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ABSTRACT

We present an automatic and unsupervised method for non-rigid registration of 3D Magnetic Rescnance
(MR) Images with the Stockholm Computerized Brain Atlas (CBA). This method can be used in the context of
multimodal medical image registration, fusion and antomatic brain segmentation. In these applications anatomical
images (MR) are coregistered with low spatial resolution functional imaging modalities (PET and SPECT) and
fused with the neurological database of the CBA.

The proposed matching methed is based on the minimization of a 3D Chamfer distance function between the
surface of the brain extracted from the MR Image and the CBA brain surface. The surface-to-surface distance
function is efficiently calculated by using a precomputed point-to-surface Euclidean distance map.

The non-rigid inter-patient transformation of the CBA is modeled by a generalized 3D second order transfor-
mation. This transformation is easily differentiable and, as a consequence, fast and efficient minimization methods
can be used. First, a quasi-rigid, first order transformation is computed. Then, the matching is improved by
introducing the second order coefficients into the transformation. After this global matching, a local adaptation
of the CBA is performed by a morphing method.

The combination of a second order global transformation with a 3D local morphing allows to obtain a reg-
istration accuracy of one pixel, i.e. a mean distance between the surface of the brain in the MR Image and the

CBA of one pixel, which is significantly better than what can be expected from a human operator.
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1 INTRODUCTION

Image interpretation in neurology often requires the use of an individual providing accurate sulci/gyri identi-
fication. This is not only true for high spatial resolution modalities such as CT or MRI, but also for medium to
low spatial resolution images as metabolic (functional) maps obtained with PET or SPECT. The brain atlas may
either be obtained by delineation of the most relevant sulci in individual MRI 3D datasets and their subsequent
fusion into anatomic or functional datal and/or by using non linear transformation of a standard atlas, which is
the object of the present work.

Mamnual or automatic delineation of the major brain sulei can be carried out on good quality MRI surfaces but
does not provide labelling of the structures. Atlas-based sulcal identification is a viable alternative despite a high
individual gyral variahbility,® since the proposed templates are generally not too far from their targets. The CBA
database® is based on anatomical information obtained from cryosectionned brains and provides localization of
sulci and gyri, Brodmann cytoarchitectonic areas and basal ganglia. This atlas is adjusted to individual brain
images which supplies templates for sulci labelling and delineation of the Brodmann areas.

Matching the CBA with individual MRI datasets is currently done manually by chosing the optimum param-
eters for a mumber of elementary transforms which are combined into a general 3D second degree transform.*
The optimization criterion is the visual matching of the transformed CBA objects, mainly the brain surface and
the ventricular system, with the MR images. Although the efficiency of this method has heen demonstrated,® it
suffers from being both time-consuming and operator dependent.

In the automatic registration procedure we propose, the optimization of the transformation coefficients is
performed through the iterative minimization of a matching criterion. The following section presents the matching
criterion as a Chamfer distance® on simplified cortical and ventricular surfaces and a fast computation method
based on a precomputed distance map. In section 3, the global transformation model and the computation of its
optimal parameters are described, while section 4 presents the local transformation used as a post-processing tool.
The results obtained are described in section 5 and discussed in section 6, which also compares the respective
advantages of the manual and the automatic matching procedures.

2 MATCHING CRITERION

The first task when matching a MR image with the CBA is to define a suitable matching criterion, that is
a criterion both relevant and easily computable. We choose the Chamfer distance between two reduced sets of
points, the simplified outer surfaces of the MRI and CBA brains. We shall first explain how these surfaces are
obtained, then formalize the distance function between the two sets of points, and finally present how distance
maps allow to compute the distance function in an efficient way.

2.1 Simplified Surfaces

In this work, we start from MR brain images which have been previously segmented with the directional
watershed algorithm,® as shown on figure la-c. This method achieves high quality brain surfaces (fig 1.d) including
the ventricular system. However these surfaces are too detailed to be used in the matching procedure. First,
the use of the sulcal patterns would represent a potential source of error due to the intrinsic sulcal variability.
Moreover, the complexity of a criterion based on a detailed surface is much higher than the one obtained with a
simplified one as described in section 3. The use of the detailed brain surface would lead to a waste of computation
time and, more dramatically, would produce a non-convex criterion with respect to the transformation parameters.



