

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Diplom-Informatiker de l'Université de Karlsruhe, Allemagne
de nationalité allemande

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. H. Bleuler, président du jury
Prof. R. Siegwart, Dr G. Gruener, directeurs de thèse

Prof. B. Merminod, rapporteur
Prof. R. Dillmann, rapporteur
Prof. W. Burgard, rapporteur

feature-based 3d slam

Jan WEINGARTEN

THÈSE NO 3601 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 6 septembre 2006

à la faculté des sciences et techniques de l'ingénieur

Laboratoire de systèmes autonomes 1

SECTION MICROTECHNIQUE

Acknowledgements

I wish to express my gratitude to the following people: First of all, I would like to thank
Prof. Roland Siegwart for offering me the possibility to work in his great team in a very
pleasant and liberal atmosphere. The last four years at his lab were a great time and I
especially want to express my appreciation for giving me the chance to attend several
interesting conferences.

Secondly, I want to address special thanks to Dr. Gabriel Gruener, who not only
was my thesis co-director, but also my direct supervisor during the last four years. His
detailed and exact feedback was available at all times and very helpful for the different
publications I wrote. I would further like to thank the CSEM Alpnach Dorf for kindly
sponsoring the major part of this work and especially Dr. Alain Codourey and Dr. Ulrich
Claessen for their confidence and support.

Thirdly, I would like to thank Prof. Rüdiger Dillmann, Prof. Wolfram Burgard and
Prof. Bertrand Merminod for being part of my thesis committee.

Then I would like to thank my long-term office mates Dr. Kai "2d" Arras for his
efforts to accommodate me with the subject in a musical way ("oh, mon vecteur d’état,
comme t’es vertical, comme t’es beau mon gars...") and Dr. Agostino "mass..." - no, I
won’t write it out - Martinelli for the great time with him and also for providing the initial
framework for the Piavino project which is progressing fantastically.

Thanks also to all the ASL team, especially Marie-Jo Pellaud, Daniel Burnier for the
cables, Sascha Kolski for the many breaks on the lab’s terrace and Dr. Björn Jensen for
the 3D range scans.

Last but not least, I would like to thank all my friends and my family, especially my
lovely wife Nicola for her love and constant support and my 10-month-old son Rafael for
letting me sleep at least sometimes at night.

1

2

Kurzfassung

Diese Doktorarbeit befasst sich mit einem offenen Teilproblem der Roboternavigation,
der zeitgleichen Lokalisierung und Umgebungskartographierung (SLAM) im dreidimen-
sionalen Raum. Ziel hierbei ist es, ein System zu entwickeln, das es ermöglicht, einen
mobilen Roboter zuverlässig im Raum zu lokalisieren und gleichzeitig die Umgebung des
Roboters in Form einer 3D-Karte zu reproduzieren. Neben dem Ermöglichen von Robot-
ernavigation im dreidimensionalen Raum ist eine solche Karte von grossem Nutzen für
komplexere Roboteraufgaben wie Szeneninterpretation oder -manipulation sowie generell
für Visualisierungen interessant, wie sie häufig im Vermessungswesen, der Architektur,
für den Such- und Rettungsdienst bei Katastrophenbewältigung, o. ä. benötigt werden.

Dabei stellt die dritte Dimension eine grosse Herausforderung dar. Zuerst müssen
Sensoren gefunden werden, die dreidimensionale Daten liefern und den Anforderungen
der mobilen Robotik genügen, d.h. kompakt sind und wenig Strom verbrauchen. Für
diese Arbeit wurden zwei Sensoren in Betracht gezogen, der Swiss Ranger des CSEM
(Schweizer Zentrum für Elektronik und Mikrotechnik), sowie ein eigens entwickelter
rotierender Tiefensensor, der auf einem kommerziell erhältlichen 2D-Laserscanner von
SICK basiert. Beides sind aktive Sensoren und beruhen auf dem Prinzip der Laufzeiter-
mittlung des Lichts. Nach der Sensorkalibrierung und Fehleranalyse (Kapitel 2) stellt sich
heraus, dass der Swiss Ranger aufgrund seiner verrauschten Daten und seines eingeschränk-
ten Sichtbereichs für Lokalisierungs- und Kartographierungszwecke im Vergleich zum
rotierenden Laserscanner weniger gut geeignet ist. Deshalb wird er in folgenden Kapiteln
nicht weiter berücksichtigt.

Da ein vom Sensor generierter 3D-Scan leicht aus vielen zehntausend Punkten beste-
hen kann und der Roboter während einerMission Dutzende Scans erstellt, ist es notwendig,
diese Rohdaten zu komprimieren, um sie effizient darstellen und verarbeiten zu können.
Die dafür in dieser Arbeit gewählte Methode ist die Extraktion von Merkmalen, welches
eine detailreiche und gleichzeitig kompakte, sowie aussagekräftige Umgebunsdarstellung
ermöglicht. Die gewählten Merkmale sind planare Ebenensegmente, deren probabilis-
tische Repräsentation und Extraktion in Kapitel 3 und 4 behandelt werden. Kapitel 5
beschreibt experimentelle Resultate des SLAM-Algorithmus, der mittels eines erweit-
erten Kalman Filters (EKF) die Lage der verschiedenen planaren Segmente unter Berück-

3

4

sichtigung der Unsicherheitsinformation, sowie die Roboterposition in inkrementeller
Weise schätzen kann. Dies geschieht mittels des SPmodel (Symmetries and Perturbations
Model), einer Methode zur Darstellung und Verarbeitung unsicherer geometrischer Mod-
elle. Wie zahlreiche Resultate belegen, ermöglicht der entwickelte SLAM-Algorithmus
die genaue Rekonstruktion der Robotertrajektorie und -umgebung im dreidimensionalen
Raum.

Schlüsselwörter: Roboterlokalisierung und Umgebungskartographierung, Modellierung
von 3D-Entfernungssensoren, Probabilistische Flächenextraktion, Flächensegmentierung,
Kartographierung Strukturierter Umgebungen, 3D-SLAMmittels des Erweiterten Kalman
Filters, SPmodel

Abstract

This doctoral thesis deals with an open subproblem of robot navigation, namely simul-
taneous localization and mapping (SLAM) in three-dimensional space. The goal is to
develop a system which is capable of localizing a mobile robot in a reliable way and at
the same time reconstruct its environment as a three-dimensional map. Besides enabling
robot navigation in 3D, such a map could be of great importance for higher-level robotic
tasks, like scene interpretation or manipulation as well as visualization purposes in gen-
eral, which are required in surveying, architecture, urban search and rescue and others.

The third dimension is challenging. Firstly, sensors providing three-dimensional data
have to be found which suit the requirements of mobile robots and therefore have to be
limited in size and power consumption. For this work, two sensors have been considered:
the Swiss Ranger from CSEM (Swiss Center for Electronics and Microtechnology) and a
custom-built range sensor based on a commercially available 2D laser scanner from SICK.
Both are active sensors relying on measuring the time-of-flight of the emitted light. After
calibration and error analysis it was concluded that the Swiss Ranger is less suited for
localization and mapping than the rotating laser scanner due to its noisy data and limited
field of view. It was therefore not further considered in the ensuing work.

As a single 3D scan generated by the rotating laser scanner can be composed of many
tens of thousands of data points and the robot takes dozens of scans during a mission, it
is necessary to compress the raw data to visualize and process it efficiently. The method
chosen in this work is to use a feature-based representation, which enables detailed and, at
the same time, compact and informative environment reconstruction. The chosen features
are planar segments, whose probabilistic representation and extraction are described, re-
sults of the SLAM algorithm are shown. With the aid of an Extended Kalman Filter
(EKF) the pose of the robot and the location of the different planar segments - consider-
ing their uncertainty - can be estimated in an incremental way. The framework defined
by the SPmodel (Symmetries and Perturbations Model) is used, allowing to represent and
process various uncertain geometric models. The approach is validated through different
experiments with a mobile robot in an office environment.

5

6

Keywords: Mobile Robot Localization and Mapping, 3D Range Sensor Modelling,
Probabilistic Feature Extraction, Plane Segmentation, Structured Environment Mapping,
Extended Kalman Filter, 3D SLAM, SPmodel

Contents

1 Introduction 1
1.1 Mobile Robot Navigation . 1
1.2 State-of-the-art . 2
1.3 Goal . 4
1.4 Organization . 4

2 Sensor Modelling 7
2.1 Introduction . 7

2.1.1 Acquiring 3D Range Data . 7
2.1.2 Calibration . 9

2.2 Rotating Laser Scanner . 9
2.2.1 Sensor Description . 9
2.2.2 Calibration . 10

2.3 The CSEM Swiss Ranger . 15
2.3.1 Sensor Description . 15
2.3.2 Intensity-based Calibration . 19
2.3.3 Depth Calibration . 22

2.4 Summary . 24

3 Representation 27
3.1 Introduction . 27
3.2 Planar Features . 28

3.2.1 Choosing the right plane model 28
3.3 The Symmetries and Perturbation Model (SPmodel) 30

3.3.1 Introduction . 30
3.3.2 Describing a plane within the SPmodel 32

3.4 Probabilistic Planar Fitting . 33
3.5 Planar Segments . 36
3.6 Summary . 37

7

8 CONTENTS

4 Feature Extraction 39
4.1 Introduction . 39
4.2 Planar Segmentation . 40

4.2.1 Definition . 40
4.2.2 Related Work . 42
4.2.3 Taxonomy of Surface Segmentation Algorithms 43

4.3 The Grid-based Segmentation (GBS) Algorithm 46
4.3.1 Algorithm Description . 46
4.3.2 Results . 51
4.3.3 Discussion . 52

4.4 A Region-Growing Segmentation (RGS) Algorithm 52
4.4.1 Algorithm Description . 52
4.4.2 Results . 54
4.4.3 Discussion . 57

4.5 Post-Processing . 58
4.6 Summary . 61

5 SLAM 63
5.1 Introduction . 63
5.2 Related Work . 64
5.3 The SPmap . 65
5.4 Displacement of the Mobile Robot . 66
5.5 Update . 68

5.5.1 Data Association . 68
5.5.2 Relating geometric entities . 70
5.5.3 Fusion . 74
5.5.4 Adding Non-Matched Features to the Map 74
5.5.5 Centering . 75

5.6 Summary . 76

6 Experimental Results 79
6.1 Introduction . 79
6.2 Simulation . 80
6.3 Using Infinite Planes . 82

6.3.1 Corridor . 82
6.3.2 A long corridor . 83
6.3.3 A ramp . 83
6.3.4 A Loop . 83
6.3.5 Discussion . 83

6.4 Using Planar Segments . 95
6.4.1 Introduction . 95

CONTENTS 9

6.4.2 Incremental map building using planar segments 96
6.5 Discussion . 96
6.6 Problematic Issues . 101
6.7 Summary . 102

7 Conclusions and Outlook 103

A Some Mathematical Background 107
A.1 Error Propagation . 107
A.2 Transforming 3D points with Uncertainty 108
A.3 The Symmetries and Perturbations Model (SPmodel) 110

A.3.1 Introduction to Location Vectors and Homogeneous Matrices . . . 110
A.3.2 Operations in 3D . 111
A.3.3 Jacobians of the Composition 112
A.3.4 Jacobians of the Inversion . 113
A.3.5 Differential Transforms . 113
A.3.6 Operations with SP-Locations 114

10 CONTENTS

Chapter 1

Introduction

1.1 Mobile Robot Navigation

A fundamental issue in mobile robotics is navigation. Only a robot capable of navigating
in a safe and reliable way can achieve true autonomy forming the basis for a vast number
of potential new applications. These typically are service robots for the household and
the elderly people, autonomous security and surveillance systems, automatic surveying
robots for 3D reconstruction, automatically guided vehicle systems for logistics, mobile
industrial robots, robots for urban-search-and-rescue or hazardous areas in general, space
exploration robots etc.

From the robot’s point of view, methods for navigation try to answer one or several of
the following three questions:

1. Where am I?
This question is addressed by localization algorithms aiming at estimating the pose
of the mobile robot given a sequence of sensor measurements and an a priori map.
If the latter is not available a priori, it has to be estimated at the same time while
tracking the robot’s pose, a process called simultaneous localization and mapping
(SLAM) or concurrent mapping and localization (CML).

2. Where do I go?
This question is addressed by path-planning and exploration algorithms, which are
higher-level mechanisms telling the robot where to go next. If for example the goal
of the robot is to create a complete map of an environment this algorithm will keep
the robot heading for unvisited areas.

1

2 Introduction

3. How do I get there?
The final question is addressed by local path-planning and obstacle-avoidance al-
gorithms which define how the robot moves from a point in space to another, while
optimizing its trajectories w.r.t. to safety, efficiency, and so on.

This work falls into the first category, addressing the problem of localization and map-
ping. The aim is to estimate both the robot pose and the map of its environment given a
sequence of measurements gathered by its proprioceptive and exteroceptive sensors. The
importance of an underlying localization and mapping system cannot be overstated, it is
fundamental for higher-level robotic tasks like scene exploration or manipulation.

1.2 State-of-the-art

State-of-the-art approaches for metric localization and mapping are probabilistic methods
explicitly considering uncertainty information modelling sensor noise and imperfections
in robot motion. They can be categorized w.r.t. the representation used as presented in
table 1.1. The most important representations used are feature-based, grid-based or based
on raw data.

For feature-based approaches the assumption is made that the physical environment
can be modelled by geometric features. This is the case for a vast number of man-built
environments like for example building interiors or cities which can be represented by
a set of points, lines or planes. Due to the small quantity of data required to represent
these features, the resulting maps are compact and the associated algorithms efficient in
comparison to approaches using more memory like occupancy grids. On the other hand,
they require a reliable feature extraction mechanism, which depending on the chosen
feature type and quality of the sensor data can be a non-trivial task. Secondly, in feature-
based approaches, the data association or correspondence problem has to be solved, which
is the problem of finding features in scans taken from different locations corresponding to
the same physical entity. As the true displacement of the robot between these locations is
generally unknown - the wheel encoders merely provide an initial estimation - this can be
difficult. Especially when closing a larger loop, the accumulated odometry errors lead to
a considerable offset between newly observed features and old features contained in the
map which has to be compensated.

The Extended Kalman Filter (EKF) is a widely used estimation tool applicable to
feature-based localization and mapping. It has the advantage that it provides an analytical
solution to the SLAM problem which leads to efficient algorithms with high accuracy.
After initial work by [Smith et al., 1990], a variety of publications followed, for exam-
ple [Leonard and Durrant-Whyte, 1991], [Castellanos et al., 1999], [Guivant et al., 2002]
or [Arras et al., 2003]. As the complexity of the standard version of EKF-SLAM scales
quadratically with the number of features, more efficient EKF-SLAM variants were de-

1.2 State-of-the-art 3

veloped [Guivant and Nebot, 2001a], allowing to use the EKF approach in real-time also
for larger environments. Further disadvantages of the EKF-based SLAM approach are
its restriction to Gaussian error distributions which have a single peak and therefore can
represent only a single hypothesis about the robot pose at the same time. Elaborate exten-
sions of the standard EKF approach address this issue by introducing multiple hypothesis
(see [Jensfelt and Kristensen, 2001] or [Arras et al., 2003]), enabling global localization,
which is the problem of localizing the robot given an a priori map without knowing its
initial pose. Another disadvantage is that the EKF is a sub-optimal estimation technique
making substantial use of linearization. This issue can for example be addressed by the
Unscented Kalman Filter (UKF) introduced by [Julier and Uhlmann, 1997], who use a
sample-based representation of the Gaussian distribution, leading to an improved estima-
tion performance and easier implementation, than the standard EKF, as no Jacobians have
to be calculated.

Another family of approaches uses a grid-based representation [Moravec, 1988], [Elfes,
1989b], [Fox et al., 1998], [Burgard et al., 1999]. This grid represents the belief about
the robot pose as a probability distribution over all possible robot poses. Hence, any
probability distribution can be represented in this discretized way, also multimodal dis-
tributions, required for global localization, which is not possible with the standard EKF
approach. On the other hand, these so-called Markov localization approaches are not
suited for SLAM, require a considerable amount of memory and are limited in precision
due to their discrete nature.

Particle Filters [Gordon et al., 1993], [Fox et al., 2001] approximate the belief distri-
bution of the robot pose by a set of particles which are not constrained to a grid. They
can be used for global localization but also for SLAM, called FastSLAM as presented by
[Montemerlo et al., 2002] in conjunction with a feature-based representation or a grid-
based representation [Haehnel et al., 2003]. These approaches lead to efficient SLAM
variants, as they can be tuned to scale linearly with an increasing number of map features,
but on the other hand are sensitive to the so-called particle depletion problem [Van der
Merwe et al., 2000], which is the problem of loosing the correct particle in a local loop
for example [Stachniss et al., 2005]. Furthermore, their performance directly depends on
the number of chosen particles.

Finally, scan-matching approaches were used successfully to address the SLAM prob-
lem. The idea is to align consecutive scans taken by the external sensors from the robot at
different locations and thereby estimate its trajectory as well as create a consistent map.
[Lu and Milios, 1994] presented a 2D version, [Besl and McKay, 1992] a version for
3D space, the popular Iterative Closest Point (ICP) algorithm. It looks for closest point
pairs in two different scans and iteratively minimizes their relative transform. [Surmann
et al., 2003] used the latter to create precise 3D maps using a mobile robot with a rotating
laser scanner and also presented a method for generating globally consistent maps by a
subsequent off-line refinement. As scan-matching is a tracking method, it is not suited
for global localization, requiring the ability to model multimodal belief distributions of

4 Introduction

the robot pose. Note that up to now, all approaches successfully applied to 3D SLAM are
based on the ICP algorithm.

1.3 Goal

Until now, SLAM was primarily addressed in 2D space. This restricts the use of such
approaches to flat, non-overlapping environments and also limits the number of exploita-
tion possibilities of the generated maps, as they represent only partial information of the
three-dimensional world. A laser scanner mounted horizontally on the mobile robot for
example can easily overlook table tops leading to a collision during navigation in the
worst case. Higher-level tasks like scene manipulation, more sophisticated path-planning
or robot navigation in non-flat terrain in general require an overarching three-dimensional
representation.

The goal of this thesis was to address these issues by developing a feature-based
SLAM approach for structured 3D environments and validate it experimentally. The fea-
tures used are planar segments approximating underlying dense point clouds generated
by a custom-built 3D laser scanner and a time-of-flight range camera. The main contri-
butions are two newly developed feature segmentation algorithms capable of processing
probabilistic data, a probabilistic method to fit planes to uncertain point data and the ex-
perimental validation of the EKF-SLAM algorithm extended to 3D space.

1.4 Organization

This report is organized as follows. In the next chapter, the two 3D sensors considered
for this work are presented along with their calibration. The first is a custom-built rotat-
ing laser scanner and the second a time-of-flight camera developed by the Swiss Center
of Electronics and Microtechnology (CSEM). In the ensuing chapter, the feature repre-
sentation is presented which is based on planar segments represented within the SPmodel,
modelled as probabilistic infinite planes with an associated set of polygons. These have to
be extracted from the raw data, which is dealt with in chapter 4. The next chapter presents
the developed SLAM approach followed by the chapter presenting the experimental re-
sults.

1.4 Organization 5

M
et
ho
d

R
ep
re
s.

