testing methodology
cannot be used for digital systems. A crucial module in an
MPEG encoder is the motion estimation. From an imple-
mentation viewpoint, it is the most demanding resource as
the computational load and memory bandwidth involved in
motion estimation are one order of magnitude higher than
for any other module [2]. From a performance point of view,
motion rendition is perceptually very important. This pa-
per presents a computational metric that speci�cally eva-
luates the quality of motion rendition. It is based on a
spatio-temporal multi-channel model of human vision and
motion sensing. The modeling of human vision and motion
sensing is addressed in Sec. 2. The metric is described in
Sec. 3. Experimental results on MPEG-2 compressed video
material and comparison with subjective data are presented
in Sec. 4. Eventually, Sec. 5 concludes the paper.

2. MODELING MOTION SENSING

A spatio-temporal model of human vision has been de-
veloped for the framework of video coding and presented
in [3, 5]. The model is based on the following properties of
human vision:

� The visual system represents the information by contrast
and not by absolute light level.
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� The responses of the neurons in the primary visual cor-
tex are band-limited. The human visual system has a
collection of mechanisms or detectors (termed channels)
that mediate perception. A channel is characterized by a
localization in spatial frequency, spatial orientation and
temporal frequency. The responses of the channels are
simulated by a three-dimensional �lter bank.

� In a �rst approximation, the channels can be considered
to be independent. Perception can thus be predicted
channel by channel without interaction.

� Human sensitivity to contrast is a function of frequency
and orientation. The contrast sensitivity function (CSF),
quantizes this phenomenon, by specifying the detection
threshold for a stimulus as a function of frequency.

� Visual masking accounts for inter-stimuli interferences.
The presence of a background stimulus modi�es the per-
ception of a foreground stimulus: masking corresponds
to a modi�cation of the detection threshold of the fo-
reground according to the local contrast of the backgro-
und.

The working model described in [3] incorporates the
above described considerations of visual perception. The
�lter bank used in the model decomposes the data accor-
ding to 5 spatial frequency bands (centered at 0, 2, 4, 8 and
16 cycles per degree (cpd)), 4 orientation bands (centered
at 0, �=4, �=2 and 3�=4) and 2 temporal frequency bands,
termed the sustained and transient mechanisms. An esti-
mate of the CSF to coding noise, based on an excitatory-
inhibitory formulation, has been obtained by psychophy-
sical experiments [3]. The model of masking used is the
non-linear transducer introduced in [1].

Watson and Ahumada proposed in [6] a model of the
motion sensor considering the following fundamental pro-
perties of human motion sensing:

� Humans perceive speed and direction of a movement.
� Motion is local: humans are able to discriminate between
objects moving at di�erent speeds and with di�erent di-
rections in a scene.

� Motion perception is dependent on spatial frequency.
� Motion detection is direction-selective at high temporal
frequencies: the threshold contrast for a stimulus mo-
ving in one direction is una�ected by a similar stimulus
moving in the opposite direction. At lower temporal fre-
quencies, considerable subthreshold summation appears,
showing that motion detection is non direction-selective.

� The contrast threshold necessary to detect a moving sti-
mulus is equal to the detection threshold for the stimu-
lus.
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Figure 1: Block diagram of the model of a motion sensor.

Their model of the motion sensor is illustrated in Fig. 1.
The �rst block of the sensor is a temporal �lter that ac-
counts for the global temporal contrast sensitivity of the
eye. The signal is then delayed so as to ensure a causal
system at the end (some of the following building blocks
have a non causal response). The delayed signal is �ltered
by a spatial �lter, the response of which is the pro�le of a
spatial mechanism. The output of the spatial �lter is then
divided into two separate paths. The �rst path, the main
path, is unprocessed, while the second undergoes a �ltering
operation by a spatial and a temporal Hilbert �lter. The
second path is said to be the quadrature path, as the signal
is phase-shifted by �=2 with respect to the main path. The
main and quadrature paths are then added (to compute
rightward motion) or subtracted (for leftward motion) to
form a direction-selective linear motion sensor.

In this work, a modi�cation of the Watson and Ahu-
mada's motion sensor is proposed. The sensor is adapted
to the multi-resolution structure of the model described
in [3]. The modi�cations are the following: The tempo-
ral �lter no longer is the temporal contrast sensitivity fun-
ction but the pro�le of a temporal mechanism, so as to fully
match the multi-resolution structure of the model (in the
spatial and temporal dimensions). For sustained mecha-
nisms, motion sensing is non direction-selective, hence the
quadrature path featuring the Hilbert transformer is ne-
edless. Transient mechanisms are direction-selective, so the
Hilbert transformer is used with a temporal Hilbert �lter
that matches the front-end temporal �lter.

