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ABSTRACT

This paper describes a spatio-temporal model of the hu-
man visual system (HVS) for video imaging applications,
predicting the response of the neurons of the primary visual
cortex. The model simulates the behavior of the HVS with
a three-dimensional �lter bank which decomposes the data
into perceptual channels, each one being tuned to a speci�c
spatial frequency, orientation and temporal frequency. It
further accounts for contrast sensitivity, inter-stimuli mask-
ing and spatio-temporal interaction. The free parameters
of the model have been estimated by psychophysics. The
model can then be used as the basis for many applications.
As an example, a quality metric for coded video sequences
is presented.

1. INTRODUCTION

Impressive progresses have been made during the last de-
cade in the �eld of still image and video processing. The im-
portance that visual information and communication took
in today's society gave birth to an increasing demand for
fast and e�cient ways of transmitting visual data. This evo-
lution started with analog television and is now characte-
rized by digital techniques for representing and conveying
visual information. Video coding has been one of the most
proli�c �elds of application and a new generation of video
communication consumer products is about to be released.
More recently, several applications such as image quality
assessment, image enhancement or even image coding sho-
wed the need to incorporate knowledge of the only element
that has not been considered much: the end user. It is now
understood that imaging technology in general can highly
bene�t from insights of vision science.

Few connections exist between both �elds tough. The
objective of this work is to study the bene�t that video
imaging application can gain from vision science. It pre-
sents a model that incorporates the characteristics of the
HVS that are relevant to image processing applications. Its
major innovation is to be able to deal with video-sequences,
i.e. it incorporates a modeling of both the spatial and tem-
poral aspects of human vision as well as their interaction.
The resulting model features a three dimensional �lter bank
that simulates the various mechanisms of human vision, and
predicts the response of the primary visual cortex by si-
mulating contrast sensitivity and masking. The paper is
structured as follows: Section 2. presents the human visual
system, Sec. 3. shows how the model is built based on such
knowledge. A general architecture for the use of the mo-
del is presented in Sec. 4. Parameterization of the model is
briey described in Sec. 5. and an example of application is

discussed in Sec. 6. Eventually, Sec. 7. concludes the paper.

2. THE HUMAN VISUAL SYSTEM

Several levels of description can be adopted to study hu-
man vision. The approach that vision science uses is the
one of cognitive psychology or psychophysics. The human
visual system is modeled as a system characterized by a
response relating the output to input stimuli. Models are
then validated by psychophysical experiments in which hu-
man subjects are asked to assess visibility of stimuli. Such
modeling can be e�ciently performed by considering three
major aspects of vision: a multi-channel structure, contrast
sensitivity and masking.

2.1. Multi-Channel Structure

Electro-physiological experiments performed on cells of
the primary visual cortex (area V1) have shown that the
response of such neurons is tuned to a band limited portion
of the frequency domain [1]. Such data have been con�r-
med by psychophysical experiments [2], giving evidence that
the brain decomposes the spectra into so-called perceptual
channels that are bands in spatial frequency, orientation
and temporal frequency. Each channel can thus be seen as
the output of a �lter, which is characterized by a response
tuned to a speci�c spatial frequency, orientation and tem-
poral frequency. The pro�le of the channels is very close to
Gabor functions [3], which may be thought of an e�cient
representation of visual information since they are the most
compact functions both in space/time and frequency.
The number of channels that are involved in human vision

has been studied by psychophysics. Its is generally admitted
that temporal vision is governed by two mechanisms, ter-
med transient and sustained [4, 5]. The �rst mechanism is
sensitive to moving patterns, whereas the second is respon-
sible for perception of still or slowly moving images. As far
as spatial vision is concerned, it seems that there are about
�ve bands in spatial frequency, performing an octave-band
division of the frequency axis, and roughly four to eight
equal-width orientation bands. Four orientation bands are
used in this model.

2.2. Contrast Sensitivity

The response of the human eye varies as a function of frequ-
ency. This is commonly referred to as contrast sensitivity.
More precisely, a signal is only detected by the eye if its
contrast is greater than a certain threshold de�ned as the
detection threshold. The detection threshold varies as a fun-
ction of frequency. The sensitivity is de�ned as the inverse
of the detection threshold and is thus a function of frequ-
ency as well. The term contrast sensitivity function (CSF)
is usually used to denote this function. It indicates the
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contrast that a stimulus at a speci�c spatio-temporal fre-
quency should have to have a probability of being detected
of 0:5. In other words, the CSF is the curve of the inverse
of the detection threshold as a function of frequency.
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Figure 1. Model of masking.