Figure 1: Extraction of the simplified cortical and ventricular surface: a & b) Original MR Image: white line on
sagittal view (a) gives the level of the horizontal plane (b). ¢} Brain image after segmentation with directional
watersheds d) Detailed brain surfaces €) Simplified cortical surface f) Simplified cortical surface and ventricular
system.

This would prevent the use of efficient minimization techniques.

Therefore, we simplify the brain object by applying to it a binary morphological closing.” This operation has
the property of filling holes of a size smaller than the structuring element. Thus, by choosing this size appropiately,
one can remove the sulci and, if necessary the ventricular system from the criterion’s set of point. In section 3,
in order to match the complexity of the criterion with the one of the transform we search, we will use either the
outer surface alone (figure 1.e) or this surface and the ventricular system (figure 1.f).

2.2 Chamfer distance

We define the Chamfer distance® between the sets of points Syos and Sye ¢ (the mobile and reference surfaces,
respectively) as the quadratic mean of the distances from each point of Spmes to Syer. The distance between one
point and S,.; is the smallest distance between this point and any point of 5,.;. Formally, we have
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Figure 2: Distance map generation: one band of S, (left) and corresponding distance map in random colors
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In this last formula, we use the true Euclidean point to point distance instead of an approximated 3-4-5
distance transformation as often proposed.®® Indeed, this is a better choice since we want to use the gradient of
the criterion. Although this represents a computational burden, this caleulation is performed only once and will

not affect significantly the global registration time.

2.3 Distance Map

The evaluation of the distance criterion being central in any iterative minimization methed, a fast computing

procedure is proposed. We produce a distance map by precomputing d%m . (z) from equation 2 for all points in a
discrete volume including Sy.;. Subsequently, the evaluation of equation 1 will only require the computation of

a sum.

The Euclidean 3D distance map can be efficiently generated by using a region growing algorithm based on
hierarchical queunes (similarly to the watershed algorithm®).

Since we choose S,.; as the CBA surface and S, for the MR outer brain surface, the computation of the
distance map from S,.; has to be performed only cnce. If stored, it may subsequently be used for any registration.
Figure 2 illustrates a cut through the distance map.



3 GLOBAL TRANSFORMATION MODEL

The global transformation y = 7'(z) from the MRI S, to the CBA 5,.; is modeled by a linear combination
of N elementary scalar functions f;(z) for each coordinate y;(: = 0, 1,2) of y. Formally,

¥ = z::aij-fj(x) (3)

With this model, the general 3D first degree transform is represented with N=4 and f;(z) = 1, zg, 21, 4, and
thus 12 coefficients a;;. The general second degree transform uses N=10 and f;{z) = 1, 2o, 21, 21, z2 23 xl
Eod1, Eoie, £1ee, and thus 30 coefficients o;;. While this model is sufficiently general to provide the 2 transforms
we are interested in, it cannot, for instance, model a rotation as a unique parameter.

The matching efficiency of a given transform T, (x), defined by its 3N coefficients oy;, is assessed by
D(T(Smob), Srey) where T(Smos) is the set of points y = T'(z) for all # € Sme and D(,) is the Chamfer dis-

tance defined in equation 1. In order to simplify the notations, we choose the equivalent criterion:

M(aiz) = D*(T(Smob), Sveg)-cardinal (Smop) = Y, d,., (Tuy(z)) (4)

rESmub

Finding the optimal transform Ty, (x) is thus equivalent to minimizing the criterion M (ay;) in the coefficient
space. This is possible, despite the high number of coefficients, thanks to the two following peints:

e First, thanks to the appropriate choice of the surfaces Spos and Sy.; in section 2.1, the criterion M (ay;) is
convex in the space of coefficients ay;, at least in a reasonable range (for instance rotations of less than 30
degrees around the matching point).

e Second, the gradient of M({c;;) in the space of ay; can be easily computed as the partial derivatives are
written

SM(ayy) _ Z J(tfim!(y)) dy;

Ja,vj (sy,' ' Ja,vj

(5)
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with y = Tq,;(x). In this formula, the first term of the product can be numerically approximated from the
distance map of d%mr (z) and the second term comes straight from equation 3. Thus, the partial derivatives

of M(aj;) are evaluated as
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with e; the unit vector for coordinate 1. A straightforward computation of this formula is possible since
d%mr (z) are available from the distance map.