D
im
.
B
as
ic
C
on
ce
pt

Pr
os

C
on
s

R
ef
er
en
ce
s

E
K
F

G
eo
m
et
ri
c

Fe
at
ur
es

2D
ro
bo
t
po
se
an
d
fe
at
ur
es

ar
e
st
or
ed
an
d
up
da
te
d
in

a
st
oc
ha
st
ic
m
ap
,
eq
ui
v-

al
en
t
to
a
ra
nd
om

va
ri
-

ab
le
w
ith
G
au
ss
ia
n
di
st
ri
-

bu
tio
n

an
al
yt
ic
al

so
lu
tio
n,

th
er
ef
or
e

ef
fic
ie
nt
,

pr
ec
is
e,

co
m
pa
ct
an
d

in
fo
rm
at
iv
e

m
ap

si
ng
le
-h
yp
ot
he
si
s

in
ba
si
c

ve
rs
io
n,

G
au
ss
ia
n

as
su
m
p-

tio
n,

lin
ea
ri
za
tio
n

er
ro
rs
,
da
ta
as
so
ci
a-

tio
n

[S
m
ith

et
al
.,
19
90
],

[L
eo
na
rd
an
d
D
ur
ra
nt
-

W
hy
te
,1
99
1]
,[
C
as
te
l-

la
no
s
et

al
.,
19
99
],

[A
rr
as
et
al
.,
20
03
]

M
ar
ko
v

O
cc
up
an
cy

G
ri
d

2D
R
ob
ot
st
at
e
an
d
en
vi
ro
n-

m
en
t
ar
e
re
pr
es
en
te
d
in

a
re
gu
la
r
gr
id
,
re
pr
es
en
t-

in
g
pr
ob
ab
ili
ty
di
st
ri
bu
-

tio
n
ov
er
al
l
po
ss
ib
le
ro
-

bo
tp
os
es

m
ul
ti-

hy
po
th
es
is
,

gl
ob
al

lo
-

ca
liz
at
io
n

po
ss
ib
le

on
ly

lo
ca
liz
at
io
n,

pr
ec
is
io
n
lim
ite
d
by

ce
ll
si
ze
,
hi
gh
m
em
-

or
y
co
ns
um
pt
io
n

[M
or
av
ec
,

19
88
],

[E
lf
es
,
19
89
b]
,
[F
ox

et
al
.,
19
98
],

[F
ox

et
al
.,
19
99
],
[B
ur
ga
rd

et
al
.,
19
99
]

Pa
rt
ic
le

Fi
lte
rs

Sa
m
pl
es

co
m
bi
ne
d

w
ith

gr
id

/f
ea
tu
re
s

2D
a
nu
m
be
r
of

pa
rt
ic
le
s

re
pr
es
en
ts
di
ff
er
en
t
ro
bo
t

tr
aj
ec
to
ry
an
d
m
ap
s

ef
fic
ie
nt
,

in
tu
iti
ve

im
pl
em
en
ta
-

tio
n

pr
ec
is
io
n
de
pe
nd
s
on

nu
m
be
r
of
pa
rt
ic
le
s,

pa
rt
ic
le

de
pl
et
io
n

pr
ob
le
m

[G
or
do
n

et
al
.,

19
93
],

[F
ox

et
al
.,

20
01
],
[M
on
te
m
er
lo

et
al
.,
20
02
],
[H
ae
hn
el

et
al
.,
20
03
],
[M
on
te
r-

m
er
lo
et
al
.,
20
03
]

Sc
an
-

M
at
ch
in
g

R
aw
D
at
a

2D / 3D

sc
an
s
ar
e
al
ig
ne
d

by
m
in
im
iz
in
g

re
la
tiv
e

tr
an
sf
or
m
s
be
tw
ee
n
co
r-

re
sp
on
di
ng
po
in
t
pa
ir
s
in

an
ite
ra
tiv
e
w
ay

da
ta

as
-

so
ci
at
io
n

so
lv
ed

au
-

to
m
at
ic
al
ly
,

no
fe
at
ur
e

ex
tr
ac
tio
n

si
ng
le

hy
po
th
es
is
,

m
ap

no
t

di
re
ct
ly

gl
ob
al
ly

co
ns
is
te
nt
,

m
ap
co
ns
is
ts
of
ra
w

da
ta

[L
u
an
d
M
ili
os
,1
99
7]
,

[B
es
l
an
d

M
cK
ay
,

19
92
],

[S
ur
m
an
n

et
al
.,
20
03
]

Ta
bl
e
1.
1:

O
ve
rv
ie
w
of
so
m
e
po
pu
la
r
m
et
ho
ds
us
ed
fo
r
lo
ca
liz
at
io
n
an
d
m
ap
pi
ng
.
N
ot
e
th
at
th
e
m
aj
or
ity

of
ap
pr
oa
ch
es
op
er
at
es
in
2D

sp
ac
e.
O
nl
y
th
e
m
et
ho
d
m
en
tio
ne
d
la
st
ha
s
be
en
su
cc
es
sf
ul
ly
ap
pl
ie
d
to
th
re
e-

di
m
en
si
on
al
da
ta
se
ts
.

6 Introduction

Chapter 2

Sensor Modelling

2.1 Introduction

A fundamental requirement for the reliable functioning of a mobile robot is its ability to
perceive its environment. This is achieved by using exteroceptive (or external) sensors,
which in contrast to proprioceptive (or internal) sensors, do not measure internal states
but the physical environment of the robot. This generally involves some kind of distance
measurement, which is directly provided by the sensors used in this work, both relying on
the time-of-flight measurement principle. The first is a custom-built range finder based on
a commercially available 2D laser scanner LMS 200 developed by Sick and the second the
Swiss Ranger 2b developed by the CSEM (Swiss Center for Electronics and Microtech-
nology), a new time-of-flight camera generating range images in real-time. Compared to
other 3D sensors suitable for mobile robots, which are based on triangulation, like stereo
vision or structured light cameras, these sensors provide distance measurements directly
in a dense, regular form. They fulfill the requirements for mobile robots as they are limited
in size, weight and power consumption.

After presenting related work, this chapter describes the two 3D sensors mentioned
above, their underlying measurement principle and calibration.

2.1.1 Acquiring 3D Range Data

With the commercial availability of 2D laser scanners for over a decade now and many
two-dimensional robotic problems solved, research has started to focus on 3D. In a first
step, 3D data can be generated by sweeping a 2D laser sensor in perpendicular direc-
tion to its scanning plane through a scene and registering all scans, requiring precise
knowledge of the scanner pose. The necessary hardware can be obtained by adding a
vertically mounted 2D laser scanner to an existing mobile robot platform operating in

7

8 Sensor Modelling

two-dimensional space (as it is for example done in [Thrun et al., 2001], [Mahon and
Williams, 2003], [Hähnel et al., 2003]). The existing localization system provides the
poses in 2D used to register the scan data taken by the additional sensor in a consistent
way. Figure 2.1 shows the Pygmalion robot of the Autonomous Systems Lab equipped
with such a system and a resulting 3D map of a corridor. As presented in [Weingarten
et al., 2004a], this leads to highly precise three-dimensional maps.

However, if the environment is not strictly flat, if it contains undulated areas, ramps or
stairs these approaches can fail, as the robot pose can no more be represented in 2D space.
Therefore, the natural next step is to localize the robot directly in 3D space. A single 2D
laser scanner pointed upwards wouldn’t provide the required information, hence a real 3D
sensor is needed.

Another possibility to obtain 3D data is to rotate the 2D scanner with a stepping mo-
tor on a separate platform mounted onto the mobile robot. In the literature, two main
design approaches of such systems can be found. Systems that are able to continuously
rotate the laser scanner requiring slip rings and some ingenious design [Steinhaus and
Dillmann, 2003], [Wulf and Wagner, 2003], or "nodding" laser scanners which are sim-
pler to build [Surmann et al., 2001], [Matos et al., 2004] as no slip-rings are required. In
this work a nodding system was built using a stepping motor rotating the sensor via a belt
transmission.

reconstructed hallway

one vertical laser scanner

two horizontal laser scanners, mounted back-to-back

Figure 2.1: In a first experiment, an additional vertically mounted laser scanner
was added to the existing two horizontal laser scanners of the ”Pygmalion” robot.
Capable of localizing itself in the (flat) office environment of our lab, this system
is able to create precise 3D maps composed of vertical 2D slices. An example
map (right) shows a part of a corridor of our lab.

2.2 Rotating Laser Scanner 9

A different possibility to generate 3D data is to directly use a dedicated 3D sensor.
As already mentioned, the Swiss Center for Electronics and Microtechnology (CSEM)
recently developed the so-called Swiss Ranger, a time-of-flight camera producing range
images in real-time. It generates a 3D scan of the scene at once, up to 30 times per second,
so the robot doesn’t need to stop-and-go.

Both sensors are evaluated for this work which firstly requires their calibration, de-
scribed in the following.

2.1.2 Calibration

Intrinsic calibration refers to the process of setting the magnitude of the output (or re-
sponse) of a measuring instrument or sensor to the magnitude of the input property within
specified accuracy and precision [Wikipedia, 2006]. This comprises the following:

Measurement Process The description of the environmental conditions, the ground-
truth used and the approach.

Mathematical Model The development of a mathematical model for evaluation of
the calibration considering all influencing systematic fac-
tors.

Error Analysis The analysis of residual statistical errors.

Output The output consisting of calibration values and their associ-
ated uncertainties (if available).

Extrinsic calibration refers to the process of relating the reference frame of the measure-
ment instrument to another reference like the global coordinate frame. In more practical
words, it is aimed at finding the location of the sensor coordinate frame with respect to
some other reference frame. This is typically required in multi-sensor fusion were the
data of different sensors has to be registered in a single coordinate frame.

2.2 Rotating Laser Scanner

2.2.1 Sensor Description

The custom-built 3D laser scanner is composed of the well-known LMS 200 laser scanner,
developed by SICK, mounted on a rotating aluminium support, driven by a Nanotec PD4-
I57 stepping motor and connected via a belt-transmission (see figure 2.2).

10 Sensor Modelling

+

+

dx

dz

center of mirrorrotation axis
rotation

angle
θ

Figure 2.2: The photo on the left shows the 3D sensor built, composed of a Sick
LMS 200 laser scanner mounted on a rotating support linked over a v-ribbed
belt to the stepping motor. The schematic drawing on the right illustrates the
calibration parameters, i. e. the translational offsets dx and dz between the
center of the rotation axis and the center of the mirror wheel of the laser scanner,
the origin of the 2D range measurements.

The angular resolution of the stepping motor is set to 0.45◦, the chosen number of
steps is 601 with an angular range covering 270 degrees from θmin = −45◦ to θmax =
225◦ with respect to the horizontal plane. As the 2D laser scanner measures 361 distances
per scan at an angular resolution of 0.5◦, the number of points of a complete 3D scan
reaches 361 × 601 = 216961. The horizontal viewing angle is (361 − 1) · 0.5◦ = 180◦.
With the current configuration, it takes around a minute for a complete scan which is slow
enough to avoid synchronization problems between the laser scanner and the stepping
motor. In a recent further development, the resolution of the 2D scanner was limited to
1.0◦ allowing a scanning rate of 75Hz for the 2D scans. This allowed to take a full 3D
scan of in this case 181× 290 = 52490 points in less than 4 seconds. Both configurations
were used for experiments described in chapter 6. See table 2.1 for detailed specifications.

2.2.2 Calibration

Before calibrating the full 3D scanner system, the 2D laser scanner being rotated has to
be calibrated. With the aid of related work [Reina and Gonzalez, 1997], [Diosi and Klem-
man, 2003], [Ye and Borenstein, 2002], it can be concluded that even though the SICK
LMS 200 laser scanner tends to have a warming-up phase affecting measured distances,
it still produces reliable measurements within the sub-centimeter range at varying tem-

2.2 Rotating Laser Scanner 11

Number of pixels 361 × 601 (configurable)
Depth resolution [mm] approx. 1
Maximum range [m] 32
Horizontal field of view 180◦ or 100◦

Vertical field of view up to 330◦ (configurable)
Interface RS232 / RS422
Dimensions [m] 0.32(W) × 0.4(H) × 0.19(D)
Weight [kg] approx. 10
Power consumption [W] < 40

Table 2.1: Specifications of the custom-built 3D laser scanner

Figure 2.3: The scene chosen for calibration is the top floor of the stairway
leading to our lab. It features a cuboidal structure which is easy to measure by
hand. The right-most image shows a 3D scan of the scene, whereas the other two
are photos. Note that the hole in the roof can be found again in figure 2.4.

peratures, on different materials and at different incidence angles. In the following, the
fourfold calibration scheme mentioned above is applied to the rotating laser scanner.

Measurement Process

In order to test the performance and repeatability of the complete system, an environment
composed of flat walls approximating a cuboid was chosen and measured by hand. This
environment is then again measured by the rotating laser scanner resulting in a point
cloud of 216916 data points (see right image of figure 2.3). After manual segmentation
and least-square planar fitting (see next chapter), the resulting plane parameters can be
used to evaluate the length, width and height of the room. Table 2.2 shows a quantitative
comparison between these measured values and the ground-truth measured by hand.

12 Sensor Modelling

w = 2.77m

h
=

3.
64
m

l = 5.56m

h
=

3.
64
m

hole in the roof

door opening

Figure 2.4: The calibration scene shown as 3D point cloud with the superim-
posed cuboid structure (depicted by gray rectangle), measured by hand. The left
image represents the view from the front, the right image the view from the right
side. Note that some features from figure 2.3, like the hole in the roof can be
recognized.

ground-truth [m] measured by 3D scanner [m]
l 5.56 5.55
w 2.77 2.78
h 3.64 3.64

Table 2.2: Comparison of ground-truth measurements with measured values.
The residual error is of an order of magnitude of a centimeter and is assumed to
arise from material dependencies.

2.2 Rotating Laser Scanner 13

Mathematical Model

The mathematical model is the equation relating the raw distance measurements {ρij |i ∈
[1; 601], j ∈ [1; 361]} provided by the 2D laser scanner to the output 3D points (xij , yij , zij)T

in Cartesian space, including all calibration parameters. Viewed from the local coordinate
frame S of the sensor located in the center of the rotating axis (see figure 2.2), it takes the
following form (written in homogeneous coordinates):⎡

⎢⎢⎣
xij

yij

zij

1

⎤
⎥⎥⎦ = HDij

S

⎡
⎢⎢⎣

ρij

0
0
1

⎤
⎥⎥⎦ (2.1a)

with

HDij

S =

⎡
⎢⎢⎣

cθi
cφj

−cθi
sφj

sθi
cθi

dx + sθi
dz

sφj
cφj

0 0
−sθi

cφj
sθi

sφj
cθi

−sθi
dx + cθi

dz

0 0 0 1

⎤
⎥⎥⎦ . (2.1b)

Note that cθi
stands for cos θi, sφj

for sin φj etc. and θi = dθ−(i−1)tθ, (i = 1 . . . 601)
is the rotation angle depicted in figure 2.2, depending on the current rotation step number
i, angular offset dθ and angular step size tθ. φj is the angle of the rotating mirror of the
2D laser at which the current measurement j is taken. It ranges from φ1 = −π/2 to
φ361 = π/2.

Error Analysis

To model the residual statistical error inherent to the 3D measurements, the following
assumptions are made. Firstly, it is assumed that the strongest statistical error eρ stems
from different surface characteristics of the scanned objects. This directly affects 2D
range measurements ρ̂ij along the laser beam. The errors arising from angular uncertain-
ties are assumed to be negligible. The other error source involved is assumed to perturb
angle θ̂i at which the 2D laser scanner is oriented and called eθ.

The distributions chosen to model these errors are both Gaussian distributions, which
can be justified by the central limit theorem of statistics [Bar-Shalom and Li, 1993]. It
states that the sum of a set of independent random variables with arbitrary probability
distributions and finite variance will approximately be normally distributed. Hence, the
error model used is given by

ρij = ρ̂ij + eρ, eρ ∼ N(0, σρ),

θi = θ̂i + eθ, eθ ∼ N(0, σθ).
(2.2)

14 Sensor Modelling

50 100 150 200 250 300 350
0

5

10

15

20

25

30

pixel number

st
an

da
rd

 d
ev

ia
tio

n
[m

m
]

standard deviation per pixel
mean standard deviation over all pixels

(a) Analysis of the statistical error using the raw data.
Note that the highest standard deviation peak reaches
5238mm at pixel 255. These outliers are caused by
edges and reflecting material which cannot be mea-
sured reliably, leading to a strongly biased average
standard deviation over all pixels (dotted line).

0 50 100 150 200 250 300 350

1

2

3

4

5

6

7

8

9

10

pixel number

st
an

da
rd

 d
ev

ia
tio

n
[m

m
]

filtered standard deviation per pixel
mean filtered standard deviation over all pixels

(b) After filtering the outliers by sweeping a local
window of 3 pixels over the data and calculating the
median, these outliers can be suppressed. The result-
ing mean standard deviation lies between 4 and 5 mm.

Figure 2.5: The evaluation of the per pixel standard deviation σρ of a sequence
of 500 2D scans taken by the SICK LMS 200 laser scanner in a scene including
edges and reflecting material. Graph (a) shows some strong peaks believed to
be caused by edges which cannot be measured reliably. After filtering the out-
liers, an ambient noise of the order of magnitude of around 5 millimeters can be
identified (b).

Calibration Output

Manual optimization using the cuboid environment mentioned above lead to the following
settings used throughout this work:

dx = 0.035m
dz = −0.027m
dθ = 45◦

tθ = 0.45◦

σρ = 0.005m
σθ = 0.05◦

(2.3)

σρ was found by evaluating a hundred scans of a flat wall taken by the SICK LMS 200
laser scanner (see figure 2.5). σθ was manually set, as no experimental evaluation setup
was found. σθ = 0.05◦ turned out to be a value corresponding well to the measured data
and the motor specifications.

2.3 The CSEM Swiss Ranger 15

Taking the above findings into account, probabilistic Cartesian 3D data can be gen-
erated by propagating errors from their sources - the 2D laser measurements ρ and the
angle θ of the stepping motor - into the resulting Cartesian data. This can be achieved
using standard error propagation techniques as described in the Appendix. An example
3D scan with depicted uncertainty ellipsoids is shown in figure 2.6.

location of the sensor uncertainty ellipsoids

Figure 2.6: Visualization of the uncertainty of the raw data depicted in gray.
Note that the uncertainty ellipsoids (10 times magnified) corresponding to every
fifth data point of a single 2D scan are shown. The location of the 3D sensor is
illustrated by the coordinate frame (x-axis is black).

2.3 The CSEM Swiss Ranger

2.3.1 Sensor Description

The Swiss Ranger is a novel, time-of-flight, solid-state imaging device that delivers dis-
tances as well as gray-level (i.e. intensity) images, developed by CSEM [Lange and Seitz,

16 Sensor Modelling

Number of pixels up to 160(h) × 124(v)
Pixel Size 39.2μm(h)× 54.8μm(v)
Depth resolution [mm] down to 5
Wavelength illumination [nm] 870
Illumination power [mW] 800 optical
Maximum range [m] 7.5
Frame rate [fps] up to 30
Diagonal field of view (HxW) ±30◦(±21◦ ×±23◦)
Interface USB 2.0
Connector Mini USB Type-B
Power supply + 12V / 1.5 A DC
Power consumption [W] 18 max.
Lens f=8mm, F/# = 1.4,M12 × 0.5
Dimensions [mm] 135(W) × 45(H) × 32(D)
Weight [kg] 0.2

Table 2.3: The specifications of the CSEM Swiss Ranger 2b time-of-flight camera

2001]. It has been demonstrated that for a large range of illumination levels the range ac-
curacy is essentially only limited by the shot noise of the available light [Oggier et al.,
2004]. This allows to predict reliably the obtainable range resolution. In other words, for
every measurement there is a reliable prediction of its resolution, which can be exploited
by robot navigation algorithms. As the Swiss Ranger is a new sensor, its measurement
principle will be explained in more detail in the following.

Measurement Principle

The camera is based on a 2-dimensional dedicated image sensor and a modulated light
source. Every pixel on the sensor samples the amount of modulated light reflected by
objects in the scene. This is done four times every period at equal intervals (see figure 2.7).
Let these measurements be named m1 to m4. These four quantities allow to recover the
sinusoidal incoming signal. The phase shift between the emitted light and the returning
signal is given by

ϕ = arctan
(

m4 − m2

m1 − m3

)
(2.4)

and determines the distance to the objects in the scene:

L = Lmax
ϕ

2π
(2.5)

2.3 The CSEM Swiss Ranger 17

Time

In
te
ns
ity

ϕ

I

A

m
4

m
1

m
2

m
3

Figure 2.7: Measurement principle of the Swiss Ranger. Four intensity mea-
surements (mi) done at equal intervals each period allow to recover the mea-
sured modulated sinusoidal: the phase shift ϕ, the average intensity I , and the
amplitude A.

Lmax is the non-ambiguity range of the sensor, determined by the modulation frequency
of the emitted light. The intensity of the objects in the image is recovered from the average
light reflected:

I =
m1 + m2 + m3 + m4

4
(2.6)

The amplitude of the measured sinusoidal

A =

√
(m3 − m1)2 + (m4 − m2)2

2
(2.7)

allows to predict the quality of the measurement:

ΔL =
Lmax√

8

√
I

2A
(2.8)

Implementation

The model 2b of the Swiss Ranger’s image sensor has been implemented on 0.8 μm
CMOS / BCCD technology. It contains 160 by 124 pixels, each pixel being 39.2 μmwide
and 54.8 μm high. The emitted light modulation frequency is typically 20 MHz, yielding
a non-ambiguity range of 7.5m. The modulated illumination is generated by a set of 48

18 Sensor Modelling

near-infrared LEDs. The field of view depends on the lense used, which in our case is
about 43◦ (horizontally) and 46◦ (vertically), implying an angular resolution of 0.35◦ in
the worst case. Figure 2.8 shows the Swiss Ranger 2b, used in this work. As sunlight
contains near-infrared light it can interfere with the received reflected sensor light beam
dramatically decreasing the measurement performance. A recently developed new version
of the Swiss Ranger (CSEM Swiss Ranger 3000) was developed specifically to address
this issue and should perform better in this respect. Note that the sensor contains no mov-
ing parts. The Swiss Ranger 2b was available as an evaluation prototype. It includes an

Figure 2.8: The time-of-flight Swiss Ranger 2b sensor from CSEM. The 48
LEDs mounted on the front emit infrared light at a modulation frequency of
20 MHz. The returning reflected part is captured by the central lens and re-
fracted on the CMOS sensor (with 160 × 124 pixels), capable of determining
the phase difference between emitted and received light which is proportional to
the object distance. The superimposed coordinate system used for calibration is
right-handed (y-axis is pointing upwards).

FPGA that recovers the data from the sensor and applies equations (2.4) to (2.7). A USB
interface is used to talk with the camera from a client. After the client requests a picture,
an array of pixels representing the measured (and calculated) distance and intensity is re-
turned. Several parameters can be adjusted by the client through the USB interface, like
Lmax, data filtering by amplitude threshold, etc. Note that in its current implementation,
the FPGA does not include a mode that allows the client to recover the raw measurements

2.3 The CSEM Swiss Ranger 19

image plane

z

x

y

0

optical center

p =

⎛
⎝ X

Y
Z

⎞
⎠

scanned object

x =
(

x
y

)

f

principal point

Figure 2.9: The (idealized) frontal pinhole imaging model: the image x of a
point p = (X,Y, Z)T is the intersection of the ray going through the optical
center 0 and the image plane, located at focal distance f in front of the origin.
Note that equation 2.9 can easily be verified.

mi.

