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ABSTRACT

This paper presents a comprehensive quality metric for co-
lor moving pictures which is based on a spatio-temporal vi-
sion model and on the opponent-colors theory. The metric
is used to assess the quality of MPEG compressed video
streams and i1s compared with a grayscale video quality
metric developed recently.
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1. INTRODUCTION

There is a growing need and interest for the testing of vi-
deo communications systems. A key aspect of testing is
quality assessment. Metrics for video have been introduced
only recently [8,11]. This paper presents a computational
metric for moving pictures that also accounts for color per-
ception, which is rarely addressed. The paper is structured
as follows: Sec. 2 presents the spatio-temporal color vision
model. Simulation results of the proposed metric are given
in Sec. 3 and Sec. 4 concludes the paper.

2. COLOR SPATIO-TEMPORAL VISION
MODEL

A spatio-temporal model of human vision has been de-
veloped for the framework of video coding and presented
in [6,8]. Tt models the following aspects of vision:

e Contrast is used to represent the visual information,
which makes the visual system adaptive to the local en-
vironment.

e The primary visual cortex represents the information at
various scales and orientations. Several “mechanisms”
or “channels” are thought to mediate visual perception.
A channel corresponds to a band in spatial frequency,
temporal frequency and orientation.

e Sensitivity to contrast varies with frequency. The con-
trast sensitivity function (CSF) defines the detection thre-
shold for a stimulus as a function of the frequency. In the
proposed model, the CSF is modeled by an excitatory-
inhibitory formulation to account for the non-separability
of spatial and temporal perceptions.

o Destructive interferences between two stimuli are mode-
led by wvisual masking, which express the modification of

the detection threshold of a stimulus in function of the
local contrast of the background.

The model described in [6] models such aspects but can
only process luminance information. This paper presents a
color extension to the model along with a metric for color
moving pictures. The metric is an extension of the moving
pictures quality metric introduced in [8]. The block diagram
of the computational metric, termed color moving pictures
quality metric is illustrated in Fig. 1.

Color perception is difficult to model as it is a “psycho-
logical sensation” that depends on many aspects [9]. It is
known that humans discriminability in color is poor [9].
The hue cancelation experiment [3] permitted to evidence
very important properties of color perception: it has been
observed that some pairs of hues can coexist in a single
color sensation while others cannot. For example, the com-
bination of red and yellow is perceived as orange and the
combination of blue and green is perceived as cyan. On the
contrary, a combination of red and green is perceived as
two different colors. Schematically, it is believed that the
brain uses three different pathways to encode the informa-
tion, one conveying the luminance signal, another the red
and green components and the third one the blue and yel-
low components. This is the basis of the opponent-colors
theory that permits to define the opponent-colors space.
The opponent-colors space decorrelates color information
as it approximates the representation of the data in the va-
rious visual streams of the brain. FEach of those streams
is independent, hence a separable processing of each color
component can be carried out.

The computational metric performs the following ope-
rations: 1t takes as input an original color sequence and
a distorted version of the precedent in some standard co-
lor space. The data is first linearized then converted to
the opponent-colors space. The color-opponent streams of
the original and decompressed sequences are subtracted to
compute the distortion in each color directions. The distor-
tion and the original sequences are decomposed into per-
ceptual channels to simulate the various detection mecha-
nisms. Pattern sensitivity is then computed for each per-
ceptual component, accounting for contrast sensitivity and
masking. This permits to express the distortion relatively
to the detection threshold, i.e. in just noticeable differen-
ces (jnd’s). Finally, the data is pooled over the channels
to yield a global distortion measure. The various building
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Figure 1: Block diagram of the color moving pictures quality metric.

blocks are now detailed.

2.1. Linearization of the Data

The digital samples that are known from the video sequ-
ence are termed the frame-buffer values. Those samples are
expressed in some color space, usually (Y, U, V) or (Y, Cr,
Cb) in video coding. However those values are not linear
with the luminance as produced by the display device. The
device performs some gamma correction and the luminance
of the screen also depends on the phosphor of the screen
itself. The first step i1s to transform the data into a calibra-
ted space to be device-independent and to be able to apply
further color space transformation. The exact procedure for
display device calibration is explained in [9]. The output of
this non-linear block is a compound of three streams that
are now in a device-independent space and are linear with
luminance.

