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Abstract | This work presents a new method using
time-varying autoregressive modelling for the asses-
sment of heart rate signals stationarity in patients be-
fore the onset of ventricular tachyarrhythmias, inclu-
ding comparison with a control group. A general sta-
tionarity trend is reported for all subjects, and par-
ticularly no signi�cant change is observed before an
arrhythmic event. Evaluation of the model �tting per-
formed by a hypothesis test suggests the presence of
nonlinearities.

1 Introduction

Heart rate (HR) variability analysis is a well known techni-
que to study the interaction between the autonomic ner-
vous system and the heart sinus pacemakers. However,
classical linear methods (DFT, AR modelling) relie on the
assumption of stationarity. This hypothesis is not obvious
since long-term HR recordings have shown strong circadian
variations, suggesting a nonstationary behaviour. Nume-
rous studies attempted to �nd out some particular fea-
tures of the HR dynamics preceding the onset of ventri-
cular tachyarrhythmias (VTA). However, results are still
contradictory and require further investigations.
The purpose of this work is to present a new method for

evaluating the stationarity of the HR signal and therefore
to highlight possible changes in its structure before an ar-
rhythmic event. Moreover, results are compared to control
subjects in upright position.
The proposed method is directly derived from a para-

metric approach. We consider a time-varying autoregres-
sive (TVAR) model with a decomposition of the AR coef-
�cients variation on a set of basis functions. Stationarity
is assessed by the determination of optimal orders using
Rissanen's MDL criterion. Then, statistical signi�cance of
the TVAR coe�cients is evaluated by hypothesis testing.

2 Time-Varying Autoregressive Model

A discrete-time stochastic process x(n) is often expressed
by an autoregressive (AR) model with p coe�cients ai.
When x(n) is not stationary, this approach is no longer
valid, since there is no time dependence in the coe�cients
ai. A solution proposed by Rao [1] is to make the assump-
tion that the variations of ai can be approximated by a
linear combination of a �nite number of known determi-
nistic functions uk (called basis): ai(n) =

Pq

k=0 aikuk(n).

Therefore, the TVAR model has the following form:

x(n) =

pX

i=1

(

qX

k=0

aikuk(n))x(n� i) + �(n) (1)

and estimation of the coe�cients aik is performed by mini-
mization of the mean square error. Grenier [2] and Hall &
al. [3] have described with more details the identi�cation
of this model and its computational aspects.

3 Parameters Selection and Model Va-

lidation

The TVAR model makes use of three degrees of freedom:
the choice of the basis functions uk, the AR order p and
the basis order q.
Many di�erent solutions have been proposed in the lite-

rature for the functions uk ([2], [3]). None of them seems to
be de�nitive, partly because the choice of uk needs some
a priori knowledge upon the signal time variations. We
consider here classical polynomial functions (namely Che-
byche�, Hermite and Legendre).
For determination of p and q, we make use of Rissanen's

Minimum Description Length (MDL) criterion [4], which
can be generalized in our case:

MDL(p; q) = N ln(�̂2p;q) + p(q + 1) ln(N ) (2)

where N is the length of the signal, and �̂
2

p;q is the residual
error variance.
Then, we achieve model validation using a hypothesis

test on each coe�cient aik. For that, we need to estimate
the distribution of the TVAR coe�cients, which can be
performed by deriving the expression of the maximum li-
kelihood estimator L(a). Under certain mild conditions,
this estimator is known to be asymptotically normally
distributed [5]. The diagonal elements of the inverse of
F = @

2 logL(a)=@a@aT are the coe�cients variances �2aik .
Therefore, under the hypothesis that a non-signi�cant

coe�cient is zero (null hypothesis), we can compute the
probability prob(jaikj � d�aik) = prob(jaik=�aik j � d).
According to the value of d, we accept the hypothesis

with a signi�cance level � given by the normal distribution
N (� = 0; � = 1). We selected a standard value � = 0:95,
leading to a minimum ratio jaik=�aik j of 1:96.