2.3.2 Intensity-based Calibration

In order to calibrate the CSEM Swiss Ranger time-of-flight camera, a two-stage procedure
was adopted. As the sensor features a standard optical lens refracting the reflected light
onto the imaging chip, distortions and misalignments can be compensated using common
video camera calibration techniques which is described in the following.

Measurement Process

In this work, the freely availableMatlab Camera Calibration Toolbox developed by [Bouguet,
2000], based on work by [Tsai, 1992], [Zhang, 1999] and [Heikkila and Silven, 1997],
was used, relying on the frontal pinhole imaging model depicted in figure 2.9. The fun-
damental law governing subsequent equations is the theorem of intersecting lines applied
to the pinhole model:

x = f
X

Z
, y = f

Y

Z
(2.9)

In order to be able to find all necessary calibration parameters, a set of images representing
a chessboard of known dimension is required. The various corners of the black fields are

20 Sensor Modelling

used as input points for the iterative calibration procedure. The equations involved are
presented in the following.

Mathematical Model

⎡
⎣u

v
1

⎤
⎦ =

⎡
⎣fsx fsθ ox

0 fsy oy

0 0 1

⎤
⎦[

xd

1

]
(2.10)

with pixel coordinates (u, v) originating at the top left of the image plane. sx and sy is
the size in meters of a single pixel along the x-axis and y-axis, respectively. sθ is a skew
factor1 modelling the angle between the x- and y-axis, f is the focal length of the lens.
The 5-vector κ = [κ1, κ2, κ3, κ4, κ5]T contains both radial and tangential (represented
by δ) distortion coefficients. The corrected point coordinates xd are related to the input
(normalized) point coordinates xn by the following equations:

xd =
(
1 + κ1r

2 + κ2r
4 + κ5r

6
)
xn + δ (2.11a)

and

δ =
[
2κ3xy + κ4(r2 + 2x2)
κ3(r2 + 2y2) + 2κ4xy

]
(2.11b)

where

r2 = x2 + y2, (2.11c)

xn =
[
x
y

]
=

1
ZC

[
XC

YC

]
. (2.11d)

All parameters mentioned so far are referred to as intrinsic parameters. Note that the
scanned point represented w.r.t. to the camera frame C is given by [XC , YC , ZC]. It is
related to the same point [X0, Y0, Z0] with respect to the global reference W through a
rigid-body motion represented by a homogeneous transformHCW :⎡

⎢⎢⎣
XC

YC

ZC

1

⎤
⎥⎥⎦ =

[
R T
0 1

]
︸ ︷︷ ︸

HCW

⎡
⎢⎢⎣

X0

Y0

Z0

1

⎤
⎥⎥⎦ (2.12)

1not to be confused with sin θ

2.3 The CSEM Swiss Ranger 21

The rotation matrix R ∈ R
3×3 and the translation T ∈ R

3×1 are the so-called extrinsic
parameters.

Due to the complexity of the involved terms modelling tangential and radial distor-
tions, an analytical expression for computing the normalized image coordinates xn =
[x, y]T from the pixel coordinates (u, v) does not exist. However, the toolbox provides a
numerical implementation, the normalize-function, allowing to compute a priori all nor-
malized images coordinates xn = [x, y]T for input pixel coordinates (u, v). For the
implementation in this work, they have been stored in a lookup table. These normalized
image coordinates can then be used with the measured distance ρ to reconstruct a point
[XC , YC , ZC] in 3D:

XC = xZC (2.13a)

YC = yZC (2.13b)

ZC = cos(φH) cos(φV)ρ (2.13c)

with

φH = arctan(x) (2.13d)

φV = arctan(y). (2.13e)

Calibration Output

The Matlab Calibration Toolbox provides versatile means to recover the intrinsic and
extrinsic parameters from a sequence of pictures taken from different viewpoints of a
chessboard with known dimensions. In this case, it produced the following output:

Focal Length: fc = [204.22773 145.37965]
± [4.44863 3.14147]

Principal point: cc = [83.05954 61.32086]
± [5.51981 4.60090]

Skew: alpha_c = [0.00000]±[0.00000]
=> angle of pixel axes = 90.00000 ± 0.00000 degrees

Distortion: kc = [-0.11358 -0.01498 0.00051 0.00101 0.00000]
± [0.05126 0.15562 0.00577 0.00440 0.00000]

Pixel error: err = [0.26284 0.26848]

Here, the focal length fc is stored in pixels and can be related to the focal length f in
meters by using the size of a single pixel (sx, sy) = (39.2μm, 54.8μm) taken from the
sensor specification sheet. Note that the estimated focal length corresponds with the data
from the objective manufacturer (see table 2.3):

f = 204.2 · 39.2μm ≈ 8.0mm

= 145.4 · 54.8μm ≈ 8.0mm

22 Sensor Modelling

20 40 60 80 100 120 140

10

20

30

40

50

60

70

80

90

100

110

0.5

0.5
0.5

0.5

0.
5

0.5

0.5

0.5
0.5

0.
5

0.
5

1

1

1

1

1

1

1 1

1

1

1

1

1

1.5

1.
5

1.
5

1.5

1.5

1.5 1.5

1.5

1.5

2

2

2

2
2

22.
5

2.5

2.5

2.5

3

3 3
3.5
4

Complete Distortion Model

Figure 2.10: The distortion model of the CSEM Swiss Ranger optics in [pixel],
output by the Matlab Calibration Toolbox.

Vector cc corresponds to the coordinates of the principal point (ox, oy). alpha_c is the
skew factor sθ mentioned above and kc contains radial and tangential distortion coeffi-
cients2. See figure 2.10 for a visualization of the distortion model. Note that a substantial
distortion can be observed leading to an offset of several pixels in the corners.

2.3.3 Depth Calibration

Measurement Process

A test environment using a planar wall3 located at a fixed distance (1.4m) perpendicular
to the optical axis of the sensor was used to perform the tests. While this is certainly
not representative for all measurement situations, it has the advantage that the ground
truth represented by a wall is precisely known and only depends on the distance from the
sensor.

As described above, the sensor performs a time-of-flight measurement which detects
a phase shift in the modulated emitted signal (2.4) which can in turn be translated into a
distance (2.5). In practice, due to propagation delay in the driving circuits of the camera,

2kc corresponds to the 5-vector κ mentioned above
3of a flat, painted, metallic material with a slightly increased reflectivity in the orange color

2.3 The CSEM Swiss Ranger 23

a distance offset has to be included4. The offset is determined experimentally during
calibration and can be set by the user on the Swiss Ranger configuration registers.

Mathematical Model

The precision of the sensor can be quantified by comparing the distance measured by
the Swiss Ranger with the ground truth for several distances. Using a planar surface
for calibration simplifies this process, since the expected range can be easily calculated
for all 19840 pixels. It was observed that the distance vs. phase offset relation did not
hold, as (2.5) models: calibrating the offset with a close-by reference wall would not hold
for far references. Nevertheless, let us remember that the actual raw data is the 4 mi

discussed above. A direct calibration would be based on these quantities and not on the
results of (2.4) and (2.5). Nonetheless, our evaluation prototype delivered only distance
and intensity directly. In order to calibrate the distance measurement under the given
conditions, the following empirical relation is proposed:

L = k(Lmax
ϕ

2π
+ L0) (2.14)

where L0 is the distance offset and k is a linearization factor. Through calibration the
following values were found: L0 = 0.6 m, k = 1.18.

Error Analysis

To get an idea of the statistical spread of a data set taken in an office environment, one
thousand consecutive measurements5 were taken of the same reference surface (see figure
2.11). The resulting standard deviation, averaged over all 19840 pixels, is σ = 0.009m.
Note that only the accuracy in the direction of the received light beams is considered,
which changes with varying distances, used materials, etc. Also note that this definition
of accuracy (averaged over all pixels) differs from the camera’s specifications, which is
done for one pixel alone.

4a delay of 1 ns already implies an offset of about 0.15 m
5Sensor configuration used: long integration time tlong = 48 ∗ 256μs, short integration time tshort =

16 ∗ 256μs

24 Sensor Modelling

20
40

60
80

100
120

140

0
20

40
60

80
100

120

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

st
an

da
rd

 d
ev

ia
tio

n
[m

]

Figure 2.11: Per pixel error
analysis of the CSEM Swiss
Ranger based on 1000 scans of
a flat wall. The raw measure-
ments plotted in polar coordi-
nates lead to the curved shape.
Note that, except for some pix-
els which lead to a standard de-
viation of several centimeters,
the average σ is below a cen-
timeter.

Figure 2.12 shows an example scan of the Swiss Ranger using the above calibration with
associated 3D reconstruction in Cartesian space. Note that a substantial amount of sys-
tematic errors remains. The reconstructed wall in the background makes this especially
clear, as is not flat as expected.

These findings are fortified by [Kahlmann and Ingensand, 2004], who recently pre-
sented a thorough sensor analysis of the Swiss Ranger. They conclude that the Swiss
Ranger is a very interesting measurement system but needs some improvement, namely a
better lens with less distortions and a single and more powerful light source.

2.4 Summary

This chapter presented two 3D sensors usable for mobile robots and their calibration.
Firstly a custom-built 3D laser scanner based on a commercially available 2D laser scan-
ner rotated by a stepping motor and secondly the CSEM Swiss Ranger. Even though the
latter is able to deliver range images at frequencies of up to 30 fps which is two orders of
magnitude faster than the former, it is believed that due to its limitations shown above it
is not well-suited for generating precise, metric maps. These limitations are its restricted
field-of-view of around 45◦, its strong dependency on the material of the scanned surface
as well as the incidence angle, leading to distorted scans. However, as shown in [Wein-
garten et al., 2004b], it provides very useful information for obstacle avoidance purposes.

2.4 Summary 25

amplitude image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

range image

20 40 60 80 100 120 140 160

20

40

60

80

100

120

front view side view top view

Figure 2.12: An example scan showing an office chair. The top left image shows
the returned amplitude, the top right the range image, whereas the 3 images
below show different views of the reconstruction in cartesian space. The left
image shows the front view, the middle image the view from the left and the
right image the top view. Note that the wall behind the chair should be flat.

26 Sensor Modelling

Chapter 3

Representation

3.1 Introduction

In order to achieve true autonomy for a mobile robot, an internal representation of its
physical environment is required. The sensor data, the robot gathers with its exteroceptive
sensors, has to be translated into an appropriate representation that allows the robot to
find and keep its way along its mission. Used representations range from occupancy grid
maps [Moravec and Elfes, 1985], [Elfes, 1989a], [Dellaert et al., 1999], [Fox et al., 1999]
to maps based on geometric features like points [Durrant-Whyte, 1996], [Dissanayake
et al., 2001], lines [Castellanos and Tardós, 1999], [Arras et al., 2003] or planes [Horn and
Schmidt, 1995a], [Kohlhepp et al., 2004]. Beside these so-called metric maps, topological
maps are also used, representing the topology of space rather than its physical shape
[Tomatis et al., 2003].

Depending on the application, different map types are appropriate. When working
in structured environments like building interiors or cities, it can be advantageous to use
this a priori information for the following reasons: Firstly, the generated feature-based
maps are compact as they consist of a set of features, which can be described by a few
parameters only. On the other hand, grid-based representations are a discretization of the
space generally requiring large amounts of memory. Secondly, feature-based approaches
can lead to more precise maps and robot localization as no space discretization occurs.
A space decomposed into an occupancy grid does not include information falling bellow
the size of a grid cell which in general is of an order of magnitude of around a decimeter.
Thirdly, a robot extracting and analyzing features from its environment actually learns
these features from its environment. In later processing steps, these features can be used
to gather higher-level knowledge about the robot’s environment. A combination of several
orthogonal planar features may form a room, e.g., or planar features with a certain surface
area and orientation could be interpreted as doors, etc. Finally, as sensor data always

27

28 Representation

is noisy, extracting features represents a way of filtering noise. A plane composed of
thousand data points is likely to actually exist whereas a single data point could be an
outlier. The main disadvantage of a feature-based approach is that depending on the
feature type used, a big effort has to be summoned in order to extract this feature in a
robust way. This is especially difficult with noisy sensor data containing irregularities and
outliers. This chapter describes how the chosen features can be described mathematically.

3.2 Planar Features

In this work, planar segments are used to represent the environment of the robot. A planar
segment is firstly composed of an infinite plane described in general by the following
equation:

Ax + By + Cz + D = 0, (3.1)

where A,B,C,D are the plane parameters and (x, y, z) the coordinates of a 3D point
lying in the plane. Secondly, it consists of a set of supporting points, defining the spacial
boundaries of the plane in two dimensions. Before delving into the representation used
for the segment information, a survey of planar models used in the literature is presented
in the following.

3.2.1 Choosing the right plane model

Different plane models can be found in the literature (see table 3.1). Not all of them are
well-suited for least-square fitting problems and error analysis as some have singularities.
The most popular plane model is the Hessian Normal Form (see model 2 of table 3.1)

npi − d ≡ nxxi + nyyi + nzzi − d = 0, (3.2)

which is equivalent to model 1. All data points pi = (xi, yi, zi)T that lie on the plane
defined by the unit normal vector n = (nx, ny, nz)T and the perpendicular distance to the
origin d satisfy equation (3.2). In reality however, the points pi rarely lie exactly on the
plane, hence the value εi is introduced on the right of (3.2) standing for the fitting error,
which corresponds to the perpendicular distance to the plane:

nxxi + nyyi + nzzi − d = εi (3.3)

Taking the sum over all squared error distances yields the regression problem

R(nx, ny, nz, d) =
N∑

i=0

ε2 =
N∑

i=0

(nxxi + nyyi + nzzi − d)2 (3.4)

3.2 Planar Features 29

Equation Plane Parameters

1 Ax + By + Cz + D = 0 A,B,C,D
2 nx − d = 0 n = (nx, ny, nz)T , |n| = 1, d
3 x cos θ cos ϕ + y cos θ sin ϕ + z sin θ − ρ = 0 θ, ϕ, ρ
4 Z = aX + bY + d a, b, d
5 ax + by + cz + 1 = 0 a, b, c

6 ν = 1√
1+d2

(
n
d

)
ν = (ν1, ν2, ν3, ν4)T , |ν| = 1

Table 3.1: Different plane models found in the literature. Note that the most
general model 1 has four parameters, although three parameters are sufficient to
describe a plane (see model 3). Model 2 is the popular Hesse notation formed by
a unit normal vector n and the orthogonal distance to the origin d. Model 4 and
5 both have singularities and are therefore not to be used without restrictions.
Model 6 [Kanatani, 1996] provides a way to include all plane parameters in
single unit vector. Depending on the application, different plane models are
appropriate. In this work, model 2 is used for evaluating the plane parameters
and model 4 for error propagation.

used again in section 3.4. Dividing (3.3) by (−d) and substituting accordingly yields
model 5:

axi + byi + czi + 1 = εi

−d (3.5)

The associated regression problem does not minimize the sum of the squared distances
but

∑N
i=0 (εi/(−d))2. Furthermore, if (xi, yi, zi) = (0, 0, 0), the plane parameters are

undefined. Model 4 is found dividing (3.3) by nz and substituting again, yielding

Z − aX − bY − d = εi

−nz
. (3.6)

It can be observed, that in the related regression problem the sum to be minimized is∑N
i=0 (εi/(−nz))

2. This corresponds to the orthogonal least-square distance when nz =
±1 only. Here, the singularity is reached with a vertical plane (nz = 0). As model 4 of
table 3.1 can be conveniently solved for the model parameters analytically, it will be used
for error propagation as described below.

Even though model 3 is the minimal plane model without singularities, its correspond-
ing nonlinear regression problem is difficult to tackle analytically and therefore avoided.
However, due to its minimality, it is the best choice for a 3D Hough Transform [Hough,
1959] for example, where the lower number of parameters reduces the computational cost.

30 Representation

Model 6 in table of 3.1 was introduced by [Kanatani, 1996] and is not further con-
sidered here, as it is not intuitive and leads to singular covariance matrices which are
complicated to deal with.

In this work, a combination of the Hessian Normal Form and model 4 was chosen for
extracting planes from 3D point clouds and calculating the associated uncertainty. This
procedure is thoroughly described in section 3.4. The next section describes how the
infinite plane extracted using the Hessian Normal Form is represented within the scope
of robot localization and mapping. The SPmodel [Castellanos and Tardós, 1999] is used,
which allows to represent and process a multitude of geometric features with associated
uncertainties.

3.3 The Symmetries and Perturbation Model (SPmodel)

3.3.1 Introduction

The Symmetries and Perturbations Model (SPmodel) is a framework for representing and
processing uncertain geometrical data and was introduced by Tardós, Castellanos et al.
[Tardós, 1992], [Castellanos et al., 1999], [Castellanos and Tardós, 1999].

Within this framework, the location LWF of a geometrical object F is defined by four
parameters: The location vector xWF = (x, y, z, φ, θ, ψ)T 1 from the world coordinate
frameW into the local object coordinate frame F , the self-binding matrixBF accounting
for symmetries, the locally defined perturbation vector2 pF representing the error with
its associated covariance matrix CF encoding the uncertainty information. A complete
feature within the SPmodel is then given by quadruple called location

LWF = (x̂WF , p̂F ,BF ,CF). (3.7)

The symmetries of a geometric object are the set of transforms preserving it w.r.t. its
locally attached reference frame. A point in 3D space for example can be arbitrarily ro-
tated around itself, hence its symmetries are the set of all rotations {Rφ, Rθ, Rψ} around
that point. An infinite plane in 3D space can be rotated around its normal vector and
translated along its x- and y-axes lying in the plane. Hence, its symmetries have three
degrees of freedom, one rotational and two translational. The self-binding matrixBF en-
codes these symmetries by selecting those components of the full-rank differential vector
dF = (dx, dy, dz, dφ, dθ, dψ)T which actually represent an effective error. In the case of

1The angles φ, θ, ψ represent the RPY-rotations (roll, pitch, yaw) around the global z-axis, the y-axis and
the x-axis, respectively

2The perturbation vector pF is formed by multiplying the binding matrixBF with the full rank differential
vector dF = (dx, dy , dz , dφ, dθ, dψ)T

3.3 The Symmetries and Perturbation Model (SPmodel) 31

the plane, the binding matrix BF becomes

BF =

⎡
⎣0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ . (3.8)

The perturbation vector pF represents these effective errors and is obtained by multiply-
ing the binding matrix with the full-rank differential vector:

pF = BF dF . (3.9)

Its covariance is given by

CF = E[(pF − p̂F)(pF − p̂F)T], (3.10)

with

p̂F = E[pF]. (3.11)

Table 3.2 shows more example features represented within the SPmodel framework. Note
that the feature type is defined by the binding matrices.

Geometric Object Binding Matrix B Perturbation Vector

Point

⎡
⎣1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ p = (dx, dy, dz)T

Infinite Plane

⎡
⎣0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ p = (dz, dθ, dψ)T

Infinite Line

⎡
⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎦ p = (dy, dz, dφ, dθ)T

Full 3D Location I6 p = (dx, dy, dz, dφ, dθ, dψ)T

Table 3.2: The binding matrices encodes the symmetries of a geometric
object. It selects all components of the differential location vector d =
(dx, dy, dz, dφ, dθ, dψ)T which can actually represent an effective error.

The SPmodel framework provides several operations to transform geometrical objects
defined by these so-called locations: the most important are the composition ⊕ of two

32 Representation

locations and the inversion � of a location. The composition or compounding operation
is equivalent to the head-to-tail relationship described in [Smith et al., 1990]. Refer to
the Appendix and the literature for more details on the SPmodel. Within the scope of
this work, the SPmodel is used wherever uncertain information appears and has to be
transformed. Details are provided at the appropriate location.

3.3.2 Describing a plane within the SPmodel

An infinite plane in Hessian notation is formed by a normal vector n = (nx, ny, nz)T

and a perpendicular distance to the origin d. In this work, it is extended by the center of
gravity o = (ox, oy, oz)T of the supporting points, which adds location information to the
planes and makes visualization clearer as the planes normals don’t necessarily intersect
with the origin. Section 3.4 presents how these plane model parameters can be calculated
from an input point cloud. In order to convert the above notation of a plane into the
SPmodel notation, firstly a location vector xWP = (x, y, z, ψ, θ, ψ)T has to be found,
which defines the local reference frame of the plane. It is given by

xWP =

⎡
⎢⎢⎢⎢⎢⎢⎣

ox

oy

oz

arctan 2(ny, nx)
arccos(nz)

0

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.12)

with plane origin o = (ox, oy, oz)T . A complete feature is then defined by the quadruple
LWP = (xWP ,CP ,pP ,BP)T with perturbation vector pP = (0, 0, 0)T , associated
covariance matrixCP ∈ R

3×3, and binding matrix

B =

⎡
⎣0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ (3.13)

encoding symmetries. The next section shows how the covariance matrix CP can be
found depending on the uncertainty of the input points.

3.4 Probabilistic Planar Fitting 33

x̂WP

p̂P

originW

plane P

point data measured by the 3D sensor

Figure 3.1: Illustration of a plane represented by the SPmodel. Its local refer-
ence frame is defined by the estimated location vector x̂WP ∈ R

6×1 with respect
to the world referenceW . The plane is called centered, if its perturbation vector
p̂p pointing to its center of gravity equals zero.