3. THE METRIC

The above considerations are used to build a computational
motion detector that is able to estimate motion rendition
artifacts. In the context of test and evaluation of video
codecs, one would be interested in predicting how good of a
job a coder did in representing motion. The goal is to build
a metric that takes as input an original video sequence,
a compressed/decompressed version of the precedent and
assesses the quality of motion rendition in the decompressed
sequence. The block diagram of the proposed tool, named
motion rendition quality metric (MRQM) is presented in
Fig. 2.

The front-end of the metric is the vision model as descri-
bed in [3]. The coding distortion is computed as the di�e-
rence between the decompressed sequence and the original
one. The original and distortion sequences are decompo-
sed into perceptual components by the three-dimensional
�lter bank. The CSF and masking function are then used
to compute threshold contrasts for every pixel of the per-
ceptual components of the distortion. The data is then

expressed in just noticeable di�erences by dividing the va-
lues with the detection thresholds. At this stage, processing
di�ers for the sustained and transient channels. The tran-
sient channels are mapped onto opponent-signals to account
for opponent-motion energy. The box denoted opponent-
motion energy sensors thus realizes the delay operation fol-
lowed by a separation into main and quadrature paths for
each transient channel. The quadrature path is �ltered by
the spatio-temporal Hilbert �lter, then added and subtra-
cted to the main path to estimate rightward and leftward
motion. The processing measures the motion energy of the
recti�ed signal in opponent directions. The data is now to
be gathered to simulate the next higher-order elaborations
done by the visual cortex.

Watson and Eckert addressed this problem [7]. They
showed that, once the detection of motion and the sen-
sing of motion direction are done, further processing of
the cortex can be modeled by the sensing of motion gra-
dients. They showed that the output of motion sensors
undergoes a subsequent pooling, performed over a large
extent. This pooling actually takes the form of a spatial
excitatory-inhibitory pooling over a Gaussian-shaped area.
It is performed on both the sustained and transient chan-
nels and constitutes the last processing stage of MRQM.
The data of Watson and Eckert [7] are used to implement
the pooling operation. The metric �nally outputs a distor-
tion measure for each channel.

4. EXPERIMENTAL RESULTS

As an example of experiment, the study of motion rendition
quality as a function of the search window dimension is pre-
sented. More extensive results are presented in [4]. In this
experiment, the sequence Basket Ball has been compres-
sed at a rate of 6 Mbit/sec., as interlaced video material,
using a constant group of picture structure of 12 frames
with 2 B-pictures between each P-picture. The video buf-
fer veri�er size was set to its maximum allowed size. The
coder operated in constant bitrate (CBR) mode. Various
streams have been obtained by varying the dimension of the
search window. The same search area has been selected for
every frame, i.e. P or B frames have the same search area.
Psychophysical tests have then been carried out to con�rm
the results obtained with MRQM.

Two types of results are now presented. In one case,
the metric is run on the decoded streams. The streams
thus incorporate all e�ects of encoding, including motion
compensation and quantization of the displaced frame dif-
ference (DFD). In the other case, the metric is computed
on the prediction frames, i.e. the frames obtained at the
output of the motion estimation algorithm, before motion
compensation. This permits to study motion estimation
artifacts only, without any e�ects of motion compensation
or DFD quantization. Such results are presented in Fig. 3,
top (measurements on the decoded frames) and in Fig. 3,
bottom (measurements on the prediction frames) for four
search window dimensions, namely 9 � 9, 15� 15, 31 � 31
and 63� 63. In such graphs, the distortion measure is plot
channel by channel. Channels are ordered �rst by spatial
frequency, then by orientation, i.e. channels 1 to 4 cor-
respond to a spatial frequency of 2 cpd and orientations of
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Figure 2: Block diagram of the motion rendition quality metric.

0, �=4, �=2 and 3�=4. The next four channels correspond
to a spatial frequency of 4 cpd, etc. Only transient chan-
nels are represented here as they account for most of the
distortion in motion rendition [4].
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Figure 3: Top: MRQM measurements on decompressed fra-
mes of Basket Ball compressed at 6 Mbit/sec. with di�e-
rent motion estimation search windows. Bottom: MRQM
measurements on the prediction frames of Basket Ball
compressed at 6 Mbit/sec. with di�erent motion estima-
tion search windows.

The graphs are interesting in many aspects. If one
looks at the MRQM output on the motion prediction fra-
mes (Fig. 3, bottom), it can be seen than the distortion
in motion decreases as the dimension of the search win-
dow increases. This is normal, as the prediction made by
full search can only be better as the window size increases.
Patterns of high spatial frequency are more di�cult to ren-
der (MRQM increases with spatial frequency). This is also

due to the fact that the motion prediction frames are sub-
ject to the quantization of the reference frames. Therefore,
distortion increases with spatial frequency as quantization
of intra macroblock increases as well.