Therefore, we can use a gradient based method to efficiently minimize M {cy;). In practice, we use an iterative
algorithm medifying all coefficients proportionally to their partial derivative. Such modifications are normalized
so that the change vector in the oy; space as a constant norm. This constant is lowered each time the main

highest partial derivative % does change of sign.



Figure 3: A local minimum appears in the central point (value 1) due to the discrete nature of the oy, a; space,
although the continuous function used to generate this example (z = 2z% 4+ 2¢° — 3zy) is convex.

Furthermore, the efficiency of the minimization is improved by first orthogonalizing and normalizing the base
functions f;(z) relatively to the Sy set.

Finally, the choice of a gradient based algorithm is not only motivated by speed considerations. It is also
an efficient way of avoiding local minima due to the discrete nature of the distance map. Indeed, as shown in
figure 3, a convex continuous function does not always remain convex after being discretized. This could lead to
mismatching if stuck in a local minimum.

On this example, we can see that an algorithm that would optimize the parameters one by cne would fall into
the local minimum, while a gradient based method can successfully avoid this bias.

4 LOCAL TRANSFORMATION

Due to the high variahbility in brain shape and size, the global transform described in the previcus section will
only provide an approximate registration. Improving this result by increasing the order of the global transform
seems unrealistic. First, the possible improvement is negligible compared to the additional computational cost.
Second, there is no obvious CBA structure that can be added te S,.¢ to match the complexity of the criterion to
that of a third degree transform. Furthermore, this introduces a risk of instability in the minimization.

Therefore, a local transform is the best choice for further improving the accuracy of the registration. We
propose a morphing transform which is described in the four following steps:

e The Sy.s space is divided into a regular mesh of cubes (figure 4.a). In practice, we use 8x8x8 cubes.

¢ For each cube in which a significant number of points from Sp,es are located, the best local translation is
computed (figure 4.b). This is done by applying the algorithm of section 3 with N=1 and fy = 1.

e The local result are extended to the remaining cubes (those not containing a significant number of points
of Smes) by assigning a compatible translation to them (figure 4.c).

¢ The transform is made continucus by assuming the translations are only valid for the central point of the
cubes and by interpclating the translation vectors for points between the cube centers.



Figure 4: Steps of the local transform algorithm.

5 RESULTS

The natural way for dividing the transform from the MR image to the CBA is to consider the combination
of two transforms: a rigid transform (translation, rotation and if necessary scaling) corresponding to the variable
location of the head in the imaging device, and a more complex deformation (second degree transform) which
takes care of the inter-patient brain variability. This division is currently used in the manual registration.

The transform described in equation 3 of section 3 cannot model a rigid transform since it requires linking
the coefficients oy;. Therefore, the automatic registration divides the transform into a first and a second degree
transform. Mathematically, the first degree transform is necessary to bring 7'(Smes) into the convexity domain of
the criterion for the second degree transform. The effects of the first degree, second degree and local transforms
are shown in figure 5.

The transforms are computed from the MRI to the CBA. This spares the generation of a distance map
from S,.y through the use of a stored map. On the other hand, the CBA to MRI transforms are usually
more interesting since they are needed to display CBA structures on the MRI. The invert transforms are easily
computed, analytically for the first degree transform and numerically for the second degree and local transforms.

The first degree transform reduces the Chamfer distance between Sy.; and T'(Spop) from 13.4 to 3.4 (the unit
is the size of the horizontal pixel, the image of our example has anisctropic voxels with the axial pixel size 2.33
times bigger than the horizontal or tomographic one).