3.4 Probabilistic Planar Fitting

This section describes how the plane parameters with associated covariance matrix are ex-
tracted from an input point cloud. It is assumed, that the segmentation problem described
in the next chapter is solved and the point cloud P = {pi = (xi, yi, zi)T |i = 1...NP }
used to find the plane parameters actually represents a planar region without outliers.
Furthermore, it is assumed the 3D sensor generating the point cloud is well calibrated,
justifying the use of an error model considering random errors only, represented by a
normal distribution.

The plane parameters are found in two consecutive steps, the first moments are found
by principal component analysis (PCA). Principal component analysis, also calledKarhunen-
Loeve transform is a linear transform that chooses a new coordinate system for a data set
such that the greatest variance comes to lie on the first axis, the principal axis, the second
greatest on the second and so on. Applied to a set of points representing range measure-
ments of a plane, the first two principal axes lie in the plane and the third axis represents
the plane normal, as the variance along the plane normal is the smallest. Starting point is

34 Representation

the regression problem

R(nx, ny, nz, d) =
N∑

i=0

wi(nxxi + nyyi + nzzi − d)2 (3.14)

which has to be minimized. The weighting factor is defined by

wi =
1

trace(Ci)
, (3.15)

where Ci ∈ R
3×3 is the covariance matrix of the raw data point i. Deriving (3.14) with

respect to d and setting it equal to 0 yields

∂dR(nx, ny, nz, d) = 0

⇐⇒ 2
N∑

i=0

wi(nxxi + nyyi + nzzi − d)(−1) = 0

⇐⇒
N∑

i=0

wi(nxxi + nyyi + nzzi) =
N∑

i=0

wid

⇐⇒ 1∑N
i=0 wi

N∑
i=0

wi(nxxi + nyyi + nzzi) = d

⇐⇒ 1∑N
i=0 wi

⎡
⎢⎣
∑N

i=0 wixi∑N
i=0 wiyi∑N
i=0 wizi

⎤
⎥⎦

⎡
⎣nx

ny

nz

⎤
⎦ = d

⇐⇒ o · n = d

(3.16)

This means that the best-fitting plane passes through the center of gravity represented
by o = (ox, oy, oz)T . After translating the data points by −o into the origin, the plane
normal n = (nx, ny, nz)T is found by calculating the eigenvector corresponding to the
smallest eigenvalue of

A =

⎡
⎢⎣

∑N
i=0 wix

2
i

∑N
i=0 wixiyi

∑N
i=0 wixizi∑N

i=0 wixiyi

∑N
i=0 wiy

2
i

∑N
i=0 wiyizi∑N

i=0 wixizi

∑N
i=0 wiyizi

∑N
i=0 wiz

2
i

⎤
⎥⎦ . (3.17)

The second moments are calculated by propagating the error of the raw data into the
plane parameters. This can be conveniently carried out using model 4 of table 3.1 on the
plane data viewed w.r.t. the local coordinate frame defined by the first moments found
above. In this case, the plane parameters are known to be n = (0, 0, 1)T and d = 0,

3.4 Probabilistic Planar Fitting 35

hence the regression problem related to model 4 minimizes the orthogonal least-square
distance.

Let P t = {pt
i = (xt

i, y
t
i , z

t
i)

T |i = 1...N} be the point cloud of the plane translated
into the world origin and rotated into the global xy-plane using the plane parameters
calculated above, i.e. center of gravity o and plane normal n. The regression problem
using model 4 of table 3.1 can be written in matrix terms, yielding:⎡
⎢⎢⎢⎣

w1z
t
1

w2z
t
2
...

wNzt
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1 w1x
t
1 w1y

t
1

w2 w2x
t
2 w2y

t
2

...
...

...
wN wNxt

N wNyt
N

⎤
⎥⎥⎥⎦

⎡
⎣β0

β1

β2

⎤
⎦ (3.18)

solving for β = (β0, β1, β2)T yields

⎡
⎣β0

β1

β2

⎤
⎦ = (MT M)−1MT

⎡
⎢⎢⎢⎣

w1z
t
1

w2z
t
2
...

wNzt
N

⎤
⎥⎥⎥⎦ (3.19)

with

M =

⎡
⎢⎢⎢⎣

w1 w1x
t
1 w1y

t
1

w2 w2x
t
2 w2y

t
2

...
...

...
wN wNxt

N wNyt
N

⎤
⎥⎥⎥⎦ . (3.20)

By calculating the Jacobian F of β, given by

F =

⎡
⎢⎣

∂β0
∂x1

∂β0
∂y1

∂β0
∂z1

∂β0
∂x2

∂β0
∂y2

∂β0
∂z2

· · · ∂β0
∂xN

∂β0
∂yN

∂β0
∂zN

∂β1
∂x1

∂β1
∂y1

∂β1
∂z1

∂β1
∂x2

∂β1
∂y2

∂β0
∂z2

· · · ∂β1
∂xN

∂β1
∂yN

∂β1
∂zN

∂β2
∂x1

∂β2
∂y1

∂β2
∂z1

∂β2
∂x2

∂β2
∂y2

∂β0
∂z2

· · · ∂β2
∂xN

∂β2
∂yN

∂β2
∂zN

⎤
⎥⎦ , (3.21)

the covariance matrixC can be calculated as

C = F

⎡
⎢⎢⎢⎢⎣
Ct

1 0 · · · 0

0 Ct
2

. . .
...

...
. . .

. . . 0
0 · · · 0 Ct

N

⎤
⎥⎥⎥⎥⎦FT . (3.22)

Note thatCt
i ∈ R

3×3 with i = 1 . . . N are the covariance matrices of the input points w.r.t.
the local reference frame of the plane. The output covariance matrixC is the sought-after
local covariance matrix of the SP-location describing a planar segment.

36 Representation

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

y

Figure 3.2: The initial planar region composed of a set of points (depicted by
gray dots) is transformed into a set of triangles (represented by blue lines) or
alpha-shape. Note that the input 1000 points are represented by 19 triangles re-
quiring only 21 vertices. The complexity of the initial point cloud was therefore
reduced by almost 98% without losing the shape. In a further step, the triangles
are converted into polygons (see figure 3.3).

3.5 Planar Segments

For SLAM in simple structured environments, a representation based on infinite planes
can be adequate as shown in chapter 5. In most cases however, infinite features are not
an ideal choice, firstly as they are not very discriminative and therefore sometimes dif-
ficult to compare during data association and secondly as they cannot be rendered in an
appealing way. This is the reason why segment information has been added to the infi-
nite plane parameters. As shown below, this leads to highly compressed but still detailed
representations.

The segment information of a planar feature essentially is a set of polygons, gener-
ated in the following way: At first, a raw 3D scan represented in Cartesian coordinates is
segmented as shown below into planar regions defined by a set of supporting points (see
figure 3.2). In the next step, each region is approximated by an alpha-shape, a hull also al-
lowing non-convex boundaries defined by a constraint called α. This triangulation is then
decimated (see [Schroeder et al., 1992]) and stored as a set of polygons (see figure 3.3).
The advantage of such a representation not only lies in the reduced amount of required
storage memory, which can easily be fifty times smaller than the raw data point cloud,
but also in the topology of the segment which can be grown incrementally in an efficient

3.6 Summary 37

−0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

Figure 3.3: Illustration of the merging operation of two planar segments. Each
initial point cloud (the two rectangular shapes) is composed of 1000 data points.
The resulting contour (black crosses) is composed of 97 vertices or 67 polygons.

way. The latter is important for a SLAM algorithm, as it has to handle monotonically
growing data sets. Furthermore, segment information can be exploited positively for data
association, as described below.

3.6 Summary

This chapter presented the representation used based on infinite planar features with as-
sociated segment information. Plane parameters describing infinite planes are comple-
mented by segment information composed of a set of polygons, allowing to precisely
describe the shape of a plane including holes while staying memory efficient at the same
time. It also showed how the parameters of the plane are calculated from the input raw
data. Two different plane models are used for this purpose, the Hessian Normal Form to
obtain the first moments through principal component analysis and the second moments
are calculated by error propagation. The resulting fitting method allows to calculate the
uncertainty of a plane based on the uncertainty of the raw data, which in turn has been
modelled the closest to the reality as possible. It is believed that this carefully developed
error model positively affects the performance of the SLAM algorithm.

The next chapter addresses the extraction of the planar features, which uses the fitting
methods presented above.

38 Representation

Chapter 4

Feature Extraction

4.1 Introduction

A key issue on the way towards feature-based SLAM is the feature extraction process. In
order to be able to build a reliable robot navigation system using a feature-based repre-
sentation, these features have to be extracted as reliably and precisely as possible. Mea-
surement noise, scene clutter, and dynamic objects make this process difficult.

As mentioned before, in mobile robotics, range finders have become the most popular
sensors for navigation and mapping as they directly provide distance measurements at
high density and precision. In 3D space, this data can be complex as a single scan can be
composed of many ten-thousand data points. Planar feature extraction provides means of
reducing this complexity while at the same time keeping the information content.

The crucial part of feature extraction is the segmentation, which is the problem of
dividing raw range data into data representing sought-after features and background data.
In computer vision and object recognition, this has been an active field of research for
decades (see for example [Besl and Jain, 1985], [Fan et al., 1988], [Yokoya and Levine,
1989]). There, typical test images generally consist of known objects composed of planar
surfaces scanned under controlled conditions. Some typical example images scanned by
a Perceptron laser scanner are depicted in figure 4.1.

In mobile robotics, range data is especially challenging, as it is not known a priori
what the scanned scene contains. Therefore, the segmentation process has to be particu-
larly robust with respect to unstructured clutter, dynamic objects and measurement noise.
Figure 4.2 shows a typical scene scanned at our lab. It depicts an office corridor with
some students sitting at tables, the characteristic ceiling structure of the local buildings is
visible as well as some planar structures like the ceiling and the wall on the right. Note
that even for the human eye, it is not obvious to find all planar segments.

Besides the segmentation process, another important issue is the fitting process of

39

40 Feature Extraction

Figure 4.1: Some typical data sets [of Southern Florida] used for planar segmen-
tation in computer vision and object recognition generated by a Perceptron 3D
scanner. Note that the first and third image from the left are the corresponding
intensity images whereas the other two show depth information.

the (planar) model to the data, which should take into account uncertainties of the raw
data and output planar segments with associated uncertainty information. In this way, all
information available from the 3D sensor is used and propagated to the model parameters
in a consistent way without the need of making additional assumptions.

This chapter is organized as follows. The next section presents the definition of planar
segmentation and lists related work. The two subsequent sections present and discuss the
two segmentation algorithms developed.

4.2 Planar Segmentation

4.2.1 Definition

Informally, segmenting a range image is the process of labelling pixels so that pixels
whose measurements are of the same surface are given the same label [Hoover et al.,
1996]. The following formal definition is taken from [Gonzalez and Woods, 1992]:

Let R represent the entire image region1 composed of Nr × Nc range measurements
ρrc with r ∈ {1, 2, . . . , Nr} and c ∈ {1, 2, . . . , Nc}. The segmentation can be viewed as
the process that partitionsR into NR subregionsR1,R2, . . . ,RNR , such that

(1) ∪NR
i=1Ri = R

(2) Ri is a connected region, ∀i = 1, 2, . . . , NR
(3) Ri ∩Rj = ∅ for all i and j, i �= j

(4) P (Ri) = TRUE for i = 1, 2, . . . , NR
(5) P (Ri ∪Rj) = FALSE for i �= j

1here ”image region” is the same as a ”range image” or a ”3d scan”.

4.2 Planar Segmentation 41

50 100 150 200 250 300 350

100

200

300

400

500

600

horizontal scanning angle [0.5°/step]

ve
rt

ic
al

 s
ca

nn
in

g
an

gl
e

[0
.4

5°
/s

te
p]

0 m

1 m

2 m

3 m

4 m

5 m

6 m

7 m

student sitting at table

ceiling structure

floor

Figure 4.2: A typical 3D scan taken by the rotating 2D laser scanner mounted
on the BIBA0 robot visualized in polar coordinates. It consists of 601 2D scans
taken at an angular resolution of 0.45◦ per step and 361 data points each, result-
ing in a total of 216961 data points covering 180◦(h) × 270◦(v). The scanned
scene shows a corridor of the Autonomous Systems Lab, eye-catching features
are the students sitting at tables in the top left of the image and the characteristic
ceiling structure of the EPFL buildings but also the large planar areas forming
the ground and the wall on the right.

42 Feature Extraction

where ∅ is the empty set and P (Ri) is a predicate over the points in setRi.

P (Ri) = TRUE iff d(ρrc, p) ≤ τ, (4.1)

where d is metric, p a plane model and τ a given constant.
This example of a formal definition for planar range image segmentation shows char-

acteristic weaknesses: Firstly, points representing measurement outliers not necessarily
forming a connected region are not considered, as (2) wouldn’t be satisfied. Furthermore,
(5) doesn’t hold in case of two non-bordering regions with the same properties, i.e. if
they have the same normal and distance to the origin. In this work, the following less
restrictive definition is used:

(1) (∪NR
i=1Ri) ∪ S = R, S are the points not belonging to any regionRi

(2) Ri ∩Rj = ∅ for all i and j, i �= j

(3) P (Ri) = TRUE for i = 1, . . . , NR
(4) P (Ri ∪Rj) = FALSE for bordering regions i �= j

S represents points which are not lying on planar structures and therefore not to be in-
cluded as regionsRi.

4.2.2 Related Work

In computer vision, planar range image segmentation has been an active field of research
for the last two decades. Highly detailed geometric models, often represented as complex
triangle meshes challenge rendering performance, transmission bandwidth and storage
capacities [Hoppe, 1996]. Besides for this so-called mesh-simplification [Schroeder et al.,
1992], [Hoppe, 1996], recovering of planar segments is used for reverse-engineering aim-
ing at reconstructing for example industrial parts as CAD models the most precisely pos-
sible [Hoppe et al., 1992], [Curless and Levoy, 1996].

In mobile robotics, planar feature-based representations are used since laser range
finders are available on the market. As mentioned in the introduction of this chapter,
the data generated by these sensors is very irregular and subject to noise, which justi-
fies the development of planar segmentation algorithms specific to robotic data. [Horn
and Schmidt, 1995b] extracted vertical 3D planes for SLAM in 2D space. They extract
features using the Hough Transform [Hough, 1959] coupled with an iterative refinement.
This work aims at extracting planes at any position and orientation rather than only ver-
tical planes. [Sequeira et al., 1999] extract planes for 3D reconstruction using a hybrid
region-based edge-based polynomial surface segmentation method and aligns consecu-
tive scans using an algorithm related to the iterative closest point algorithm [Besl and
McKay, 1992] referred to as ICP in the following. In this work, the Extended Kalman
Filter is used to estimate the map and the robot pose which leads to globally consistent

4.2 Planar Segmentation 43

maps. [Hähnel et al., 2003] extract planes by using a region-growing algorithm starting
at a random point and a plane sweeping method based on normal directions. In this work,
this region-growing method is refined by starting the region-growing process at the flat-
test local area of the scan. Furthermore, inefficient nearest-neighbor search is avoided by
exploiting the inherent scan data topology. [Liu et al., 2001] create 3D maps by estimat-
ing planar segments using the Expectation Maximization (EM) algorithm. This iterative
procedure takes several minutes and is therefore not well-suited for navigation tasks. The
method presented in this work is an order of magnitude more efficient. Finally, [Kohlhepp
et al., 2004] extract planes in real-time using the scan-line grouping algorithm presented
by [Jiang and Bunke, 1994]. This algorithm groups neighboring linear segments approxi-
mating single scan lines together in an efficient way. However, it requires that lines of data
in the underlying 3D scan can actually be represented by a sequence of linear segments
which is not the case for all range sensors (for example the Swiss Ranger).

4.2.3 Taxonomy of Surface Segmentation Algorithms

In order to get a better overview of the numerous existing planar segmentation algorithms,
a classification is useful. The following two general classification possibilities were found
in the literature.

[Faugeras, 1993] states that there are two ways of segmenting entities in a picture,
dominating in the literature. The first is the so-called split technique, which starts from
the entire object and checks if it is homogeneous according to some criterion. If not,
the object is split into a number of subobjects and the process is recursively applied to the
subobjects until they become homogeneous or too small. The second method is a merging
scheme, also called region-growing described below.

[Suk and Bhandarkar, 1992] or [Sequeira et al., 1995] generally classify surface seg-
mentation methods into region-based methods versus edge-based methods. Edge-based
methods investigate the characteristics of edges in the image in order to make inferences
about the regions they enclose.

Both segmentation methods presented in this work fall into the region-based category.
The first one (Grid-based segmentation) is optimized for speed of execution aiming at
extracting the most important planar areas of a scan rapidly, the second one (Region-based
segmentation) is slower but more precise and also suited to extract smaller planes. Both
methods rely on some well-known concepts which are briefly explained in the following.

Ransac

The Ransac (Random Sample Consensus) algorithm [Fischler and Bolles, 1981] is a pop-
ular choice for fitting models to data due to its simplicity and robustness with respect to
outliers. Algorithm 1 is a pseudo-code description of the Ransac algorithm for segment-
ing a single plane from a point cloud. It is mentioned explicitly as it forms a part of the
GBS algorithm presented below. For a predefined number of iterations NI , the segmen-

44 Feature Extraction

Algorithm 1 p̂ = planarSegRansac(V)

V = (v1,v2, . . . ,vNV
) input point cloud composed of NV 3D points

NC number of points within the environment of the currently defined plane
NM found maximum number points in the defined environment of the plane
NI predefined number of Ransac iterations
d orthogonal distance to plane
τr maximum allowed distance for supporting points
np normal of plane p
op origin of plane p
p̂ output best found plane

1: NM ← 0
2: for i = 1 to NI do
3: randomly select 3 different points v1,v2,v3 of the input point cloud V
4: (np,op) ← createP lane(v1,v2,v3) � create plane p = (np,op)
5: for j = 1 to NV do � count points close to plane
6: d ← distanceToP lane(vj ,np,op)
7: if d < τr then
8: NC ← NC + 1
9: end if
10: end for
11: if NC > NM then � get plane with max. number of supporting points
12: NM = NC

13: p̂ ← p � write to best plane p̂ = (np̂,op̂)
14: end if
15: end for

4.2 Planar Segmentation 45

tation performance of a plane defined by three randomly chosen vertices v1, v2 and v3

is evaluated by counting the number of points NC lying within a predefined orthogonal
distance τr. The plane with the highest number of supporting points NM is output as the
best planar segment p̂ found.

The quality of the resulting segmentation directly depends on the predefined distance
threshold τr and the chosen number of iterations NI . The chance to find a correct seg-
mentation increases by augmenting the number of iterationsNI . However, the higherNI ,
the slower the algorithm. Hence, a trade-off in speed has to be taken into account to real-
ize good segmentation results. The complexity of the Ransac algorithm can be expressed
as O(NI · NV).

Let pg ∈ [0, 1] be the probability that a randomly chosen data item is part of a good
model and pf ∈ [0, 1] be the probability that the algorithm exits without finding a good
segmentation. pg and pf are related by pf = (1 − pNM

g)NI . Here, NM = 3 as three data
items are necessary in order to describe a plane. Hence,

NI =
log(pf)

log(1 − p3
g)

(4.2)

Unfortunately, pf and pg are generally not known a priori and change from scene to scene.
Therefore an empirical analysis is indispensable.

Note that the plane found by this algorithm is not necessarily a connected region as
required by (2) of the above-mentioned segmentation definition taken from [Gonzalez and
Woods, 1992] which examplifies the short-comings of this definition.

Region-Growing

A region-growing algorithm starts from single entities of an input range image like points
or planar patches and grows these into larger regions by merging them with matching
neighbors. This process ends, when a certain stopping criteria is reached, e.g. if the
approximation error of a planar region exceeds a tolerance threshold. An example of a
region-growing algorithm for planar segmentation can be found in [Faugeras, 1993] or
[Hähnel et al., 2003]. The pseudo-code of the latter is illustrated by algorithm 2, as it
forms the basis of the RGS algorithm described below. The algorithm starts by randomly
selecting a point v1 of the input point cloud V and its closest neighbor v2. A candidate
point v′ is added to the set of planar points π if the minimal distance from π to v′ is less
than a threshold δ. The point v′ is accepted if, when added to π, the average residual is
less than a threshold ε and the distance between the optimal plane and v′ is less than a
threshold γ.

Other Methods

Other plane segmentation methods not further considered here are Agglomerative Hier-
archical Clustering [Faugeras, 1993], which is not very robust with respect to outliers,

46 Feature Extraction

Algorithm 2 growRegion(v1, V)

1: π ← {v1,v2}
2: for all v′ ∈ V do
3: if dist(π,v′) < δ then
4: π′ ← merge(π,v′)
5: if averageError(π′) < ε and error(π′,v′) < γ then
6: π ← π′

7: end if
8: end if
9: end for

the 3D Hough Transform [Hough, 1959], which is not very accurate and slow, scan-line
grouping [Jiang and Bunke, 1994], which is efficient but requires that single scan-lines
can be approximated by a set of lines.

4.3 The Grid-based Segmentation (GBS) Algorithm

4.3.1 Algorithm Description

Using the Ransac algorithm (see Algorithm 1) for planar segmentation directly on the raw
data doesn’t lead to satisfactory results especially in terms of efficiency. By using equation
(4.2), the number of required Ransac iterationsNI to detect a plane in a reliable2 way can
exemplary be evaluated. For example, to detect a plane composed of 4000 data points in
a point cloud of 100000 data points, over 45000 Ransac iterations are needed.

