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ABSTRACT

This paper introduces a new image restoration method
based on a 1-D Kalman �ltering. Using the model of
tuned channels, the corrupted image is decomposed into
a set of perceptual components characterized by di�erent
orientations and frequencies. The restoration step is then
performed on each component in one dimension following
the appropriate orientation with the well-known Kalman
algorithm. Since the decomposition provides perfect re-
construction, the restored image is the recomposition of
all the restored components. This approach yields rele-
vant results for 2-D blurred images, using 1-D low order
models. Unlike traditional 2-D Kalman restoration tech-
niques, its implementation has no excessive computational
load.

1. INTRODUCTION

Kalman �ltering has been used in various formulations in
the �eld of image restoration [1, 2, 3, 4, 5]. The fundamen-
tal principle of this well established algorithm consists in
determining recursively the causal least mean square error
estimate with a two-step procedure [6]. First, a prediction
of the state variables is formed on the basis of the previous
state of the system. Then, the prediction is updated on
the basis of the observed image data to form the estimate
of the present state of the system. The update operation is
achieved by means of a Kalman gain, which allows a linear
correction of the previous state. This gain is computed at
each iteration by a least mean square error minimization.

First applications to the restoration of blurred and noisy
images were restricted to 1-D Kalman �lter using 1-D
image model and degradation model. [7]. Tab. 1 gives
some results obtained with images corrupted by the non-
separable 2-D blurring:
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and restored with 1-D observation model and 1-D image
model. In this case, the image is �rst transformed into a
vector (thus neglecting the borders e�ect and correlation

between lines) and then Kalman algorithm is applied to
this vector. It clearly appears that a 1-D restoration is
not convenient when a 2-D degradation is present.
Following this, the approach was extended to two di-

mensions using a 2-D autoregressive image model with
non-symmetric half plane causal supports [1, 2, 4]. This
natural extension of the one-dimensional approach yields
adequate results but the main problem is the excessive
computational load due to the update of the state vectors
depending on the size of the considered causal support. In
order to decrease the complexity, reduced update Kalman
�lters have been proposed [1, 2, 3]. The update procedure
is limited to state variables in a neighborhood of the cur-
rently processed pixel. These approaches are based on the
hypothesis that a pixel has a relevant correlation only for
certain neighboring pixels.

2. RESTORATION SCHEME

In this paper we propose a new scheme for Kalman image
restoration. The corrupted image is �rst decomposed into
tuned channels in orientation and frequency [8]. This de-
composition gives rise to a set of subimages (termed the
perceptual components), each of them being a representa-
tion of the degraded image around a given orientation and
within a particular frequency band. The basic assumption
for the de�nition of the causal support, image and observa-
tion models, is that in each tuned channel the correlation
among pixels is relevant only in the considered orientation
while it is negligible in all the other orientations. There-
fore it is possible to de�ne a causal 1-D support for each
tuned channel. Obviously, the de�ned causal support and
the scanning order depend on the orientation of the chan-
nel. This solution allows to apply simple and straightfor-
ward 1-D Kalman restoration based on observation and
image models developed for each channel. Moreover the
proposed choice of the causal support simpli�es the boun-
dary conditions problem that appears in reduced update
2-D Kalman approaches. Then the image reconstruction
is performed by recombining all the restored perceptual
components.

3. FROM 2-D TO 1-D KALMAN FILTERING

In order to implement the proposed scheme, a transform
for the decomposition into tuned channels has been de-
signed. This transform is de�ned according to the simpli-
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Image Models orders PSNR blurred image PSNR restored image PSNR gain
(dB) (dB) (dB)

Lena 5 31.19 29.94 -1.25

Cameraman 5 23.54 21.79 -1.75

MIT 5 24.32 21.96 -2.36

Table 1. PSNR gains for 1-D Kalman restoration applied to some 2-D blurred images. The causal support

follows the simple lexicographic ordering.

causal supportscanning current pixel

Figure 1. Causal support and pixel scanning order for the orientation at -45, 90, 45 and 0 degrees.

�cation proposed in [9] for the visual perception mode-
ling: the signal is decomposed into 4 orientations (� =
�45; 90; 45; 0 degrees) and into 5 frequency bands denoted
as f = 1; 2; 3; 4; 5; plus a single DC component denoted
as f = 0. The decomposition into perceptual compo-
nents is performed by �lters which are separable in the
polar coordinates in the Fourier domain. The impulse
response of these �lters is well spatially localized for the
high-frequencies and well frequentially localized for the
low-frequencies (octave analysis). Furthermore, the �lters
have symmetry and mirror properties around their cut-
o� frequency or cut-o� angle so as to obtain the perfect
reconstruction property.