As mentioned in section 3, the second degree transform requires the inclusion of the ventricular system into
Srer. The lack of information in the center of the image, when ventricles are not considered, does not allow to
achieve a unique minimum since the z? base functions model a relative translation of the center and the edges of
the image. In our example, the Chamfer distance is reduced from 3.4 to 3.1. This illustrates the small improvement
obtained when increasing the order of the global transform and it justifies the use of a local alternative.

For the local transform, we use a simplified 5,.; without ventricles. This is obviously not optimal since a
local transform could take further details such as sulci into account. Unfortunately, more complex criteria often
lack robustness. Nevertheless, this not optimal criterion still has the property of improving the local registration
accuracy near the edge of the image while its center is only slightly affected. The Chamfer distance is reduced
from 3.1 to 2.36. This value is roughly the size of the vertical (axial) pixel in our example.

This result might be improved for further applications of the local transform by using a mesh of smaller and
smaller cubes. Nonetheless, this is irrelevant as long as the criterion S,.; does not include more details.
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Figure 5: First degree, second degree and local transforms of the brain surface (left to right). The CBA surface
Syey and the MRI transformed surface T'(Sp0p) are displayed in grey and black, respectively. They are overlayed
with a cubic grid which follows the same transformations.

Figure 6: Projection of the CBA “detailed surface” and “ventricular system” regions into the MRI dataset. Two
horizontal and a sagittal planes are shown.
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Figure 7: Individual MR images of the brain at the level of the basal ganglia (a) and 2 and 4 cm above that
plane. Transformed atlas structures are superimposed.

The final result is shown in figure 6 as the projection of the two main CBA structures into the MR image.

6 DISCUSSION

The automatic procedure has several advantages when compared with the current manual one?:

¢ It is quicker and does not require as much expertise or training.

o It takes all slices simultaneously into account, while the CBA graphic user interface does not allow to display
all of them.

e A human operator performs what can merely be described as a parameter by parameter minimization,
which can lead to a local minimum, as illustrated in figure 3 of section 3.

¢ The local transform (morphing) cannot be performed by a human operator.

Anyhow, several interesting features provided by the manual registration program are not implemented in cur
procedure:

e An operator may favor the accurate registration of a definite region of the brain, relaxing the overall
matching constraint.

¢ Additional information may be used in the matching criteria. For instance, the location of the central, pre
and post-central sulci is often used to check the accuracy of a chosen transform.

The ultimate aim of computerized atlases is to achieve a 3D representation of all identifiable anatomical
structures in the individual brain. As shown in figure 7, this objective is well reached by the present work
which allows to delineate unambiguously the sylvian fissure (sl), the superior frontal (ssf), the precentral (spc),
the central (sc) and the parieto-occipital (spo) sulci. As clearly seen on the top slice, the template for the left
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Figure 8: Extraction of the sulci from the segmented MRI: a) segmented brain from MRI b) morphological closing
of a. ¢) morphological top-hat of a.

superior frontal sulcus does not match with the one of the subject despite the perfect matching of that suleus on
the contralateral hemisphere. Inter-hemispheric variations in the topography of the sulcal patterns represents an
intrinsic limitation in this approach.

The use of the detailed brain surface allows to extract 3D sulcal shapes using a morphological top-hat (differ-
ence between the morphological closing of an object and the original object), as illustrated in figure 8. Unfortu-
nately, this does not provide labeling of the structures. A further perspective of this work would deal with the
automatic labeling of the sulci based on a proximity criterion.

7 CONCLUSION

Our automatic registration method provides satisfactory results by using the reduced information from the
brain surface and the ventricular system.

On the other hand, this reduced information can be computed from a low resolution functional image, thus
suggesting the possibility of a direct matching between the CBA and a PET image, without the need of a MRI.
In that case, the basal ganglia (caudate, putamen and thalamus) could substitute the ventricles.

Finally, this method could be applied to the registration of multi-medal images obtained in a single patient.

For this purpose, the transformation model is simplified as a single first degree transform medeling the rigid
transform and scaling between the two modalities.
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