Decomposing the space into grid cells

Therefore, instead of using the Ransac algorithm directly on the input 3D data, a divide-
and-conquer mechanism was used leading to a more efficient algorithm (see Algorithm
3 for pseudo-code) in a similar way as described in [Weingarten et al., 2003]. The space
occupied by the input point cloud V is decomposed into a set of NC regular cubes from
now on called grid cells C = {C1, C2, ..., CNC} with a predefined sidelength sC . All NV

points are subsequently associated to their corresponding grid cell Ci. In this way, the
rather complex point cloud composed of many ten-thousand data points (see figure 4.5
(b) for an example) is divided into smaller chunks of data of around a thousand data
points per cell. The spatial topology defined by the grid cells can be regarded as a region-
adjacency graph with the cells as nodes and the neighborhood relations as edges, which
will be exploited below to perform a region-growing operation. Before that, a single plane

2with a probability of 95%

4.3 The Grid-based Segmentation (GBS) Algorithm 47

Algorithm 3 GBS(V) - the Grid-Based Segmentation Algorithm

C = {C1, C2, . . . , CNC} the grid structure composed of NC grid cells
Vi.points the points contained in grid cell Ci

Ci.plane the plane approximating the points of grid cell Ci

sC the side length of the grid cells
NI number of Ransac iterations used (default is 100)
τr Mahalanobis distance used by the Ransac algorithm
τm χ2-threshold for plane comparison

1: C ← createGridCellStructure(sC) � create the grid
2: for all vi ∈ V do
3: writeToCorrespondingGridCell(vi, C) � add vi to corresponding grid cell Ci

4: end for
5: for all Ci ∈ C do
6: Ci.plane ← planarSegRansac(Ci.points) � find plane for data contained in
every grid cell using the probabilistic Ransac algorithm with parameters NI , τr, τm

7: end for
8: while 1 do
9: Cs ← getMinError(C) � find unprocessed cell with minimum fitting error
10: q ← merge(q, Cs)
11: q ← growRegionGBS(q, C)
12: while q �= ∅ do
13: q ← growRegionGBS(q, C)
14: end while
15: end while

48 Feature Extraction

is found for every cell segmenting the points of the cell into points belonging to the grid
cell’s plane and points that do not (see figure 4.5 (c)). The segmentation procedure used is
the above-mentioned Ransac (see algorithm 1), which in this case operates on the limited
amount of data contained in single cells. Using again equation (4.2), the default number
of NI = 100 leads to a probability of finding the correct plane pf = 0.9987 assuming
that pg = 0.4, which is reasonable for environments composed of many planar walls like
our office environment. Note that this number NI represents the maximum number of
Ransac iterations, the actual performed number of iterations can fall considerably below,
because it doesn’t make sense to continue searching for a better segmentation if all points
of the cell are already included in the current model. This heuristic makes the algorithm
substantially faster in environments composed of many planar surfaces.

Ransac considering uncertainties

As uncertainty information is available in the raw data, the metric used in the Ransac
algorithm is the Mahalanobis distance instead of the Euclidean distance. As mentioned in
algorithm 1, line 7, a threshold τr decides whether a point vj belongs to the planar region
or not. There, the used metric is the orthogonal distance

d = |npvj − npop| (4.3)

to the current plane p. By considering the uncertainties of the raw data points, this Euclid-
ean distance can be replaced by the squared Mahalanobis distance

D2 = (vjp
− vj)T P−1

j (vjp
− vj) (4.4)

where vjp
is the projection of vj onto plane p and Pj is the covariance matrix associated

to vjp
.

Region-Growing

Finally, a region-growing operation leads to the final segmentation (see Figure 4.5 (d)).
It starts at the cell Cs containing the plane with the smallest fitting error, representing
the flattest surface. The above mentioned region-adjacency graph provides topological
information and is searched using a breadth-first-search strategy (see algorithm 4) which
in comparison to depth-first-search strategies leads to smoother region-growing, as the
region is grown in every direction simultaneously. A neighboring plane candidate Pn is
compared to the current processed region Pr by means of a hypothesis test based on the
Mahalanobis distance, described in the following.

Comparing two planes in a probabilistic way

According to the SPmodel, a plane is represented by a quadruple

LWE = (x̂WE , p̂E ,CE ,BE) (4.5)

4.3 The Grid-based Segmentation (GBS) Algorithm 49

plane Ê

x̂WE

plane E

dE

plane F̂

x̂WF

plane F

dF
xEF

W

Figure 4.3: xWE and xWF are location vectors from the base referenceW into
the local reference frames of planeE and F . PlanesE and F are compared prob-
abilistically by means of a χ2-hypothesis test based on the squared Mahalanobis
distance.

with the location vector x̂WE defining the transform from the world coordinate system
W into the local reference system E, the binding matrix

B =

⎡
⎣0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ (4.6)

accounting for symmetries and the perturbation vector p̂E with associated covariance
matrixCE accounting for errors. Let a second plane be described by

LWF = (x̂WF , p̂F ,CF ,BF), (4.7)

see figure 4.3 for an illustration. Comparing these two planes can be carried out in a
probabilistic way by means of a χ2-hypothesis test based on the squared Mahalanobis
distance as follows.

The two planes coincide if their relative location vector

BEF xEF = 0. (4.8)

50 Feature Extraction

In this case, the binding matrix BEF of the pairing corresponds to BE or BF as the
feature types correspond. xEF = (x, y, z, φ, θ, ψ)T , hence BEF xEF = (z, θ, ψ)T = 0,
meaning that the two planes coincide if their three relative parameters z, θ and ψ equal
zero.

This can be represented by the implicit non-linear measurement equation

fm(pE ,pF) = BEF xEF

= BEF (�xWE ⊕ xWF)

= BEF (�(x̂WE ⊕ BT
EpE) ⊕ (x̂WF ⊕ BT

F pF))

= BEF (�BT
EpE � x̂WE ⊕ x̂WF ⊕ BT

F pF)

= BEF (�BT
EpE � x̂EF ⊕ BT

F pF)
= 0

(4.9)

relating the two planes. After linearization and assuming the estimations are centered (see
chapter 5 for details), these expressions reduce to

hm = fm(p̂E , p̂F) = BEF x̂EF

Hm =
∂fm
∂pE

∣∣∣∣
(p̂E ,p̂F)

= −BEF J1⊕{0, x̂EF }BT
F

Gm =
∂fm
∂pF

∣∣∣∣
(p̂E ,p̂F)

= BEF J2⊕{x̂EF ,0}BT
E

(4.10)

The squared Mahalanobis distance is then expressed by:

D2 = hT
m

(
HmCEHT

m + GmCF GT
m

)−1
hm (4.11)

The hypothesis based on the square Mahalanobis distance D2 is considered true with a
significance level α, if

D2 ≤ χ2
r,α. (4.12)

χ2
r,α is a threshold value that can be obtained from the χ2-distribution with rank 3, α is the
probability of rejecting a good match. If the candidate pairing is accepted, the two planes
E and F are fused, which is realized by merging supporting point clouds and calculating
a new probabilistic fit as described in the previous chapter.

The time complexity of the algorithm is O(NV (NC + NE)) where NC is the number
of grid cells, NV is the number of input points and NE is the number of edges in the
region-adjacency graph. Analogously, the space complexity is O(NV (NC + NE)).

4.3 The Grid-based Segmentation (GBS) Algorithm 51

Algorithm 4 growRegionGBS(q, C)

C = {C1, C2, . . . , CNC} the grid structure C composed of NC grid cells
Ci.points the points contained in grid cell Ci

1: Cf ← getF irstCellFromQueue() � get the first cell from the queue
2: N = (C1, C2, . . . , CN) ← getV alidNeighborsOfCell(Cf)
3: for all Ci ∈ N do
4: if planesF it(Cf , Ci) then � comparison of the planes of grid cell Cf and Ci

5: q ← addToEnd(q, Ci)
6: end if
7: end for

4.3.2 Results

Figure 4.4 shows the result of applying the GBS algorithm to a simulated test scene
containing 10 planes of a size of around 10 × 6 meters. The chosen grid cell size is
sC = 0.25m, the Ransac distance τr = 0.01m, the (maximum) number of Ransac itera-
tions NI = 100.

Another result is shown in figure 4.5. The top left image (a) shows a photograph
of the scene which is scanned by the 3D scanner resulting in the 3D scan shown in the
top right image (b). Decomposing the space into cubic cells and approximating the data
of every cube by a plane leads to (c). After fusing similar neighboring regions together
and filtering too small regions, the final image (d) is obtained. Figure 4.6 shows how
the segmentation times scale with increasing number of input points. As expected, a
clear linear dependency can be observed between the number of input points and the
computation time required for segmentation.

Figure 4.4: The segmentation result of an artificial 3D scan using the grid-based
algorithm (GBS). All 10 planar segments have been found successfully. As every
grid cell is allowed to contain only a single plane, some contour information is
lost leading to artefacts.

52 Feature Extraction

4.3.3 Discussion

The GBS algorithm decomposes the space into a regular grid and extracts a plane for
every grid cell. In a second step, neighboring planes are compared using a probabilistic
measure and fused if found to be corresponding. The main advantage of this algorithms
are its robustness w.r.t. outliers and its flexibility, as it doesn’t require any structure in the
raw data. This means that it is applicable to any type of range data, coming from all kinds
of sensors. Stereo vision data for example tends to be irregular, as distance information
is available only at corresponding pixel pairs which are heterogeneously distributed over
the image.

Furthermore, the algorithm can process uncertainty information which is believed to
improve the segmentation performance depending on the quality of the input raw data
and the noise model. In this case, the input raw data is already of high quality, and hence
the improvement gained by using uncertainty information is practically negligible. The
region-growing algorithm presented subsequently is therefore non-probabilistic, as it is
believed that the gain in performance achieved when leaving out uncertainties matters
more that the marginal segmentation quality improvement.

The main drawback of this algorithm is that only a single plane is extracted for each
cell, other potential planar segments within the cell are lost. Depending on the applica-
tion, this is not necessarily unfavorable. In this work, it is aimed at extracting the most
important planes of a scene only, hence it is believed that this algorithm is appropriate.
On the other hand, it could be imagined to allow several planes per grid cell. However,
this idea is not further followed as the algorithm thereby loses its simple structure and
efficient behavior.

4.4 A Region-Growing Segmentation (RGS) Algorithm

4.4.1 Algorithm Description

The second algorithm developed is based on the region-growing paradigm. It starts by
calculating the normals N = {n1,n2, . . . ,nNV

} and the mean-square orthogonal fitting
errors E = {e1, e2, . . . , eNE

} for every input data point V = {v1,v2, . . . ,vNV
}. This

is done by taking points into consideration lying in a square-shaped odd number-sized
(see ws below) window around vi. In the main loop (see Algorithm 5 line 6), another
breadth-first search strategy is used to grow regions starting at points vmin with best local
planar fits. This ensures that region-growing actually starts in a planar area, which is
not guaranteed by using a random approach like in [Hähnel et al., 2003]. The breadth-
first search strategy is implemented by using a FIFO (”first in first out”) queue q which
is initialized by the starting point vmin. After initialization, the local environment of
vmin is analyzed (see Algorithm 6) and if a neighboring point vi satisfies the following
3 constraints, it is added to the queue q.

4.4 A Region-Growing Segmentation (RGS) Algorithm 53

(a) The example scene shows a corridor of our lab
with an open door on the left and the glass door in
front leading to the roof terrace.

(b) The same scene visualized as a point cloud mea-
sured by the rotating laser scanner.

(c) In every cube of a side length of 0.25m the point
data is approximated by a planar patch.

(d) Similar planar patches are fused by region-
growing resulting in the final segmentation.

Figure 4.5: This figure shows how the grid-based algorithm (GBS) extracts
planes from a point cloud. The real scene (a) is scanned by the rotating laser
scanner generating point cloud (b), composed of 216961 points. After associat-
ing the points to their corresponding cells, a plane is found for every cell using
the Ransac algorithm (c). The final segmentation (d) results from subsequent
region-growing and is composed of 12 planar segments.

54 Feature Extraction

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

number of input points

tim
e

ta
ke

n
fo

r
se

gm
en

ta
tio

n
[s

]

Figure 4.6: The evolution of
segmentation times on a Pen-
tium M (1.4 GHz) using the
GBS algorithm with increas-
ing number of input points.
The x-axis represents the num-
ber of input points and ranges
from 1000 to 57920. The
curve shows that the segmen-
tation times are proportional to
the number of input points.

• constraint Γ1 defines the maximum allowed (Euclidean) distance τd between vf

and vi.

• constraint Γ2 defines the maximum allowed distance between vi and the current
approximative plane defined by normal n and orthogonal distance d to the origin.

• constraint Γ3 defines the maximum allowed angle between the normal n of the
current region and local normal ni of point vi.

The breadth-first strategy consists of successively processing the queue elements until it
is empty. To find several regions, these steps are repeated for the remaining points.

Note that the neighborhood relations defined by the inherent topology of the 3D scan
are used for local neighbor search. Thus, no time-consuming nearest-neighbor search
has to be carried out. The complexity of the algorithm is proportional to O(NV + NE),
where NV is the number of input points and NE the number of edges defined by the
regular topology of the scan.

4.4.2 Results

Figure 4.8 shows the same artifical scan as in figure 4.4, this time segmented using the
RGS algorithm. It can be observed, that the quality of the RGS segmentation is superior to
the GBS segmentation as the contours are sharper and less artefacts are visible. However,
it also shows that data points lying close to an edge remain unsegmented. This is caused
by constraint Γ3 which ensures, that the local normal of the current candidate point vi

is similar to the current region’s normal. This similarity decreases when approaching an
edge.

Figure 4.7 shows how the algorithm scales with increasing number of input points.
After some non-linear growth at the beginning which is believed to be related to memory

4.4 A Region-Growing Segmentation (RGS) Algorithm 55

Algorithm 5 Planar Segmentation by Region-Growing

Parameters:
V = {v1,v2, . . . ,vNV

} all input NV data points
N = {n1,n2, . . . ,nNV

}the normals of the local planes
E = {e1, e2, . . . , eNE

} the plane fitting orthogonal mean square errors at vertices vi

S = {s1, s2, . . . , SNS
} set of output planar segments

ws the size of the sliding window used for local plane estimation

1: N = {n1,n2, . . . ,nNV
} ← calculateNormalsAtV ertices(V)

2: E = {e1, e2, . . . , eNE
} ← calculateLocalF itAtV ertices(V, sw)

3: S ← ∅

4: q ← ∅

5: Nsegmented ← 0
6: while Nsegmented < NV do
7: vmin ← getPointWithMinimumError(V,E)
8: q ← merge(q,vmin)
9: q ← growRegionRGS(q, V,N)
10: while q �= ∅ do
11: q ← growRegionRGS(q, V,N)
12: end while
13: S ← addToP lanarSegments(S, q)
14: end while

56 Feature Extraction

Algorithm 6 growRegionRGS(q, V,N,n, d)

NE size of neighborhood (4 or 8-connectivity)
rvf

row index of first vertex in q
cvf

columns index of first vertex in q
τd predefined threshold defining translational constraint Γ1

τm predefined threshold defining maximum translational constraint Γ2

τα predefined threshold defining rotational constraint Γ3

1: vf ← getF irst(q)
2: (rvf

, cvf
) ← getIndicesRI(vf)

3: Vn = {v1,v2, . . . ,vNE
} ← getV alidNeighbors(V, rvf

, cvf
, NE)

4: for all vi ∈ Vn do
5: δa ← calcPointDistance(vf ,vi)
6: if δa > τd then � constraint Γ1

7: continue
8: end if
9: δp ← distanceToP lane(vi,n, d)
10: if δp > τm then � constraint Γ2

11: continue
12: end if
13: ni ← getCorrespondingNormal(N,vi)
14: δα ← calcAngleBetweenNormals(n,ni)
15: if δα > τα then � constraint Γ3

16: continue
17: end if
18: q ← addAtEnd(q,vi)
19: end for
20: if length(q) > 2 then
21: (n, d) ← recalcP laneParameters(q)
22: end if
23: q ← removeF irst(q)

4.4 A Region-Growing Segmentation (RGS) Algorithm 57

0 1 2 3 4 5 6

x 10
4

0

5

10

15

number of input points

tim
e

ta
ke

n
fo

r
se

gm
en

ta
tio

n
[s

]

Figure 4.7: The evolution of
segmentation times on a Pen-
tium M (1.4 GHz) using the
RGS algorithm with increasing
number of input points. The x-
axis represents the number of
input points and ranges from
1000 to 57920. Note that above
30000 points, the curve shows
its expected linear shape.

allocation times of involved data structures the curve features a linear shape above 30000
input data points.

Figure 4.8: An example result showing the planar segmentation of a simulated
data set composed of 10 planes. Note that the RGS algorithm was able to extract
all planes successfully. The process took several seconds.

4.4.3 Discussion

The region-growing algorithm (RGS) exploits the underlying regular structure of the 3D
scan by assuming that points lying next to each other in the range image actually repre-
sent neighbors in reality. This holds for the majority of cases and leads to a drastically
faster algorithm in comparison to an algorithm that has to carry out the nearest-neighbor
search additionally. The local evaluation of plane normals allows to initialize the algo-
rithm properly, asserting that the region-growing operation doesn’t start at an edge which
could lead to unexpected results. In the current version of the algorithm, uncertainty data

58 Feature Extraction

is not processed explicitly, as the input data is highly precise. But it should be mentioned
that it can easily be extended to processing probabilistic data in a similar way as the GBS
algorithm, where in loose words, the Euclidean distance is replaced by the Mahalanobis
distance and wherever comparisons are carried out, statistical tests are used. The results
of the region-growing algorithm are satisfying in terms of quality, but the number of seg-
mented planes is generally too high, which is addressed in the next section.

4.5 Post-Processing

The two planar segmentation algorithms presented generally lead to a so-called over-
segmentation, which means that the number of output planar segments is larger than the
number of segments existing in the physical reality. This mainly happens due to non-
planar structures breaking up a single planar segment into multiple subsegments (see Fig-
ure 4.9 for an example). In terms of the formal definition of planar segmentation, this can
be expressed by

P(Ri ∪Rj) = TRUE for non-bordering regions i �= j

belonging to the same physical feature.
(4.13)

This means that non-adjacent planar segments can very well belong to the same physical
entity. This over-segmentation can be addressed at different levels. It can make sense to
introduce multi-segment features (see [Arras, 2003] for an example in 2D space) that al-
low to group several subfeatures together forming a single multi-segment feature. A long
corridor wall interrupted by doorways or other corridor openings could for example be
represented by a single multi-segment feature consisting of several planar (sub)segments.
In this work, the over-segmentation is not explicitly addressed on a global level but on a
local level of a single 3D scan.

As the number of extracted planar segments per 3D scan stays bounded (see figure
4.10), a basic method comparing all planar segments among themselves has been imple-
mented, merging coinciding segments together. An example result of this post-processing
operation is illustrated by figure 4.9. The left image shows the raw scan of a part of the
jagged ceiling at EPFL. The middle image shows the raw segmentation result using the
region-growing algorithm. Different planar segments have different (random) shades. Af-
ter fusing similar regions together, the segmentation shown in the right image is obtained
where all the subelements of the middle image representing the actual ceiling have been
fused together.

Figure 4.11 shows further results of the two algorithms applied to a number of exam-
ple scans. The left column contains the raw data visualized as point cloud, the middle
column is the result obtained using the GBS algorithm and the column on the right holds
the results of the RGS algorithm. Note that the arbitrary colors should help to differentiate
different planar segments.

4.5 Post-Processing 59

Figure 4.9: A part of a scanned scene showing the ceiling structure at our lab.
Note that the cross beams shown in the raw scan on the left break up the sin-
gle planar segment describing the ceiling into several subsegments depicted in
different colors in the middle image. The right image shows the result of the
post-processing step, where the several segments of the ceiling (see middle im-
age) have been fused to a single region.

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

scan number

nu
m

be
r

of
 fo

un
d

pl
an

ar
 s

eg
m

en
ts

gbs
rgs

0 5 10 15 20 25 30
4

6

8

10

12

14

16

scan number

nu
m

be
r

of
 r

es
id

ua
l p

la
na

r
se

gm
en

ts

gbs post
rgs post

Figure 4.10: The evolution of the number of extracted features in a sequence of
scans taken in a typical office environment. Note that the region-based segmen-
tation (RGS) algorithm extracts around 5 times as many planes as the grid-cell
based (GBS) algorithm (left), as it is also suited to find small planes. The graph
on the right shows the residual number of planar segments after post-processing
and filtering segments containing less than 2000 data points. Note that the num-
ber of residual features based on the region-growing algorithm (RGS) is often
below but close to the number of features based on the grid-based segmentation
(GBS) algorithm.

60 Feature Extraction

Figure 4.11: Comparison of the final segmentation quality of the two presented
algorithms. The left column shows raw data scans, the column in the center the
results using the GBS algorithm, the right column the results using the region-
growing algorithm (RGS). It can be observed that the quality of the latter is
superior in all test scenes. The number of input scan data points is 216961 for
each scan and the resulting extracted feature number stays below 30 at all times
for both algorithms.