4 Stationarity Assessment

In order to evaluate the stationarity of the signal, the
TVAR model is �rst applied for di�erent values of p and q.
The MDL criterion is then computed for each couple (p;q)
and minimized to obtain the optimal orders. Finally, the
number of statistically signi�cant coe�cients is derived.
If the basis order q selected by the MDL criterion is

high (typically greater than 2 or 3), it means that a large
number of basis functions is required to accurately model
the signal. It implies also that statistical properties of the
signal are strongly changing with time, suggesting a highly
nonstationary behaviour. On the other hand, if q equals
zero, we can expect that the signal structure is closer to
stationarity, since a TVAR model in this case is equivalent
to a classical AR model. The statistical signi�cance of the
coe�cients provides in this context a measure of the model
�tting to the signal.
Moreover, it is often useful to determine if a smaller

part of the signal can be considered stationary. For this
purpose, we apply also the described method to increasing
sections of the signal in order to evaluate the horizon of
stationarity.

5 Application to HR Signals

The proposed method has been applied to HR recordings
coming from two di�erent populations. The �rst one inclu-
des 7 patients (mean age: 54 � 14, mean ejection frac-
tion: 18:2�11:4%), su�ering from VTA. We retrieved from
Medtronic 7218/7220 de�brillators two sets of 7 HR series
consisting of 1024 RR intervals with less than 5% of ventri-
cular premature contractions. These data were obtained
from a multicentric investigation including 8 European
centers (HRVF-study). The �rst set is composed of RR
samples preceding the onset of a VTA (mean cycle length:
334 � 40ms), while the second one concerns RR samples
acquired under baseline condition. On the other hand, 3
normal subjects constitute the control group, where data
have been gathered during an orthostatic stress.
The following parameters have been used for simula-

tions: Legendre basis, TVAR order p covering the range
10 to 20 and basis order q ranging from 0 to 5. Each signal
is divided into 6 sections of increasing duration (with a
step size of 100 s), in order to examine the horizon of sta-
tionarity. An example is presented for a patient belonging
to the �rst population (before VTA and in baseline condi-
tion) and for a control subject. The following table pro-
vides for 3 durations (200 s, 400 s and 600 s) the optimal
orders (p;q) obtained with the MDL criterion and the cor-
responding signi�cance rate (SR = number of signi�cant
coe�cients/total number of TVAR coe�cients).

Population p;q SR p;q SR p;q SR

VTA 10;0 0.30 10;0 0.40 10;0 0.60
Baseline 10;0 0.50 10;0 0.40 10;0 0.40
Control 10;0 0.30 10;0 0.30 10;0 0.30

We have observed that the optimal basis order q is nearly
always equals to zero for all groups and conditions. The
strong time constancy of the optimal orders suggests that

up to a 10-minute duration, the signal structure is stable
and accordingly very close to stationarity. Therefore, re-
sults invalidate the assumption of a modi�cation of the HR
dynamics preceding onset of VTA. Then, we have compa-
red the number of signi�cant coe�cients between recor-
dings in baseline condition and recordings preceding VTA
in patients su�ering from arrhythmic events. The applica-
tion of a non-parametric test (Wilcoxon signed-rank) sug-
gests that the signi�cance rate is higher before a VTA than
under baseline condition (p = 0.07). Therefore, the HR dy-
namics preceding VTA seems to be more linear, but this
should be validated on a larger population. In a second
step, we have noticed again that the signi�cance rate ap-
pears to be lower for control subjects than for patients
before VTA (Mann-Whitney U: p = 0.06). Consequently,
our study reveals an increasing trend in the linearity of
HR signals, from normal subjects to patients before an ar-
rhythmic event.
Accordingly, results show that a TVAR model does not

�t HR signals better than a classical AR model. However,
if we note that few coe�cients are statistically signi�cant,
it is clear that this kind of signal cannot be accurately
described by classical linear models. Consequently, nonli-
near modelling of the HR signal should be investigated.

6 Conclusion

In this work, we have developed a new method using TVAR
modelling for the evaluation of HR signals stationarity.
Optimal orders for this model have been selected by Rissa-
nen's MDL criterion and hypothesis testing has been intro-
duced to assess the statistical signi�cance of the TVAR
coe�cients.
In our two groups (control subjects and arrhythmic pa-

tients), a stationarity trend has been highlighted. In par-
ticular, no modi�cation of the HR dynamics preceding an
arrhythmic event has been observed. The comparison of
the TVAR coe�cients signi�cance rate has suggested an
increasing linearity of HR signals from control subjects
to patients su�ering from a ventricular tachyarrhythmia.
Nevertheless, the weak average level of coe�cients signi�-
cance indicates a probable nonlinear component and justi-
�es further studies using nonlinear tools.
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