When looking at the results computed on the decoded
frames, one can notice that the ordering of the streams,
rated by MRQM, changes. The stream compressed with
the largest search window is not the best one. This might
seem awkward but is justi�ed by the variable length co-
ding (VLC) of MPEG: motion vectors are encoded in the
bitstream using VLC tables. Several tables can be used de-
pending on the vectors' maximal length. Hence, whatever
the actual length of the motion vector is, it is encoded using
a table dependent on its maximal allowed size. Therefore,
streams compressed with large search windows use more
bandwidth to represent motion vectors. The consequence
of this is that a smaller bandwidth is devoted to the DFD
that is quantized more coarsely. The use of a large search
window may result in a sequence that has a lower visual
quality. Such an e�ect is indicated by MRQM but is not
captured by the peak signal to noise ratio (PSNR) as it will
be shown below and as it has been observed in [2].

It is thus interesting to study which search window is
best for a given sequence and see if MRQM is able to pre-
dict the responses of human observers. Such a result is
presented for Basket Ball in Fig. 4, top. The graph pre-
sents the quality rating by MRQM and PSNR for Basket
Ball as a function of the search window. In this graph,
the output of MRQM has been pooled over channels with
a Minkowski summation of exponent 4 and expressed on
a logarithmic scale. The PSNR curve shows a slight knee
in quality around a window dimension of 50 � 50. The
MRQM curve, on the contrary, exhibits a maximum at a
window dimension of 31�31. This result has been validated
by subjective data collected on 4 human observers with a
three-alternatives forced choice task: the subjects were pre-
sented 4 sequences simultaneously. The original sequence
was always presented at a known place. The three other
sequences were compressed sequences. The subjects were
asked to choose the sequence that had the lowest distor-
tion. The presentation time was unlimited. Several trials
were performed for each subject (between 30 and 50). The
data has been averaged over subjects to deduce a rank or-
dering. The validation is done as follows: the MRQM and
PSNR outputs are plot as a function of the subjective rank
ordering in Fig. 4, bottom for the four sequences considered



10 20 30 40 50 60 70
28

29

30

31

32

33

34

35

M
et

ric
 O

ut
pu

t

Search Window (pels)

0 5 10 15 20 25
28

29

30

31

32

33

34

35

M
et

ric
 O

ut
pu

t

Rank Order Score

Figure 4: Top: study of motion rendition quality assessment
by MRQM (solid line) and PSNR (dashed line) for Basket
Ball as a function of the search window. Bottom: metric
output versus subjective rank ordering for compressed ver-
sions of Basket Ball, varying the search window dimension.
MRQM is the solid line, PSNR the dashed line

in Fig. 3, namely search windows of 9� 9, 15� 15, 31� 31
and 63 � 63. Moreover, the horizontal distance between
points of the graph is dependent on the discrimination ca-
pability. This permits to account for noise in the subjective
data. The abscissas in the graph thus correspond to the or-
dering 9�9, 15�15, 63�63, 31�31, i.e. the rank ordering
in quality given by the subjects, with a horizontal spacing
that accounts for the performance in discriminability be-
tween the sequences. The graph thus plots the metric as a
function of the subjective data to see how much correlated
they are.

For a metric to pass this test, it needs a monotonic re-
lationship between its output and the rank ordering. The
bottom of Fig. 4 presents the curve for PSNR and MRQM.
It can be seen that PSNR is not able to predict the subjec-
tive data in some cases (namely for large search window)
and an inversion in ordering appears for the last two sequ-
ences. PSNR indeed predicts that the sequence compressed
with a search window of 63 � 63 looks better than the one
using a window of 31� 31. MRQM, on the contrary, is able
to predict the subjective data. It exhibits a behavior that
is nearly linear with the subjective rank ordering, which
shows a very good correlation with this data. It is to be
noted that MRQM predicts that the best search window
for Basket Ball is 31 � 31, which is con�rmed by human
observers.

5. CONCLUSION

This paper presented a computational metric that is devo-
ted to assessing the quality of motion rendition in digital
video coding. The metric, termed MRQM, is built on top
of a spatio-temporal multi-channel vision model. It featu-
res a modeling of the motion sensors as they are thought
to mediate motion sensing and discrimination of moving
objects. The model of the motion sensor di�ers for tran-
sient and sustained channels. The sustained motion sensor
is non direction-selective. The transient motion sensor, on
the contrary, is direction-selective. Both detectors undergo
an excitatory-inhibitory pooling that models further elabo-
rations of the visual cortex. The metric has been used to
study the relationship between quality of motion rendition
and dimension of the search window in MPEG-2 coding.
MRQM predicts quality as it should, discriminating or or-
dering compressed sequences as human observers would do
it. The metric prediction were compared with subjective
data and exhibited a good correlation with the data, which
is not the case for the PSNR.
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