4.6 Summary 61

4.6 Summary

This chapter presented two algorithms for planar segmentation of range images, both
capable of processing probabilistic data. The grid-based segmentation (GBS) algorithm
aims at efficient processing and doesn’t require a regular structure in the raw data points,
whereas the region-based segmentation (RGS) algorithm benefits of the inherent data
topology to become more efficient. The former algorithm is well-suited to extract the
most important planes from a 3D scan, but it is inferior to the latter algorithm in terms
of segmentation quality when it comes to smaller planes. As both algorithms lead to an
over-segmentation caused by structures which break up regions into smaller subregions,
a post-processing step has been developed which fuses corresponding subregions back
together. After filtering out the smallest regions, this leads to considerably smaller feature
numbers of the order of magnitude of around 10 per 3D scan, which is believed to be
reasonably low for efficient localization and mapping, which is addressed in the next
chapter.

Note that due to the high quality of the input raw data and the related small uncertainty
in every data point, it is not of significant importance to use the uncertainty information
for the segmentation step. In other cases however, where the uncertainty of the raw data is
greater, it should lead to significantly better segmentation results, justifying the associated
computational overhead.

62 Feature Extraction

Chapter 5

SLAM

5.1 Introduction

SLAM (Simultaneous Localization And Mapping) or CML (Concurrent Mapping and
Localization) is the process of incrementally building a map of the robot’s environment
while tracking its pose at the same time. As the above terms imply, it is composed of two
subproblems, localization and mapping. Localization addresses the problem of estimating
the pose of the mobile robot given an a priori map and a sequence of sensor measurements.
Mapping is the problem of building a map given known poses of the mobile robot and a
sequence of sensor measurements.

Solving the problem of localization requires an a priori map of the environment. Un-
fortunately, such a map is not always available. Blue prints may not exist or be out of date,
furniture in an office environment for example may have shifted over time, making the
map obsolete. A possible solution is to measure the environment by hand, which is fea-
sible for small-scale environments, but a tedious and time-consuming process for larger
environments.

Mapping on the other hand requires a known robot pose. Outdoors, this is possible
since GPS (Global Positioning System) is available providing an absolute position around
the globe with centimeter range precision in ideal conditions. However, in less good
conditions like in forests, valleys or cities, the GPS signal can be disturbed or simply cut
off like in tunnels, caves or other indoor environments. In these cases, reliable mapping
using GPS cannot be carried out. Indoors, the robot pose is provided by internal sensors
like wheel encoders or accelerometers for example. However, these sensors accumulate
errors and therefore can only be used reliably over a short period of time / short distances.

A better solution is to fuse both subproblems together and to perform SLAM. By
assuming the initial robot pose is known, the robot can start the incremental mapping
process by translating its external sensor readings into its map representation. In a next

63

64 SLAM

step, the robot moves, predicts its pose using its internal sensors and fuses newly arrived
exteroceptive information into the (predicted) map, updating the map and the robot pose
at the same time. This cycle is repeated for the whole SLAM experiment.

First methods building the basis of SLAM were presented by [Smith et al., 1990],
who established a statistical basis for describing geometric uncertainty and relationships
between features or landmarks [Christensen, 2002]. In the beginning of the nineties, it
was understood that SLAM is a ”chicken and egg” problem, which cannot be decoupled.
This was also the time when the first working solution to the SLAM problem (in two
dimensions) were presented, see for example [Smith et al., 1990], [Moutarlier and Chatila,
1989], [Leonard and Durrand-Whyte, 1991]. They were based on the Extended Kalman
Filter used in conjunction with a so-called stochastic map presented below.

As already mentioned, the SLAM algorithm follows a repeated two-step procedure.
After a movement of the robot, its new pose is first estimated by using the odometry data
only, coming from the wheel encoders and in a second step corrected by considering ex-
teroceptive data. This step is often called the prediction whilst the second step consisting
of updating the map and the robot pose by integrating newly arrived sensor measurements
is called correction or fusion. The SPmap, which is the above-mentioned stochastic map
formulated within the SPmodel, and the prediction and correction step of a SLAM cycle
are detailed below.

Note that the presented SLAM algorithm (see figure 5.2 for an overview) matches
closely the algorithm described in [Castellanos and Tardós, 1999], which is the standard
Extended Kalman Filter adapted to the SPmodel. This work differs in the sense that it
implements the algorithm in full 3D space using planar segments as underlying features.

5.2 Related Work

Several other research groups use a 2D laser scanner on a rotating support (see [New-
man et al., 2006], [Nüchter and Surmann, 2004], [Kohlhepp et al., 2004], [Hähnel et al.,
2003]) to produce 3D data. The majority of the SLAM approaches are scan-alignment ap-
proaches related to the Iterative Closest Point (ICP) algorithm. It has the advantage that it
solves the data association problem automatically as it directly tries to find corresponding
points in the raw data. However, due to its iterative nature it can be slow and generally
leads to inconsistent maps, when no off-line global alignment is performed as for exam-
ple presented in [Surmann et al., 2003]. A second drawback is that resulting maps are
very complex as they can be composed of up to several million data points, limiting their
applicability to higher-level robotic tasks like global localization, scene understanding or
path-planning. The approach presented in this work in comparison outputs compact and
consistent maps in a more efficient way and also provides useful information to address
the latter issues.

[Horn and Schmidt, 1995a] presented early work on using 3D data for robot naviga-
tion, extracting vertical planar features to correct the vehicle pose in 2D. [Sequeira et al.,

5.3 The SPmap 65

1999] use a single point laser mounted on a pan-tilt unit to create 3D models of indoor
scenes. They use an ICP-like algorithm for scan alignment and focus on environment
reconstruction and next-view planning rather than 3D navigation. As already mentioned,
[Surmann et al., 2003] presented a 3D SLAM approach, based on the ICP algorithm min-
imizing a global error measure to keep consistency. [Andreasson et al., 2005] also use the
ICP to create a 3D map and exploit added intensity information to improve subsequent
planar segmentation. [Kohlhepp et al., 2004] presented a 3D navigation approach using a
laser scanner continuously rotating around its central optical axis. They match scans us-
ing bounded planes in an iterative way, track the robot pose with an EKF and build local
submaps rather than a single stochastic map as it is done in this work. This work extends
[Weingarten and Siegwart, 2005] to process planar segments.

5.3 The SPmap

A unified way of representing the pose of the mobile robot along with the features of
the map of its environment is to use the concept of the so-called stochastic map. It was
introduced by [Smith et al., 1990] and simply consists of a state vector including all
feature locations, the robot pose and the associated covariance matrix. Within the scope
of the SPmodel, it is given by

SPmap = (x̂W , p̂W ,CW ,BW) (5.1)

with

x̂W =

⎡
⎢⎢⎢⎢⎢⎣

x̂WR

x̂WF1

x̂WF2

...
x̂WFNF

⎤
⎥⎥⎥⎥⎥⎦ , (5.2)

p̂W =

⎡
⎢⎢⎢⎢⎢⎣

p̂R

p̂F1

p̂F2

...
p̂FNF

⎤
⎥⎥⎥⎥⎥⎦ , (5.3)

66 SLAM

CW =

⎡
⎢⎢⎢⎢⎢⎣

CR CRF1 CRF2 · · · CRFNF

CT
RF1

CF1 CF1F2 · · · CF1FNF

CT
RF2

CT
F1F2

CF2 · · · CF2FNF

...
...

...
. . .

...
CT

RFNF
CT

F1FNF
CT

F2FNF
· · · CFNF

⎤
⎥⎥⎥⎥⎥⎦ (5.4)

and

BW = diag(I6,BF1 ,BF2 , . . . ,BFNF
). (5.5)

xW ∈ R
6·(1+NF)×1 is the estimated location vector of the SPmap, which represents the

estimated location of the mobile robot and the map features w.r.t. the base reference W .

p̂W ∈ R
rank(BW)×1 is the perturbation vector of the SPmap,CW ∈ R

(rank(BW)×rank(BW))

is the covariance matrix of the SPmap and BW ∈ R
6+

NF
i=1 rank(BFi

) ×6
its binding

matrix. Note that NF is the number of features in the map.

The cross correlation between the robot and the features CRFi
, i = 1 . . . NF relate

the error of the robot pose to the error in the feature locations. This way, a correction of
the robot pose can update the location of a far-off feature, even if the robot cannot see the
latter from its current position.

5.4 Displacement of the Mobile Robot

In this work, the robot moves in a stop-and-go manner, solely taking 3D scans while
standing still. Between two 3D scans taken at two consecutive points1 xWRk−1 and xWRk

of the robot trajectory, an initial estimation of the displacement xRk−1Rk− is given by the
wheel encoders. As the robot has differential-drive kinematics, the odometry relies on
the commonly used piecewise approximation of the displacement of the robot wheels in

1in this case a point refers to a point in time on a continuous robot trajectory. It is therefore equivalent to a
certain robot pose

5.4 Displacement of the Mobile Robot 67

Cartesian space.

x̂WRk− =

⎡
⎢⎢⎢⎢⎢⎢⎣

xk−

yk−

zk−

φk−

θk−

ψk−

⎤
⎥⎥⎥⎥⎥⎥⎦ = f(x̂WRk−1 ,uk)

= x̂WRk−1 + x̂Rk−1Rk−

= x̂WRk−1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

(sl + sr)/2 · cos(φk−1 + sl−sr

2b)
(sl + sr)/2 · sin(φk−1 + sl−sr

2b)
0

sl−sr

2b
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(5.6)

with wheelbase2 b and uk = (sl, sr) being the displacement of the left and right wheel,
respectively. Note that index k− is associated to the predicted state at time step k using the
odometry information. This is equivalent to the alternative notation used in the literature,
where the above x̂k− would be written as x̂k|k−1.

Within the SPmodel, the robot displacement is represented by an uncertain location

LRk−1Rk− = (x̂Rk−1Rk− , d̂Rk− ,CRk− , I6) (5.7)

with the estimated relative displacement vector x̂Rk−1Rk− , the error vector d̂Rk− with
associated full-rank covariance matrix CRk− representing the uncertainty and the bind-
ing matrix which in this case is the identity I6. Obviously, this kind of odometry doesn’t
detect slope changes in undulated terrain. However, if the components of the covariance
matrixCRk− which are not related to the odometry readings are set sufficiently high, the
robot pose can still be tracked successfully in slightly inclined terrain. Otherwise, 3D
scan alignment using the Iterative Closest Point (ICP) algorithm can be used to simu-
late a three-dimensional odometry reading. Note that the error of the robot displacement
xRk−1Rk− is modelled as Gaussian distribution with mean 0 and covariance CRk− and
its magnitude is set to be proportional to the travelled distance.

After having read the data coming from odometry, it has to be used to update the

2the distance between the two actuated wheels

68 SLAM

SPmap in the following way: The predicted state vector is given by

x̂W
k− =

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂WRk−
x̂WF1,k−
x̂WF2,k−

...
x̂WFNF ,k−

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
x̂WRk−1 ⊕ x̂Rk−1Rk−

x̂WF1,k−1

x̂WF2,k−1

...
x̂WFNF ,k−1

⎤
⎥⎥⎥⎥⎥⎦ , (5.8)

the estimated perturbation vector becomes

p̂W
k− =

[
JRk−Rk−1 d̂Rk−1

p̂Mk−

]
(5.9)

and the new covariance matrix is given by

CW
k− =

[
JRk−Rk−1Ck−1JT

Rk−Rk−1
+ CRk− JRk−Rk−1CRMk−1

CT
RMk−1

JT
Rk−Rk−1

CMk−1

]
(5.10)

with

CW =
[

CR CRM

CT
RM CM

]
, (5.11)

whereM represents all features included in the SPmap and R stands for the robot pose.
JRk−Rk−1 is the Jacobian of the relative transform xRk−Rk−1 (see Appendix for details).

5.5 Update

After a robot movement from xWRk−1 to xWRk− , a 3D scan is taken and converted into
the feature-based representation as described in chapter 4. The goal of the update step is
to find correspondences between these newly observed features and the features within
the SPmap and update the latter appropriately. The update is carried out by using the
Extended Kalman Filter [Welch and Bishop, 2001], [Grewal and Andrews, 1993], [Bar-
Shalom and Li, 1993], which requires to solve the data association problem described in
the following.

5.5.1 Data Association

One of the most critical problems in feature-based SLAM is the data association or cor-
respondence problem [Thrun, 2002]. It is the problem of finding features in scans taken

5.5 Update 69

from different locations that correspond to the same physical entity. The higher the dif-
ferentiability of the used features, the better is the obtained data association performance.
Abstraction levels range from geometric features like points, lines or planes to semanti-
cally more significant features combining laser and vision information for high distinc-
tiveness [Lamon et al., 2003]. To solve data association, extensive use of statistical deci-
sion theory is required [Bar-Shalom and Li, 1993]. In loose words, this means a metric is
needed to compare different features quantitatively, taking into account uncertainty infor-
mation. The Mahalanobis distance [Mahalanobis, 1936] d is such a metric and is defined
by

d(x) =
√

(x − μ)T C−1(x − μ). (5.12)

d is the Mahalanobis distance of a random vector x to a multivariate normal distribution
with mean μ and covariance matrix C. It can also be defined as dissimilarity measure
between two random vectors x and y of the same distribution with covariance matrix
CM = Cx + Cy , yielding

dM (x,y) =
√

(x − y)T C−1
M (x − y). (5.13)

If x and y are randomly chosen, dM (x,y)2 is a χ2-variable with r degrees of freedom. To
test whether a random vector x = (x1, . . . , xND

)T matches a vector y = (y1, . . . , yND
)T

with ND being the number of components of x or the degrees of freedom, the χ2-
hypothesis test can be carried out by evaluating dM (x,y)2. The hypothesis is that x
belongs to the distribution defined by y and CM or vice versa y belongs to the distribu-
tion defined by x and CM . It is rejected with significance level a% (or with confidence
level (100− a)%) if dM (x,y) falls into the rejection region (χ2

r,a,∞) and is regarded as
acceptable otherwise. The threshold value χ2

r,a is called the a% significance value of χ2

with r degrees of freedom3 and defined in such a way that∫ ∞

χ2
r,a

1
2r/2Γ(r/2)

Rr/2−1e−R/2dR =
a

100
, (5.14)

where Γ(n) =
∫ ∞
0

tn−1e−tdt is the Gamma function and R = dM (x,y)2 . Fortunately,
the values of the above integral have been precalculated for various degrees of freedom r
and significance levels a and can be looked up. The hypothesis is rejected with signifi-
cance level a% if

R > χ2
r,a. (5.15)

See for example [Kanatani, 1996] for details. To use the χ2-hypothesis test to compare
global map features with new features observed from the robot coordinate frame, the

3r = ND

70 SLAM

plane Fi plane S

originW mobile robot R

xWFi

xWR

xRS

xFiS

Figure 5.1: Exemplary geometric relations between world origin W , mobile
robot R and global map feature Fi which is matched to locally observed feature
S. During data association, the relative transform xFiS is evaluated for different
map features Fi (i = 1 . . . NF) by means of a χ2-hypothesis test based on the
squared Mahalanobis distance metric.

involved covariance matrices have to be transformed into a common reference frame as
described below.

5.5.2 Relating geometric entities

The implicit measurement equation

Often in this work, it is aimed at estimating a state vector x ∈ R
m given an observation

ŷ ∈ R
n of x subject to noise modelled as additive white Gaussian distribution, yielding

ŷ = y + u, u ∼ N (0,S). (5.16)

Following [Ayache and Faugeras, 1988], x and y can be related by an implicit function

f(x,y) = 0, (5.17)

where f is generally nonlinear due to rotational terms. Using the Taylor expansion series
and assuming a ”good” estimate of x denoted by x̂ is available, f can be linearized at

5.5 Update 71

x = x̂ and y = ŷ as follows:

f(x,y) = f(x̂, ŷ) +
∂f
∂x

∣∣∣∣
x=x̂,y=ŷ︸ ︷︷ ︸
H

(x − x̂) +
∂f
∂y

∣∣∣∣
x=x̂,y=ŷ︸ ︷︷ ︸
G

(y − ŷ) (5.18)

By rearranging the terms and appropriate substitution, the following linear measurement
equation is obtained, which can directly be used for the Extended Kalman Filter as de-
scribed below:

z = Hx + v, v ∼ N (0,R), (5.19a)

with

z = −f(x̂, ŷ) + Hx̂, (5.19b)

v = G(y − ŷ), (5.19c)

R = GSGT . (5.19d)

Paring geometric features within the SPmodel

Let the current robot pose be denoted by location LWR = (x̂WR, d̂R,C, I6), the newly
extracted plane by LRS = (x̂RS , p̂S ,C,B) and the planes contained in the SPmap
by LWFi

= (x̂WFi
, p̂Fi

,C,B), with i = 1 . . . NF (see figure 5.1 for an illustration).
The problem of data association is to find all corresponding pairings between the newly
observed planes Sj , j = 1 . . . NS and the features of the map. The two planes coincide if

BFiSxFiS = 0. (5.20)

In this case, the binding matrix BFiS of the pairing corresponds to BFi
or BS as the

feature types correspond. xFiS = (x, y, z, φ, θ, ψ)T , hence BFiSxFiS = (z, θ, ψ)T = 0,
meaning that the two planes coincide if their three relative parameters z, θ and ψ equal
zero.

In the case of simultaneous localization and mapping (SLAM), global features in-
cluded in the SPmap are matched to locally observed features in order to correct the
map features and track the robot pose at the same time. Hence, the pairing consists of
vector pW , which is to be estimated based on information contained in the current obser-
vation denoted by pS . The related nonlinear implicit measurement equation aligning the

72 SLAM

two coordinate frames then takes the following form:

f(pW
i ,pS) = BFiSxFiS

= BFiS (�xWFi
⊕ xWR ⊕ xWS)

= BFiS

(�(x̂WFi
⊕ BT

Fi
pFi

) ⊕ x̂WR ⊕ dR ⊕ x̂RS ⊕ BT
SpS

)
= BFiS

(�BT
Fi

pFi
⊕ x̂FiR ⊕ dR ⊕ x̂RS ⊕ BT

SpS

)
= BFiS

(�BT
Fi

pFi
⊕ x̂FiS ⊕ JSRdR ⊕ BT

SpS

)
= 0

(5.21)

Linearization of (5.21) is performed as follows:

hi = fi(p̂W , p̂S) (5.22)

Hi =
[
HR

i 0 . . . 0 HFi
i 0 . . . 0

]
HR

i =
∂fi
∂dR

∣∣∣∣
(p̂W ,p̂S)

= BFiS

[
∂
(�BT

Fi
pFi

⊕ x̂FiS ⊕ JSRdR ⊕ BT
SpS

)
∂dR

]
(p̂W ,p̂S)

= BFiS

[
∂
(�BT

Fi
pFi

⊕ x̂FiS ⊕ JSRdR ⊕ BT
SpS

)
∂(JSRdR ⊕ BT

SpS)

·∂(JSRdR ⊕ BT
SpS)

∂(JSRdR)
· ∂(JSRdR)

∂dR

]
(p̂W ,p̂S)

= BFiSJ2⊕{�BT
Fi

pFi
⊕ x̂FiS ,JSRdR ⊕ BT

SpS}
· J1⊕{JSRdR,BT

SpS} · JSR

(5.23)

HFi
i =

∂fi
∂pFi

∣∣∣∣
(p̂W ,p̂S)

= BFiS

[
∂
(�BT

Fi
pFi

⊕ x̂FiS ⊕ JSRdR ⊕ BT
SpS

)
∂pFi

]
(p̂W ,p̂S)

= BFiS

[
∂
(�BT

Fi
pFi

⊕ x̂FiS ⊕ JSRdR ⊕ BT
SpS

)
∂(�BT

Fi
pFi

)

·∂(�BT
Fi

pFi
)

∂(BT
Fi

pFi
)

· ∂(BT
Fi

pFi
)

∂pFi

]
(p̂W ,p̂S)

= BFiSJ1⊕{�BT
Fi

pFi
, x̂FiS ⊕ JSRdR ⊕ BT

SpS} · J�{BT
Fi

pFi
}BT

Fi

(5.24)

5.5 Update 73

Gi =
∂fi
∂pS

∣∣∣∣
(p̂W ,p̂S)

= BFiS

[
∂
(�BT

Fi
pFi

⊕ x̂FiS ⊕ JSRdR ⊕ BT
SpS

)
∂pS

]
(p̂W ,p̂S)

= BFiS

[
∂
(�BT

Fi
pFi

⊕ x̂FiS ⊕ JSRdR ⊕ BT
SpS

)
∂(BT

SpS)
· ∂(BT

SpS)
∂pS

]
(p̂W ,p̂S)

= BFiSJ2⊕{�BT
Fi

pFi
⊕ x̂FiS ⊕ JSRdR,BT

SpS}BT
S

(5.25)

Assuming the involved perturbation vectors are centered, i.e. p̂Fi
= 0, p̂S = 0, d̂R = 0

and the features are all planes, these expressions reduce to:

hi = fi(p̂W , p̂S)

Hi =
[
HR

i 0 . . . 0 HFi
i 0 . . . 0

]
(5.26)

HR
i = BJ2⊕{x̂FiS ,0}JSR (5.27)

HFi
i = −BJ1⊕{0, x̂FiS}B (5.28)

Gi = BJ2⊕{x̂FiS ,0}B (5.29)

with

B =

⎡
⎣0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ . (5.30)

The squared Mahalanobis distance between global plane Fi and newly observed plane S
is then given by

D2 = hT
i

(
HR

i CR(HR
i)T + HFi

i CFi
(HFi

i)T + GiCSGT
i

)−1

hi. (5.31)

The hypothesis based on the square Mahalanobis distance D2 is considered true with a
significance level α, if

D2 ≤ χ2
r,α. (5.32)

χ2
r,α is a threshold value that can be obtained from the χ2-distribution with rank 3, α
is the probability of rejecting a good match. If the candidate pairing is accepted, the
two planes Fi and S are fused. Whenever multiple matching candidates are available, a
nearest-neighbor strategy is applied.