2.2. Conversion to the Opponent-Colors Space

The next step converts the data to the opponent-colors
space. The opponent-colors theory defines a color space
for which the principal coordinates are perceptually ortho-
gonal. The three coordinates of this space correspond to lu-
minance (B/W), red-green (R/G), and blue-yellow (B/Y).
The opponent-colors space chosen here has been developed
by Poirson and Wandell who measured color appearance
and derived a pattern-color separable model [5,9]. The
sensitivity of the three components as a function of the
wavelength are depicted in Fig. 2. The output of this mo-
dule are three streams that are the color components in the
opponent-colors space. The three pathways are termed lu-
minance (B/W), red-green (R/G) and blue-yellow (B/Y).
The B/W component is close to the luminance channel of

the (Y, U, V) or (Y, Cr, Cb) spaces.

2.3. Perceptual Decomposition

The channel decomposition of the cortex is simulated by a
three dimensional filterbank that is described in [6]. The
bank used for the luminance streams features 17 spatial fil-
ters. One filter accounts for the low spatial frequency (be-
low 2 cycles per degree (cpd)). The 16 remaining filters
decomposes the data into 4 spatial frequency bands and 4
orientation bands. The frequency division is dyadic and the
filters are centered at frequencies of 2, 4, 8 and 16 cpd’s.
The orientation bands are centered around 0, 7/4, 7/2 and
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Figure 2: Spectral sensitivity of the Wandell-Poirson

pattern-separable opponent-colors space. The solid line is
the luminance channel (termed B/W), the dashed line is the
red-green channel (termed R/G) and the dot-dashed line is
the blue-yellow channel (termed B/Y).

3w/4. The temporal bank decomposes the data into 2 fre-
quency bands that are termed the sustained and transient
mechanisms.

Human sensitivity to chrominance component is much
lower than to luminance information. This is a direct con-
sequence of the characteristics of the photoreceptors mosaic
in the retina, namely the spacing of the various types of co-
nes [9]. Tt follows that a restrained number of channels can
be used for the R/G and B/Y pathways. Along the tempo-
ral direction, only the sustained mechanism is to be consi-
dered, as temporal sensitivity drops very quickly for chro-
minance. In the spatial domain, the first three frequency
bands are used, since sensitivity is very low above 8 cpd.
Those considerations are based on the work by Watson [10].

2.4. Masking

The non linear transducer modeling of masking introdu-
ced by Legge and Foley [4] is used here. In this model,
the detection threshold C'r for a stimulus is computed as a
function of the detection threshold of that stimulus in the



absence of a masker, Cr, (i.e. as given by the contrast sen-
sitivity function) and the contrast of the masker Cps. The
relationship is given by Eq. (1):

C'ro
Cr = Cu \E
{ Cro (c%)
The pixels in the perceptual channels of the distortion are
then divided by the detection threshold C'r, computed pixel

by pixel and channel by channel. In this way, the data are
expressed in “units above threshold” or jnd’s.

if Car < Cro )
if Oy > Cro @

2.5. Pooling

The above steps yield a prediction of the response from the
cells of area V1 of the cortex. The data is then gathered
together to yield a single figure and to account for higher
levels of perception. This is termed pooling. This step is
computed as follows. First, it is considered that human ob-
servers are not looking at the whole picture at the same
time but rather at regions of it. This is due to the focus
of attention and the viewing distance. To take those facts
into account, the pooling is computed over blocks of the
sequence. Such blocks are three-dimensional and their di-
mensions are chosen as follows: the temporal dimension is
chosen to account for persistence of the images on the re-
tina (roughly 100 msec.). The spatial dimension is chosen
to consider focus of attention, i.e. the size is computed so
that a block covers two degrees of visual angle, which is
the dimension of the foveal field. The distortion measure is
computed for each block by pooling the error over the chan-
nels. Basically, the magnitudes of the channels’ output are
combined by Minkowski summation with a higher exponent
to weight the higher distortions more. The actual compu-
tation of the distortion £ for a given block is computed
according to Eq. (2):
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(2)
where e[z, y, ¢, c] is the masked error signal at position (z, y)
and time ¢ in the current block and in the channel ¢; N,
N, and N; are the horizontal and vertical dimensions of
the blocks; N. is the number of chromatic and achromatic
channels. The exponent of the Minkowski summation is 3
and has a value of 4. In this application, the error measure
FE is further mapped onto the 1 to 5 quality scale defined
by CCIR Rec. 500 [2]. In this scale, 1 is the worst quality
and 5 the best. The mapping uses the following function,
relating the error measure to the quality index Q:

5
1+ NE’
where N ensures a mapping between 1 and 5. This free

parameter has been estimated on the basis of the vision

model [8].