The decomposition described above allows to reduce 2-
D Kalman restoration to 1-D in each channel. Kalman
�ltering requires two distinct models: an observation mo-
del which links the original image to the corrupted one,
and an image model which gives the relation between the
currently processed pixel and those already restored. The
latter is de�ned as an ARMA model, with an additional
term taking into account the in
uence of the neighboring
pixels in channels with the same orientation but lower fre-
quencies.

The �rst equation describes the link between the blur-
red component yf;� and the original component xf;� by
means of the transfer function hf;� . The frequency band
index is given by f , while � is the orientation index, and
K the order of the blurring. The term wf;� models the
observation error as a white Gaussian noise. In the second
equation, the current pixel of the original component xf;�
is a combination of pixels in the causal support of the same
perceptual component (autoregressive part with transfer
function af;�) and neighboring pixels of all the compo-
nents of lower frequencies x�;� (moving average part with
transfer function c�;�). Here, vf;� represents the modeling

error, expressed by a Gaussian white noise. The degrada-
tion model (1) and image model (2) for each channel can
be expressed by the following equations:

yf;�(n) =

K�1X

k=0

hf;�(k) � xf;�(n� k) +wf;�(n) (1)

xf;�(n) =

IX

i=1

af;�(i) � xf;�(n� i) +

f�1X

�=0

J�1X

j=0

c�;�(j) � x�;�(n� j) + vf;�(n) (2)

The representation of the causal support and of the
scanning order for each oriented component is reported
in Fig. 1. Each component is transformed into a one-
dimensional vector and restoration is carried out for each
orientation and each frequency band, starting from the
low frequencies and progressing with increasing frequency.
The restored image is then obtained by recombination of
all the restored components.

4. EXPERIMENTAL RESULTS

Experimental results have shown that the orders of the
models may be kept low without loss of e�ciency and that
boundary e�ects are negligible. Tab. 2 points out the evo-
lution of the PSNR gain with respect to the orders of the
observation and image models. It clearly appears that one
can restrict the orders of the models to a reasonably low
value (e.g. K=I=J=5).
The hypothesis of lack of correlation among pixels of

di�erent orientations channels has been veri�ed. Expe-
rimental results show that the correlation with pixels of
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Image Observation model Image model Image model PSNR gain
order K order I order J (dB)

Lena 3 3 3 3.05
Lena 5 3 3 3.08

Lena 5 5 5 3.14

Lena 7 5 5 3.16
Lena 9 5 5 3.17

Table 2. PSNR gains for some orders of the image and observation models.

Figure 2. Original image (left), blurred image (center) and restored image (right) by 1-D Kalman �ltering

on oriented components. The images are degraded by a 2-D blurring, and a white noise of variance 9 has

also been added to the image Lena.

Image Noise var. PSNR blurred image PSNR restored image PSNR gain
(dB) (dB) (dB)

Lena 0 31.19 34.33 3.14
Cameraman 0 23.54 25.93 2.39

Lena 9 30.48 32.50 2.02

Lena 100 26.41 29.09 2.68

Table 3. PSNR results and improvements for two images, with and without additive white noise.
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other orientation channels yields coe�cients whose values
is indeed negligible.
Di�erent kinds of blurring have been applied to some

test images. White Gaussian noise has been also added to
the corrupted images to con�rm the robustness of the new
method. Relevant reconstruction PSNR gains are obtai-
ned in the cases with and without the addition of Gaussian
white noise. Some typical results are reported in Tab. 3.

Fig. 2 reports an example of the restoration for Came-

raman and Lena images.

5. CONCLUSION

In this paper, a new method for 1-D image restoration by
Kalman �ltering has been developed. The 1-D �ltering
operation is carried out by decomposition of the blurred
image into subimages by means of the tuned channelsmo-
del. According to this model, each of these perceptual
components represents the original image within a band
of frequency and around a given orientation. Since infor-
mation in each component is found to be relevant only in
one direction, the restoration process can be achieved by
a straightforward 1-D Kalman algorithm. The restored
image is then reconstructed by a simple addition of all the
restored components. The main advantage of this method,
in comparison with classical 2-D techniques, is to avoid a
heavy computational load occuring when 2-D restoration
techniques are implemented.

Experimental results have shown that signi�cant PSNR
gains are obtained, even with observation and image
models of low order (typically 3 or 5). Moreover, ro-
bustness has been underlined by the addition of white
noise on a broad variance scale.

Further improvements of the method can be considered,
especially for the determination of optimal orders and sup-
ports, as well as the characterization of the mutual in
uen-
ces of the perceptual components concerning the image
model. A future extension is also considered in order to
apply the method to other kinds of degradations and not
only non-separable blurring.
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