Note that in the above terms, the time index k has been omitted for clarity. In the
following it has to be included. The above HR

i is for example equivalent to the HR
i,k

below.

74 SLAM

5.5.3 Fusion

The data association step divides newly observed features into unpaired features that
couldn’t be matched to any map feature and successfully paired features. The goal of
the fusion step is to estimate the new robot pose using these successful pairings as well
as the predicted robot pose. This fusion is carried out in a probabilistic way using the Ex-
tended Kalman Filter. There are different possibilities of fusing the new information into
the SPmap. Either include information of all feature pairings at the same time or in an
iterative way. In this work, the iterative way of fusing information has been implemented,
as this allows to refine the data association after every iteration.

For every found pairing i between a newly observed feature and an existing map
feature, the perturbation vector of the SPmap is updated in the following way:

pW
i,k = pW

i,k− + Ki,k︸︷︷︸
gain

(
zi,k − Hi,kp̂W

i,k−

)
︸ ︷︷ ︸

innovation

(5.33)

= p̂W
i,k− − Ki,khi,k, (5.34)

This is the fusion step of the Extended Kalman Filter, where the predicted state vector
pW

i,k− is corrected by adding the innovation weighted by the so-called Kalman gainKi,k.
The covariance matrix is updated as follows:

CW
i,k = (I − Ki,kHi,k)CW

i,k− . (5.35)

The Kalman gain defines the weighting of the innovation in relation to the underlying
uncertainties encoded by the covariance matrices CW

i,k and SW
i,k. A small uncertainty in

the newly observed feature defined by covariance matrix Si,k will lead to a Kalman gain
close to the identity matrix and hence strongly take into account the new observation. On
the other hand, a less certain newly observation described by larger components of the
covariance matrix Si,k leads to a smaller Kalman gain and hence gives the predicted state
the higher weight. The Kalman gainKi,k is defined by

Ki,k = CW
i,k−HT

i,k

(
Hi,kCW

i,k−HT
i,k + Gi,kSi,kGT

i,k

)−1

(5.36)

CFi

i,k is the uncertainty covariance matrix of the plane w.r.t. its local reference frame. Note
that the state vector of the SPmap is centered after each iteration as explained below .

5.5.4 Adding Non-Matched Features to the Map

All newly observed features that couldn’t be matched to any global map feature contained
in the SPmap have to be added to the latter. It is assumed that the SPmap has the

5.5 Update 75

following form:

x̂W =
[
x̂WR

x̂WM

]
, p̂W =

[
d̂R

p̂M

]
, CW =

[
CR CRM

CT
RM CM

]
(5.37)

An unpaired feature F is added to the SPmap, using the following terms:

(x̂W)′ =

⎡
⎣ x̂WR

x̂WM

x̂WR ⊕ x̂RF

⎤
⎦ (5.38)

(pW)′ =

⎡
⎣ dR

pM

BF JFRdR + pE

⎤
⎦ (5.39)

(CW)′ =

⎡
⎣ CR CRM CRJT

FRBT
F

CT
RM CM CT

RMJT
FRBT

F

BF JFRCR BF JFRCRM BF JFRCRJT
FRBT

F + CF

⎤
⎦ (5.40)

5.5.5 Centering

In order to keep consistency, after integrating each feature into the SPmap, it is centered
which simplifies related mathematical terms [Castellanos and Tardós, 1999]. Informally,
centering the SPmap means transforming all features and the robot pose in a way that
their perturbation vectors become zero. This is achieved by compounding the location
vector x̂W with the perturbation vector p̂W and propagating the uncertainty encoded by
CW . The centered map is given by

(x̂W)′ =

⎡
⎢⎢⎢⎢⎢⎣

x̂′
WR

x̂′
WF1

x̂′
WF2
...

x̂′
WFNF

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

x̂WR ⊕ d̂R

x̂WF1 ⊕ BT
F1

p̂F1

x̂WF2 ⊕ BT
F2

p̂F2

...
x̂WFNF

⊕ BT
FNF

p̂FNF

⎤
⎥⎥⎥⎥⎥⎦ (5.41)

(pW)′ = 0 (5.42)

(CW)′ = QW CW (QW)T (5.43)

with

QW = diag(J−1
2⊕{dR,0},BF1J

−1
2⊕{BT

F1
pF1 ,0}BT

F1
, . . . ,

BFNF
J−1

2⊕{BT
FNF

pFNF
,0}BT

FNF
).

(5.44)

76 SLAM

5.6 Summary

This chapter presented the EKF-based SLAM algorithm in detail. It is an extension of the
algorithm presented by Castellanos et al. [?] to three dimensions leading to six degrees of
freedom in the robot pose. After initialization of the stochastic map called the SPmap, the
robot gathers new knowledge by moving in a stop-and-go manner. The robot displacement
is first estimated by the data collected by the wheel encoders and then fused to the 3D data
extracted as planar features from the point cloud generated during standstill. This process
is governed by the Extended Kalman Filter (EKF) which estimated the displacement of
the robot and the reconstructed environment features in a suboptimal manner considering
involved uncertainties modelled by Gaussian distributions. The next chapter presents
real-world results using this algorithm.

5.6 Summary 77

Initialization of the SPmap:

• initialize robot pose xWR0 and covariance CR0 ,
for example with xWR0 = 0,CR0 = 0

• make first observation with exteroceptive sensor and add the observed features
to the SPmap as described below.

move robot to next pose

make a 3d scan,
extract planar features, find pair-
ings between newly observed fea-
tures and features in the map.

move robot to next pose

Predict the SPmap using the odometry reading x̂Rk−1Rk− :

x̂WR−
k

= x̂WRk−1 ⊕ x̂Rk−1R−
k

d̂R−
k

= JR−
k Rk−1

d̂Rk−1

CW−
=

[
JRk−1R−

k
CRk−1J

T
Rk−1R−

k

JRk−1R−
k
CRMk−1

CT
RMk−1

JT
Rk−1R−

k

CMk−1

]

Update the SPmap:
Iteratively fuse successfully paired newly observed features E with the predicted map
featureM and center the location after every iteration:

h = Bx̂ME ,

pW
k = pW

k− + Kkh,

Kk = CW
k HT

k

(
HkCT

k HT
k + GkSkGT

k

)−1

Hk =
[
HR

k 0 . . . 0 HM
k 0 . . . 0

]
,

HR
k = BJ2⊕{x̂ME ,0}JER, HM

k = −BJ1⊕{0, x̂ME}B,

Gk = BJ2⊕{x̂ME ,0}B,

B =

⎡
⎣0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ .

Add all unpaired features to the SPmap, like shown for example feature F :

(x̂W)′ =

⎡
⎣ x̂WR

x̂WM

x̂WR ⊕ x̂RF

⎤
⎦ , (pW)′ =

⎡
⎣ dR

pM

BJFRdR + pE

⎤
⎦ ,

(CW)′ =

⎡
⎣ CR CRM CRJT

FRBT

CT
RM CM CT

RMJT
FRBT

BJFRCR BJFRCRM BJFRCRJT
FRBT + CF

⎤
⎦ .

Figure 5.2: Overview of the Extended Kalman Filter equations implementing
the SLAM algorithm used in this work. Note that after the initialization of the
SPmap, the prediction and update cycle is repeated until the robot stops. Refer
to the the text for details.

78 SLAM

Chapter 6

Experimental Results

6.1 Introduction

The experiments have been carried out with a differential-drive wheeled robot (see figure
6.1) in the office environment of our lab. The only used sensors are the robot’s 1 kHz
wheel encoders and the rotating laser scanner presented in chapter 2 mounted on the top.
During the different experiments, the robot moves in a stop-and-go manner to allow the
generation of consistent 3D scans while the robot stands still. A continuously moving
robot would unnecessarily complicate the 3D point registration process. After first tests
using a simulation, the performance of the SLAM algorithm is analyzed based on infi-
nite planes in a qualitative way and in a second step compared to the result using planar
segment information.

Even though the test environment is flat almost everywhere with the exception of
several small ramps, it is believed that it is suitable to validate a 3D SLAM algorithm, if
all six degrees of freedom of the robot are considered during the estimation. Furthermore,
a flat environment has the advantage that the z-component of the reconstructed map can
quickly be compared to the ground truth which is known to be constant at almost all
places (except at the ramps). In the experiment with the loop, the z-component was used
to evaluate the improvement of using planar segment information for the data association
step of the SLAM algorithm. An experimental validation in a non-flat environment would
require three-dimensional ground truth information, which may be difficult to obtain and,
even more importantly, also require a three-dimensional odometry sensor. As presented
below in the experiment with the ramp, the ICP algorithm can be used to simulate a full
three-dimensional odometry.

79

80 Experimental Results

Figure 6.1: The robot used for the experiments is a
differential-drive mobile robot equipped with a multitude of
sensors: two opposing horizontal Sick LMS 200 laser range
scanners, four ultrasound, five infrared distance sensors and a
1000 Hz odometry controller. Only the latter is used for this
work as well as the added 3D scanning system mounted on the
top. As mentioned earlier in the text, it is composed of another
Sick LMS 200 laser scanner mounted on a rotating support. It
generates up to 216961 data points (601 2D scans) per scan at
an angular range of 270 degrees.

6.2 Simulation

A simulation provides means to compare the result of the SLAM algorithm to ground-
truth, which is rarely available in the real world. A simple idealized environment com-
posed of three orthogonal planes was used representing the minimal environment neces-
sary to update all six degrees of freedom of the robot state vector xWR = (x, y, z, φ, θ, ψ)T .
The robot performs a sequence of 60 movements with a simulated odometry perturbed by
statistic and systematic errors. Figure 6.2 shows a visualization of the above-mentioned
environment as well as the ground-truth path depicted by gray crosses, the odometry data
(magenta dots) and the corrected path of the robot (red circles). It can be seen that if the
exteroceptive data is used (right side), the robot follows closely the ground truth trajec-
tory. To show the functioning of the algorithm, a table was included allowing to compare
the reconstructed planes with the ground-truth in a quantitative1 way. Note that the per-
formance of the algorithms depends on the modelled motion and observation errors. The
quantitative error analysis 6.3 is therefore by no means to be viewed as absolute. It merely
provides a concrete example of a quantitative analysis of the localization errors with re-
spect to ground-truth. It can be observed that all six components of the robot pose stay
close to the ground-truth and the estimated error stays bounded.

This experiment shows the performance of the Extended Kalman Filter in 3D in an
example case with greatly simplified data association as the 3 involved planes are perpen-
dicular w.r.t. each other and therefore simple to discern. In a real-world case, the data
association is a more critical issue as dozens of planar features have to be discerned cor-
rectly. Nevertheless, after many other simulated robot experiments, it can be concluded,
that the presented feature-based SLAM algorithm based on (infinite) planes works in 3D
space.

1note that the performance of the algorithm depends on the error models and the step size used, hence the
numerical values should merely be seen as an example

6.2 Simulation 81

using odometry only

perspective view top view

corrected using planes

perspective view top view

ground truth estimated trajectories odometry

a

c

b

plane rec. normal rec. distance normal distance
a (−0.0010,−0.0003, 1.0000)T −0.00059107 (0, 0, 1)T 0
b (−0.0006, 1.0000, 0.0006)T −2.9982 (0, 1, 0)T −3
c (−1.0000,−0.0001,−0.0004)T −2.9988 (−1, 0, 0)T −3

Figure 6.2: The idealized simulation environment used to perform initial tests.
The robot moves 60 steps along a three-dimensional simulated trajectory. The
estimated trajectory is marked by red circles. Note that the robot closely follows
the ground truth on the right side, when considering the information coming
from the extracted planes. See figure 6.3 for the associated error analysis. The
table shows the values of the 3 reconstructed planes (a,b,c) in comparison to the
ground-truth.

0 10 20 30 40 50 60
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

step

er
ro

r
in

 [m
]

error in x
3 σ

x
 error bounds

error in y
3 σ

y
 error bounds

error in z
3 σ

z
 error bounds

total position error

0 10 20 30 40 50 60
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

step

er
ro

r
in

 [r
ad

]

error in φ
3 σφ error bounds

error in θ
3 σθ error bounds

error in ψ
3 σψ error bounds

Figure 6.3: The evolution of localization errors during the simulated SLAM
experiment (see also figure 6.2). Note that all components of the estimated robot
pose stay close to the ground truth and the uncertainty stays bounded.

82 Experimental Results

6.3 Using Infinite Planes

6.3.1 Corridor

In a first set of real experiments, the mobile robot moved along a corridor covering a
distance of 34m entering two rooms on its way. Forty 3D scans were taken in a stop-
and-go manner, one approximatively every meter. The scans are composed of 601 2D
scans of 361 data points each, covering an angular field of view of 270◦ × 180◦ and an
angular resolution of around 0.5◦ in both horizontal and vertical direction. Infinite planes
are extracted using the grid-based algorithm (GBS) described in chapter 4.

Figure 6.4 shows the reconstruction of the environment using odometry information
only. The raw 3D scans were subsampled to around 3000 data points each for faster
rendering. As expected, the robot accumulates an error during dead-reckoning leading to
an inconsistent map. Especially the accumulated rotational error is easily visible as the
reconstructed map is bent to the left.

A possibility of correcting the dead-reckoning error is to use scan alignment based on
the Iterative Closest Point (ICP) algorithm (see [Besl and McKay, 1992]. It proceeds by
iteratively finding closest point pairs in different point clouds and minimizes their relative
rigid body transform. It therefore solves the data association problem in an iterative way
until it converges. Figure 6.5 shows the result of using ICP with the same data set as
above. It is applied in a pairwise manner, not in a global way, which is generally done
off-line [Surmann et al., 2003]. Hence, an accumulated error persists, illustrated by the
offset between the dashed vertical line depicting the wall of the corridor in an ideal case
and the reconstructed corridor. Methods addressing the global consistency using ICP are
not further considered here.

Figure 6.6 shows the result of using the EKF-SLAM algorithm presented above. The
features used are infinite planes. In comparison to figure 6.5, the remaining accumulated
error seems to be negligible. However, in the upper part of the image, the plotted scans
are less accurately aligned. Figure 6.7 shows the associated evolution of the robot pose
components with their uncertainty (as 10σ error bounds). It can be observed that the
error doesn’t grow monotonically, but slightly decreases at two points in time, around
step 15 and step 29. This represents the moment when the robot moves out of a room
back into a known environment. The robot therefore relocalizes itself, accommodating
the uncertainty level it had before entering the room. Figure 6.8 shows the evolution
of pairings between newly observed features and existing map features. Note that when
entering a room or a new area at steps 11 or 26 for example, the number of newly observed
features is relatively high, whereas the number of successfully paired features is low. On
the other hand, after leaving the room and reobserving a known area of the map, for
example at step 15 and 29, the number of successfully paired features is high, whereas the
number of new features is relatively low. Figure 6.9 shows the evolution of the trace of
the covariance of a subset of features. The graphs are characteristic for the EKF-SLAM
algorithm and reflect that as the robot gathers more information on its way, the uncertainty

6.3 Using Infinite Planes 83

of the reobserved features decreases monotonically.

6.3.2 A long corridor

In a second experiment, the robot travelled through the complete corridor of our lab,
covering a distance of 140m. The goal of this experiment was to check the consistency of
the built map in a larger scale. Figure 6.11 shows the reconstructed map using the EKF-
SLAM approach overlayed onto a building plan. It can be observed, that the reconstructed
map composed of 244 planes matches closely the reality.

6.3.3 A ramp

In this experiment, partial data of the above experiment with the long corridor has been
reused and analyzed in more detail. It shows a small ramp of a height of around 0.2m and
a length of 1.3m. As shown in figure 6.13, the EKF-SLAM algorithm is able to estimate
the resulting three-dimensional robot trajectory. However, as the wheel encoders don’t
provide information about slope changes, the ICP algorithm [Besl and McKay, 1992] was
used to generate a ”simulated” 3D odometry.

6.3.4 A Loop

In the third experiment, a loop was chosen of a size of approximatively 10 × 12 meters.
The robot was moved almost three times around the inner structure, covering a total dis-
tance of 99m. Figure 6.14 shows several results. Image a) shows the estimated map using
odometry information only. As expected, the accumulated odometry error leads to incon-
sistent maps. Image b) shows the result of using the (pairwise) ICP algorithm to improve
odometry. As mentioned above, this provides means of generating a true 3D odometry
with six degrees of freedom which can be useful when the appropriate proprioceptive 3D
sensor is unavailable. The resulting map is significantly more consistent than the map
in image b), but still shows some misalignments due to the persisting accumulated error.
Image c) shows the resulting map using the EKF-SLAM approach overlayed onto a build-
ing plan. It can be observed, that in comparison to the map represented in image b), the
misalignments disappeared.

6.3.5 Discussion

These results represent a first validation of the feature-based 3D EKF-SLAM algorithm
using infinite planes. It shows similar behavior to its two-dimensional counterpart based
on infinite lines (see for example [Arras, 2003], [Castellanos et al., 1999]), that are its
existential dependence on a working data association, its ability to build globally consis-
tent maps in an incremental way and its high performance, as a single SLAM cycle takes

84 Experimental Results

top view:

side view: robot starts here

Figure 6.4: Estimating the robot pose and the map using odometry information
only. The robot starts at the end of a corridor on the left and and moves 40
steps covering a distance of 34m entering two rooms on its way. The solid line
represents the robot trajectory, while the black dots are subsampled raw scans
generated by the 3D laser scanner. Note the characteristic odometry error accu-
mulation leading to a curved map.

6.3 Using Infinite Planes 85

odometry

corrected using pairwise ICP

offset

Figure 6.5: The same experiment as in figure 6.4, but additionally using the
Iterative Closest Point (ICP) algorithm for pairwise scan alignment. Note that the
resulting map (depicted in blue) is more consistent than the map using odometry
information (depicted in magenta) only, however an accumulated error remains,
which leads to a slightly curved corridor (see indicated offset between dashed
line and reconstructed map)

86 Experimental Results

no more offset

corrected using EKF

odometry

infinite planes

Figure 6.6: The same experiment as in figure 6.4 and 6.5, but using the EKF-
based SLAM algorithm. The underlying features used are infinite planes ex-
tracted probabilistically from the raw 3D scans. The latter have been plotted in
grey for better visualization at the estimated poses output by the EKF. Note that
the offset of figure 6.5 has disappeared, however scans in the upper image seem
to be less exactly aligned resulting in a somewhat less sharp point cloud.

6.3 Using Infinite Planes 87

0 5 10 15 20 25 30 35 40
−5

0

5

10

15

20

step

po
si

tio
n

[m
]

x
y
z

0 5 10 15 20 25 30 35 40

−3

−2

−1

0

1

2

3

step

or
ie

nt
at

io
n

[r
ad

]

φ
θ
ψ

Figure 6.7: The
evolution of
the components
of the robot
pose xWR =
(x, y, z, φ, θ, ψ)T

with their ±10σ
error bounds.
The error grows
as new areas of
the environment
are explored.
At the end of
the experiment,
the transla-
tional error
σt < 0.1m, with
t ∈ {x, y, z},
whilst the ro-
tational error
σr < 1

100 rad
(< 1◦), with
r ∈ {φ, θ, ψ}.

88 Experimental Results

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

step

nu
m

be
r

total number of features in the map
total number of extracted features
successfully paired
new features

Figure 6.8: The evolution of feature numbers pairings during the first experi-
ment in an office corridor. The black curve represents the total number of fea-
tures in the map, the blue the total number of features in the current scan, the
green and red are the successfully paired and new features, respectively. Note
that throughout the experiment, the number of successfully paired features stays
above 8 at all times, resulting in a reasonably large overlap between consecutive
scans.

6.3 Using Infinite Planes 89

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

−6

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step
0 5 10 15 20 25

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step
0 5 10 15 20 25

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

0 5 10 15 20 25
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

−6

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step
0 5 10 15 20 25

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−4

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step
0 5 10 15 20 25

4

5

6

7

8

9

10

11

12

13

14
x 10

−5

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

Figure 6.9: The evolution of the feature uncertainty of a subset of features over
25 steps. The curve represents the trace of the covariance matrix of the plane. It
can be observed that the uncertainty decreases monotonically while new infor-
mation is gathered.

a fraction of a second2 while the number of features is relatively low (NF < 100), not
counting the data association procedure.