Q:

3. RESULTS

This subsection presents results of quality assessment on
video compressed with the MPEG-2 standard operating in

MP@ML (main profile, main level) and HP@ML (high pro-
file, main level). Two classical test sequences for broad-
casting applications have been used for the simulations,
Mobile & Calendar and Basket Ball. The sequences have
been encoded with a software simulator of the test model 5
of MPEG-2, supplied by the MPEG Software Simulation
Group, as interlaced video, with a constant group of pic-
ture structure of 12 frames and 2 B-pictures between every
P-picture. The video buffer verifier size was set to its ma-
ximum allowed size. The dimension of the search windows
for motion estimation was 15 pixels for P-frames, 7 pixels
for backward motion estimation in B-frames and 3 pixels
for forward motion estimation in B-frames. The coder ope-
rates in constant bitrate (CBR) mode. Coding has been
performed on the range of bit rates that MPEG-2 typically
addresses.
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Figure 3: Comparison of CMPQM, MPQM and subjective
data for Mobile & Calendar as a function of the bitrate.

Results of CMPQM on Mobile & Calendar and Basket
Ball are compared in Fig. 4 and Fig. 3 with the grayscale
quality metric, MPQM introduced in [8]. The curves obtai-
ned with CMPQM are very similar to those of MPQM. This
is due to the low sensitivity of the chromatic pathways. As
the chromatic sensitivity is one order of magnitude lower
than the achromatic sensitivity, the weight of the chroma-
tic channels is not very significant in the computation of
the metric. This has been observed for still pictures too [7]:
if the distortion is more or less equally distributed between
chromatic and achromatic channels, a distortion measure
computed on the achromatic channels can predict the qua-
lity of a picture. A distortion measure of the chromatic
channels is only significant if there is a much larger distor-
tion in the chromatic pathways than in the achromatic one.

The metrics are also compared with some available sub-
jective data that is represented as error bars in Fig. 4 and
Fig. 3. The data has been collected by the research center of
RAI, Ttaly [1] and consists of subjective rating of compres-
sed video by human observers. The data has been collected



according to CCIR Rec. 500-3. The method is a double
stimulus continuous quality scale (DSCQS). The subjective
data has been adapted to the purpose of this experiment.
As both the original and the compressed sequences are gi-
ven a vote in the DSCQS task, the data has been used as
follows: Each result has been normalized with respect to
the subjective vote of the original and the distance between
the two subjective votes used to deduce an error bar.

Figure 3 presents the curves of the three metrics for the
sequence Mobile & Calendar along with the tentative map-
ping of the subjective data. It can be seen that the subjec-
tive data is pretty noisy as the rating at 4 and 6 Mbits/sec.
is nearly identical. The metric curves show however a beha-
vior that is consistent with the data. Figure 4 presents the
same results for the Basket Ball sequence along with the
performance of the I'TS metric. This metric is the only al-
ternative metric for moving pictures and is described in [11].
The subjective data seems less noisy in this case. This data
show particularly well an increase of perceived quality with
the bandwidth in the lower range of bitrates and a satu-
ration effect at higher bitrates, which is captured by both
metrics. As pointed out earlier, the MPQM and CMPQM
curves are very similar and indeed realize about the same
fit. The I'TS metric on the contrary is not consistent at all
with such data as shown in Fig. 4.
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Figure 4: Comparison of CMPQM, MPQM and subjective
data for Basket Ball as a function of the bitrate.

A more complete and extensive testing of the metrics re-
mains yet to be performed. The inherent problem with such
experiments is that a large number of observers is required
and a specific equipment is needed. Moreover, collection of
the data takes a huge amount of time. Such experiments
could not be performed within the scope of this work.

4. CONCLUSION

This paper presented a quality metric for color moving pic-
tures. The tool is an extension of a metric for grayscale

video introduced recently. The metric is based on a spatio-
temporal vision model and color perception is modeled by
the opponent-colors theory. Both metrics are compared and
exhibit a behavior that is coherent with the subjective data.
However, the prediction of both metrics are very similar due
to the low sensitivity of the chromatic channels.
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