2.3. Masking

The CSF can account for the perception of a single stimu-
lus. However, interactions appear when several stimuli are
present. In a �rst approximation, it is commonly considered
that interference between two stimuli can only occur if they
are contained in the same channel. Such interference results
in a modi�cation of the detection threshold of one stimulus
due to the presence of the other. A common model of this
phenomenon, termed masking, is a non-linear transducer as
illustrated in Fig. 1. Consider two stimuli, a target and a
masker. Let CT0 be the contrast detection threshold for
the target as given by the CSF, CM be the contrast of the
masker and CT be the actual detection threshold for the
target in the presence of the masker. The latter is determi-
ned as:

CT =

�
CT0 if CM < CT0
CT0

�
CM

CT0

�"
otherwise:

Therefore, when CM is greater than CT0, the actual de-
tection threshold, CT , increases as a power of CM . This
dependency, plotted in a log-log graph, is a straight line of
slope ".
It is now known that there are some masking e�ect across

channels, although this is a secondary phenomenon. Some
recent spatial vision models [6, 7] now account for this e�ect
as well. For the time being, since the goal is to validate the
spatio-temporal model and to limit computational comple-
xity, this phenomenon is neglected in the model.

3. BUILDING THE MODEL

The behavior of the human visual system can thus be mo-
deled by cascading a three-dimensional �lter bank and the
non-linear transducer that models masking. The �lter bank
used in this model is separable in spatial and temporal fre-
quency directions. It features 17 spatial �lters and 2 tem-
poral �lters. The low-low spatial �lter is isotropic. The
others are tuned in four orientations (0, �=4, �=2 and 3�=4
radians), and four frequency bands (centered at 2, 4, 8 and
16 cycles per degree (cpd)). The spatial �lter bank is il-
lustrated in Fig. 2 and the temporal bank in Fig. 3.
A further aspect that has to be modeled is the spatio-

temporal interaction of human vision. It is well known that
spatial and temporal perception are not separable [4]. Some
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Figure 2. The spatial �lter bank, featuring 17 �l-
ters (5 spatial frequencies and 4 orientations). The
magnitude of the frequency response of the �lters
are plotted on the frequency plane. The lowest fre-
quency �lter is isotropic.

authors attribute this dependence to a variation in the �l-
ter positions within the spatio-temporal frequency domain,
whereas others explain the phenomenon by a variation of
the �lter gains. Recent studies [5] gave more evidence for
the latter hypothesis, permitting the use of a �lter bank se-
parable along the spatial and temporal frequency direction.
The variation in the �lter gain is then modeled at the le-
vel of the CSF, that will be non-separable and account for
the spatio-temporal interaction. Burbek & Kelly [8] propo-
sed an interesting modeling of the non separable CSF based
on an excitatory-inhibitory formulation. This approach has
been chosen to model the spatio-temporal interaction. The
formulation expresses the CSF as the di�erence between
two separable mechanisms, denoted excitation and inhibi-
tion, which permits to parameterize the whole CSF with a
limited number of free parameters.
The above described Gabor �lter bank may not be su�-

cient for some applications. Such a decomposition is not
complete and cannot span the whole frequency domain.
This may cause two problems: �rst of all, it will not be
possible to reconstruct the data, which may be of interest
in some applications. Secondly, some area of the spectrum
will be attenuated too much and the representation of the
data will su�er from scalloping. To overcome these limita-
tions, a second �lter bank is introduced. This bank is an
approximation of the Gabor �lter bank but o�ers perfect re-
construction and is an extension of the one proposed in [9].
The advantage of such a bank is that it allows reconstru-
ction of the data after processing within the subbands and
does not have any scalloping e�ect.

4. PERCEPTUAL PROCESSING OF VIDEO
SEQUENCES

The structure of the working model is illustrated in Fig. 4.
A video coding framework is assumed, into which an ori-
ginal sequence is considered along with a distorted version
of it. The error sequence is computed by subtracting the
original sequence from the decoded one. Then the original
and the error sequences are decomposed by the �lter bank.
If reconstruction is needed, the perfect reconstruction (PR)
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Figure 3. The temporal �lter bank accounting
for two mechanisms: one low pass (the susta-
ined mechanism) and one band pass (the transient
mechanism). The frequency response of the �lters
is plotted as a function of temporal frequency.

bank is used, otherwise the Gabor bank is chosen. As the
original sequence will act as a masker with respect to the
distortion, the non linear transducer is used to compute,
pixel by pixel, channel by channel the detection threshold
of the error. The error signal is then multiplied by the
inverse of the detection threshold to express data in just
noticeable di�erences (jnd's) or units above threshold. This
processing of the data predicts the response of the neurons
in area V1.
A �nal stage has then to be added according to the de-

sired application and to account for higher levels of cogni-
tion. Several approaches are possible: once the prediction
of the response of the primary cortex is assessed, the data
can be reconstructed and processed by classical image sequ-
ence algorithms (e.g. spectral estimation). This approach
is the less likely, however. A second possibility consists
in directly processing the perceptual components. In that
case, the data will be pooled over the channels according
to some summation rule designed for the targeted appli-
cation and accounting for later stage of processing by the
brain. Another approach consists in processing the percep-
tual components and then reconstructing the data with the
PR �lter bank.

5. PARAMETERIZATION OF THE MODEL

The model has been parameterized by means of psychophy-
sics. The goal of the experiments was to measure the
CSF. As the purpose of the work is not the study of the
HVS but its applications in a video coding framework, the
psychophysical experiments have been performed to study
perception of coding noise. This has been done in the follo-
wing way: �ve subjects took part to experiments where they
have been asked to assess the visibility of stimuli. White
noise �ltered by a perceptual channel has been used as sti-
muli as it will represent a signal close to coding noise �ltered
by the same channel. The experiment was a two alterna-
tives forced choice discrimination task [10]. The level of
the stimuli were adaptively decided on the y by a modi-
�ed PEST procedure [11]. Details of the experiment are
reported in [12].
An example of measurements is presented in Fig. 5. The
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Figure 5. Graph of the measured sensitivity for the
�ve subjects as a function of temporal frequency
and at a spatial frequency of 4 cpd.

temporal sensitivity measured at a spatial frequency of
4 cpd has been plotted for the �ve subjects. Each data
point is the average of three successful measurements. The
sensitivity of the subjects varies but the general shape of the
curve is very consistent with the theoretical prediction [4].
Further measurement, reported in [12] permitted the esti-
mation of the whole CSF. A contour plot of the estimated
curve is shown in Fig. 6, as a function of spatial and tem-
poral frequency.
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Figure 6. Contour plot of the estimated spatio-
temporal CSF.

6. EXAMPLE OF APPLICATION

A typical application of such a model is objective quality
assessment. A perceptual metric for the assessment of video
coding quality has been designed and is described in [13].
Basically, the metric works as follows: the architecture pre-
sented in Sec. 4. is used. The original and error sequences
are decomposed using the Gabor �lter bank. Contrast sen-
sitivity and masking are used to predict the perceived error
that is then expressed in jnd's.
This signal is then divided into three-dimensional blocks.

The block dimensions are chosen as follows: the temporal
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Figure 4. The general structure of a perceptual processing of video sequences. The thick arrows represent
a set of perceptual components. The thin lines represent sequences.

dimension is chosen to account for persistence of the images
on the retina. The spatial dimension is chosen to consider
focus of attention, i.e. the size is computed so that a block
covers two degrees of visual angle, which is the dimension
of the fovea. The data is then pooled, for each block, over
all channels by probability summation [4]. This yields a
distortion measure for each block. A global measure for
the whole sequence can then be obtained by averaging this
measure over blocks.
The metric, denoted Moving Pictures Quality Metric

(MPQM) has been used to characterize the subjective qua-
lity of MPEG-2 [14] coding performance over a range of
bitrates. It turned out that the metric correlates quite well
with other subjective evaluations of MPEG-2 [15].

7. CONCLUSION

This paper presented a spatio-temporal model of human
vision. It models the multi-channel structure of the pri-
mary visual cortex, contrast sensitivity, masking and spatio-
temporal interaction in human vision. The model has been
parameterized for a video coding framework by the means of
psychophysics. The resulting scheme predicts the response
of the neurons of the primary visual cortex and can be used
as a general architecture for perceptual processing of video
sequences. A quality metric for coded video sequences has
been built on top of the model and is briey described. The
tool proved to correlate well with subjective data.
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