However, up to this point, it also brings along the following problems: Firstly, the
data association is a critical step which can, if not working correctly, make the algorithm
diverge. In order to obtain a reliable data association, the error models used have to
carefully chosen. The modelled odometry error has to be set sufficiently large to enclose
systematic errors perturbing robot motion caused by not precisely known wheel diameters
and wheel slippage. In this work it is further set to be proportional w.r.t. the travelled
distance, which is always reasonable as long as the robot velocity and scanning frequency
of the exteroceptive sensor are not constant. The uncertainty of the extracted planes is
directly propagated from the uncertainty of the raw data. Note that when the number of
points N constituting the plane increases, the modelled error represented by a Gaussian
distribution with mean p̂P and covariance matrix CP decreases. If the planar segment
is composed of for example 10000 random data points lying in a plane with covariance

2in Matlab on a Pentium M 1.4 GHz

90 Experimental Results

0 10 20 30 40 50 60 70 80 90
−10

0

10

20

30

40

50

60

70

step

po
si

tio
n

[m
]

x
y
z

0 10 20 30 40 50 60 70 80 90
−4

−3

−2

−1

0

1

2

3

4

step

or
ie

nt
at

io
n

[r
ad

]

φ
θ
ψ

Figure 6.10:
The evolution of
the components
of the robot
pose xWR =
(x, y, z, φ, θ, ψ)T

with their ±10σ
error bounds
during the ex-
periment in the
long corridor.
The error grows
as new areas of
the environment
are explored.
At the end of
the experiment,
the transla-
tional error is
σt < 0.1m, with
t ∈ {x, y, z},
whilst the rota-
tional error is
σr < 1

100 rad
(< 1◦), with
r ∈ {φ, θ, ψ}.

6.3 Using Infinite Planes 91

robot starts here

aligned scan data (gray)

Figure 6.11: In this experiment, the complete corridor of our lab was recon-
structed. The robot travelled 140m and took 90 3D scans in a stop-and-go man-
ner. The resulting map is visualized as aligned raw data (gray) overlayed onto a
building map for visual comparison. The total number of found planar features
is 244, see also figure 6.12.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

step

nu
m

be
r

total number of features in the map
total number of extracted features
successfully paired
new features Figure 6.12: The evolution of

feature numbers pairings dur-
ing the long corridor experi-
ment. The black curve repre-
sents the total number of fea-
tures in the map, the blue the
total number of features in the
current scan, the green and red
are the successfully paired and
unpaired, respectively.

92 Experimental Results

ramp

robot starts here

Figure 6.13: Side view of a reconstructed corridor including a small ramp on
the right. The robot moves from the right to left, descending a small ramp on
its way. The change in height is approximately 20cm and can be successfully
reconstructed. As the wheel encoders don’t provide information about changes
in slope, the ICP algorithm is used to simulate a three-dimensional odometry by
aligning consecutive scans.

matrixCi = 0.012 · I3, the resulting covariance matrix3 of the plane is

CP =

⎡
⎣0.0000000689 0.0000000589 0.0000000591

0.0000000589 0.00000001194 0.0000000018
0.0000000591 0.0000000018 0.0000001203

⎤
⎦ . (6.1)

In this exemplary case, the standard deviation σd of the orthogonal distance d is σd =
0.00000006890.5 = 0.00026249 (see first element of first row of matrixCP). This corre-
sponds to a quarter of a millimeter, which in practice is not realistic, as systematic errors
inherent to the 3D sensor cannot be compensated completely. Hence, with increasing
number of supporting points, the residual systematic errors exceed the decreasing statis-
tical errors. In this work, this issue is tackled by introducing a heuristic consisting of a
constant error ec which is simply added to the diagonal elements of the plane’s covariance
matrixCP .

A further improvement is obtained by augmenting the information content and there-
fore the discernibility of the used features. In the loop experiment presented below, planar
segments are used enhancing the infinite planes, which leads to visually more appealing
maps and better data association performance.

3calculated by the method described in chapter 3

6.3 Using Infinite Planes 93

a) b)

re
si
du
al
of
fs
et

c)

robot starts here

horizontal planes

vertical plane

Figure 6.14: Experiment with a loop of the size of 14×11m. The robot starts in
the center and makes almost three rounds in counterclockwise direction around
the inner structures. Image a) shows aligned 3D scans using odometry only lead-
ing to an inconsistent map. Image b) shows the result using the ICP algorithm in
a pairwise manner. The accumulated odometry error can be drastically reduced,
but a small residual error remains (see offset). Image c) is the result using the
EKF-based approach. The map built has been superimposed on a building plan
for visual comparison.

94 Experimental Results

5 10 15 20 25 30 35 40 45 50

−6

−4

−2

0

2

4

6

step

po
si

tio
n

[m
]

x
y
z

5 10 15 20 25 30 35 40 45 50

−3

−2

−1

0

1

2

3

step

or
ie

nt
at

io
n

[r
ad

]

φ
θ
ψ

Figure 6.15:
The evolution of
the components
of the robot
pose xWR =
(x, y, z, φ, θ, ψ)T

with their ±10σ
error bounds
during the ex-
periment with
the loop. The
error grows as
new areas of the
environment are
explored. See
figure 6.23 for a
closer analysis.

6.3 Using Infinite Planes 95

5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

step

nu
m

be
r

total number of features in the map
total number of extracted features
successfully paired
new features

Figure 6.16: The evolution of
feature numbers and pairings
during the experiment with the
loop. The black curve repre-
sents the total number of fea-
tures in the map, the blue the
total number of features in the
current scan, the green and red
are the successfully paired and
unpaired, respectively. As from
around step 15, the robot trav-
els through known environment,
the number of newly observed
features (red) decreases and the
total number (black) doesn’t
grow boundless in contrast to
figure 6.8

5 10 15 20 25 30 35 40 45 50

2

3

4

5

6

7

8

x 10
−7

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

normal = [0.957177 −0.288980 −0.017414], d = −6.443777

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
−4

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

normal = [0.967033 −0.254328 0.012817], d = −0.890471

5 10 15 20 25 30 35 40 45 50

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

x 10
−7

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

normal = [−0.290257 −0.956947 −0.001748], d = −1.123819

5 10 15 20 25 30 35 40 45 50

4

5

6

7

8

9

x 10
−6

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

normal = [−0.274027 −0.961718 −0.002853], d = −1.364584

0 5 10 15 20 25 30 35 40 45 50

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

x 10
−7

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

normal = [0.287118 0.957894 −0.001242], d = −1.191379

5 10 15 20 25 30 35 40 45 50

4.2

4.4

4.6

4.8

5

5.2

5.4

x 10
−7

tr
ac

e
of

 c
ov

ar
ia

nc
e

m
at

rix
 [m

]

step

normal = [0.006110 −0.002582 0.999978], d = −0.089004

Figure 6.17: The evolution of the feature uncertainty of a subset of features over
54 steps in the loop. The curves represents the trace of the covariance matrix
of the plane. Note that for example the step-like shape of the central graph in
the lower row can be explained by the location of the feature between the inner
structures (see figure 6.14). The robot reobserves the feature twice per round and
therefore the information is added piecewise, leading to the step-like shape.

96 Experimental Results

6.4 Using Planar Segments

6.4.1 Introduction

A map based on infinite planar features (see figure 6.19 left) is almost impossible to un-
derstand for a human. A robot however can perform SLAM using such a representation
and benefit from its compactness, requiring a very limited amount of memory and compu-
tation power. The shown exemplary map requires less than 3 KB of memory. In real world
applications, this could be appropriate for small-scale environments and robots with lim-
ited onboard computing and memory resources. The main problem however when using
infinite planes or other infinite features is that they can be confused during data asso-
ciation. Two features with similar model parameters could be successfully paired even
though they are far-off from each other in the physical reality and hence not necessarily
corresponding.

Three-dimensional point clouds generated by aligning consecutive 3D scans are an
interesting alternative (see figure 6.19 right) to feature-based representations. They are
easy to decode, show high detail, but on the other hand require a fairly large amount of
memory, are more time-consuming to build and don’t provide higher-level information
about the environment.

In the following, a representation is described lying in-between these two extremes.
On one side it is memory-efficient requiring the least amount of memory necessary and on
the other hand it provides dense information easily readable by humans and computers. It
is based on the planar segments presented in chapter 3.

6.4.2 Incremental map building using planar segments

In order to build a map based on planar segments in an incremental way, not only the infi-
nite plane parameters of corresponding features have to be estimated but also the segment
information has to be updated. As the segment information is defined in two dimensions
as a set of polygons w.r.t. the local reference frame of the plane, a mechanism has been
developed which allows to fuse segment information of paired features together. This is
carried out by firstly calculating the new plane parameters as with infinite planes but re-
quiring that corresponding features overlap, secondly projecting the segment information
of both features onto the updated infinite plane. In a third step, this projected segment in-
formation is projected back into the local coordinate frame of the plane and finally fused.
Figure 6.18 shows how the planar segment representing the floor of the loop environment
evolves during the SLAM experiment. Similar information is available for all features of
the map and can be used to create statistics about the reconstructed environment, extract
higher-level features like for example doors, etc.

Figure 6.20 shows the result of reconstructing the above-mentioned loop environment
as a set of planar segments. The created map not only shows high detail which is further
underlined by figure 6.21, but is also small in size compared to the number of input data

6.5 Discussion 97

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

x [m]

y
[m

]

−5 0 5 10 15

−8

−6

−4

−2

0

2

4

6

8

x [m]

y
[m

]

−10 −5 0 5 10 15

−5

0

5

10

15

x [m]

y
[m

]

−10 −5 0 5 10 15

−5

0

5

10

15

x [m]

y
[m

]

Figure 6.18: The evo-
lution of the planar
segment representing
the floor of the envi-
ronment used for the
experiment with the
loop. The top left
graph is captured at
step 1, the top right at
step 7, the bottom left
at step 14 and the bot-
tom right at step 20.
Note that the incre-
mentally grown pla-
nar segment provides
useful information for
path-planning, explo-
ration, building statis-
tics etc.

points. After 20 steps, the robot took 20 scans of 57920 data points each, which adds
up to over 1 million raw data points. The reconstructed map is composed of 89 features
represented by 167 polygons with a total of 17548 underlying data points. This represents
less than 2% of the original amount of data. Figure 6.22 is another example demonstrating
the strong compression ratio of the representation developed. It shows the long corridor
experiment composed of ninety 3D scans which corresponds to an input total number
of points of 90 × 57920 = 5212800. The reconstructed map is composed of 244 planar
segments, represented as 299 polygons with 44696 supporting data points. This represents
less than 1% of the amount of data input.

6.5 Discussion

Using the segment information is favorable for the SLAM algorithm, as it not only pro-
vides a clearer visualization but also improves the data association. By requiring that the
planar segments to be matched have to overlap, the number of false positive matches can
be reduced. This overlap is evaluated by polygon clipping operations, which are common
in the field of computer graphics and not further detailed here. It should be underlined,
that the current implementation is rather a proof of concept than highly optimized code.
Especially the search for corresponding features is momentarily implemented in a naive

98 Experimental Results

Figure 6.19: The left image shows a map based on infinite planes depicted as
coordinate frames and rectangles. The position of each plane in space is defined
by the center of gravity of the underlying point cloud, leading to a very com-
pact map using less than 3 KB. Even though this map is almost unreadable for
a human being, the robot can use it to perform SLAM in 3D space as shown
below. The right image shows the same map as a three-dimensional point cloud
(∼ 100000 points) composed of 40 aligned 3D scans. Note that the original
scans containing over 8 million data points have been subsampled for faster vi-
sualization. It is much easier to read, but on the other hand needs more memory
space and cannot be fed into the EKF algorithm directly.

way, as all features are compared among themselves. Hence, besides the covariance ma-
trix of the stochastic map, which scales quadratically with the number of features, an-
other procedure scaling quadratically is included. The latter can be improved by using
more elaborate nearest-neighbor search methods similar to KD-trees [Samet, 1990], for
example.

6.6 Problematic Issues

As already mentioned above, problematic issues are firstly the unfavorable scaling of the
algorithm performance with increasing number of features. The covariance matrix of
the stochastic map is square and has to be inverted in every Kalman Filter cycle, which
becomes a bottleneck with an increasing number of features. Possibilities to overcome
this issue is to use specialized optimized versions of the Kalman Filter like the compressed
EKF (CEKF) [Guivant and Nebot, 2001b], which leads to a cost proportional to O(N2

a),
where Na is the number of landmarks in a local environment.

A second issue is that the Jacobians of the composition of two 3D locations contain
singularities like for example due to the first term in the second column of matrix K1 of
eq. (A.18). If cosθ3 approaches ±π

2 , the accuracy of the associated covariance decreases
drastically [Smith et al., 1990]. In the experimental setup used for this work, this cannot

6.6 Problematic Issues 99

robot starts here

trajectory es-
timated using
odometry

corrected trajectory robot

learned planar
segments

Figure 6.20: Resulting map of the same experiment as in figure 6.14 using pla-
nar segments visualized as transparent α-shapes. Note that the robot performed
only 20 steps. The trajectory estimated using odometry information only is de-
picted in magenta, the corrected trajectory in blue. The number of learned planar
segments is 89, with a total number of supporting points of 17548 visualized as
167 polygons. This represents less than 2% of the raw 1158400 (20 × 57920)
data points.

100 Experimental Results

Figure 6.21: Close-ups of some reconstructed areas of the map shown in figure
6.20 with photos for comparison. The left view represents a rack with magazines,
the right scene shows a part of a corridor and a the robot displayed by a pink
cuboidal having moved around a corner, as well as its corrected trajectory (blue).

corrected path

path estimated using
odometry

robot starts here

Figure 6.22: Perspective view of the long corridor experiment reconstructed
using planar segments. The robot moves from the right to the left making 90
3D scans in a stop-and-go manner. The number of planar segments found is 244
composed of a total of 44696 data points / 299 polygons. This corresponds to
a compression ration of less than 1% with respect to the raw data gathered by
the 3D sensor (90 × 57920 = 5212800). Note that the path estimated using the
wheel encoder data in this case lies surprisingly close to the corrected path.

6.6 Problematic Issues 101

2 4 6 8 10 12 14 16 18 20

−0.1

−0.05

0

0.05

0.1

0.15

step

po
si

tio
n

[m
]

x
y
z

2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

step

or
ie

nt
at

io
n

[r
ad

]

φ
θ
ψ

2 4 6 8 10 12 14 16 18 20

−0.1

−0.05

0

0.05

0.1

step

po
si

tio
n

[m
]

x
y
z

2 4 6 8 10 12 14 16 18 20

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

step

or
ie

nt
at

io
n

[r
ad

]

φ
θ
ψ

Figure 6.23: The top row shows the evolution of the estimated robot pose and
its associated error during the first 20 steps of the experiment with the loop envi-
ronment. It represents a magnification of figure 6.15. Note that the z-component
varies substantially, taking values between −1 and +6 cm. This doesn’t reflect
well the reality as the environment is flat. It is believed that this error arises from
false pairings, which in turn are caused by the limited discernibility of infinite
planar features. The bottom row shows the evolution of the robot pose, this time
considering segment information for data association. Pairings are only accepted
if their planar segments overlap. It can be observed, that the z-component of the
estimated robot pose stays much closer to zero.

102 Experimental Results

happen, as θ3 stays close to zero, because the robot rolls on the floor. However, there
are several other singularities in the above-mentioned Jacobians and it is not always clear
whether the critical values are reached or not. A way to avoid this issue is to replace the
standard EKF by the so-called Unscented Kalman Filter (UKF), which doesn’t require
the sometimes complex calculation of Jacobians. Instead, it uses a specific set of sam-
ples approximating the underlying Gaussian distributions. See for example [Julier and
Uhlmann, 1997], [Van der Merwe et al., 2000] for an introduction or [Kraft, 2003] for a
concrete implementation.

A third issue is the data association or correspondence problem. In case of a simple
environment as used for the presented simulation, infinite planes prove adequately dis-
cernable. Hence, it is simple to find working parameters for the SLAM algorithm, which
are the χ2-threshold for plane comparison and the modelled uncertainty of the odome-
try. In real-world situations however, environments can be composed of several hundred
features which have to be correctly discerned. A way to improve data association per-
formance is to increase the complexity of the involved features as done in [Lamon et al.,
2003]. Herein, this is achieved by using segment information, which is considered for
data association by requiring an overlap of the pairing candidates.

6.7 Summary

This chapter presented the experimental validation of the 3D SLAM algorithm presented
above. At first, a simulation was used to validate the three-dimensional version of the
algorithm. It showed that the algorithm is able to reconstruct a simple environment and
the 6-DOF4 trajectory of the robot, while its error w.r.t. ground-truth stays bounded. The
next set of experiments was carried out in a mainly flat office environment, which the
algorithm proved capable to reconstruct in a consistent manner. With the aid of the ICP
algorithm it was even able to correctly estimate slightly inclined areas of the environment
exemplified by a ramp.

The algorithm shows the same characteristic drawbacks as its two-dimensional coun-
terpart which are its quadratically scaling complexity with an increasing number of fea-
tures and its sensitivity to a working data association. Furthermore, it is sensitive to
linearization errors, sometimes leading to inconsistencies and to systematic odometry er-
rors, which have to be considered by a sufficiently large assumed motion error. This can
be addressed by increasing the scanning frequency of the external sensor or equivalently
reducing the displacement between two scanning poses. It was finally shown how the
data association can be improved by using segment information which also leads to more
useful and appealing maps. The generated maps are shown to be detailed, as even book-
shelves are reconstructed (see figure 6.21), and very compact at the same time, requiring

4degrees of freedom

6.7 Summary 103

around 1% of the amount of memory of the input raw data.

104 Experimental Results

Chapter 7

Conclusions and Outlook

The goal of this thesis was to develop a complete feature-based 3D SLAM approach for
a mobile robot and validate it experimentally. This firstly required to find 3D sensors
suitable for a mobile robot. Two have been taken into consideration, the CSEM Swiss
Ranger, a time-of-flight camera generating dense range images in real-time, and a custom-
built 3D scanner based on a commercially available 2D laser scanner. Both sensors are
active, rely on the time-of-flight principle and are capable of delivering dense 3D data
composed of many thousand data points.

Chapter 2 presented the modelling of the two sensors which requires their calibration.
This includes compensating the systematic errors and analyzing the residual statistical
errors, which are modelled by Gaussian distributions. The rotating laser scanner is shown
to lead to an accuracy within centimeter range whereas the Swiss Ranger shows persisting
systematic errors even after a simple calibration using a flat wall at different distances.
This is believed to be caused by several error sources like the weak optics leading to
distortions, the inhomogeneous illumination provided by the array of LEDs, the strong
temperature dependency, etc. Further taking into account its restricted field of view of
around 45◦, which is unfavorable for SLAM, it is concluded that the Swiss Ranger is less
suited for precise localization and mapping than the rotating laser scanner. Even though
the latter’s scanning frequency is far below the former’s, its wide angle of view (up to
180◦ × 330◦) and its precision of around a centimeter are the decisive factor. The Swiss
Ranger is therefore not further considered subsequently.

In the following chapter, the representation based on planar segments was presented.
Each of these is composed of an infinite plane represented with its associated uncertainty
covariance matrix and a set of supporting polygons extracted from the supporting (seg-
mented) raw data points. It is shown how the plane uncertainty can directly be calcu-
lated from the raw data uncertainty which is modelled with the aid of the findings of the
last chapter. The first moments of the plane parameters are found by weighted princi-

105

106 Conclusions and Outlook

pal component analysis (PCA) and the second moments using common error propagation
techniques. Finally, the planes are described in compliance with the SPmodel (Symme-
tries and Perturbations Model), which is a framework allowing to represent and process
uncertain geometric data in a consistent way. The SPmodel was successfully used for
feature-based SLAM in 2D and also forms the basis for the three-dimensional SLAM
algorithm presented in this work.

Chapter 4 showed how planes are segmented from raw point clouds. Two planar
segmentation algorithms were presented in detail, one is called grid-based segmentation
(GBS) algorithm and the other region-growing segmentation (RGS) algorithm. The for-
mer algorithm (GBS) aims at extracting the most important planes in a flexible and robust
way by decomposing the space into regular cells, finding a single plane for every cell and
fusing similar neighboring planes together. This leads to an efficient algorithm capable of
reconstructing the most important planes of the scene without requiring a regular structure
in the raw data. The second algorithm developed (RGS) is based on the region-growing
paradigm. It first calculates the normal at every data point by exploiting the inherent regu-
lar structure of the 3D scan. Then it incrementally grows regions by starting at the flattest
point of the scan which is found by evaluating the residual least-square plane fitting error.
With several additional constraints, it is shown that it leads to highly precise segmenta-
tion results. As both algorithms tend to output an over-segmentation, a post-processing
step was implemented to merge corresponding planar regions. It is further shown how
both algorithms can be adapted to process uncertainty information which can improve
segmentation quality but has to be paid with a heavier computational burden.

Finally, the 3D SLAM algorithm was presented in chapter 5. It is based on the Ex-
tended Kalman Filter (EKF) SLAM approach used in conjunction with the SPmodel. At
first, an experimental validation was carried out using a simulation which provides means
to compare the estimated trajectory and map to ground-truth. It showed that the algo-
rithm is capable of estimating a trajectory in full (simulated) 3D space with six degrees
of freedom and its surrounding environment in a precise way. A number of real exper-
iments was carried out with the BIBA0 robot, a differential-drive mobile robot of our
lab equipped with the rotating laser scanner described above. It showed that the system
was able to reconstruct all test environments in an accurate way leading to compact and
detailed maps, composed of planar segments. However, the approach also showed the
same characteristic drawbacks as its two-dimensional counterpart. These are its unfavor-
able scaling performance with increasing number of features, its sensitivity to a working
data association and to the underlying motion error model, as well as its sometimes in-
consistent results caused by linearization errors. Its advantages on the other hand are its
efficiency with a limited number of features, its accuracy and the resulting output map,
which due to the segment information is compact in size and detailed at the same time
and therefore interesting for higher-level tasks like scene understanding, manipulation or
simply visualization.

Recapitulating, this thesis presents the following main contributions: Firstly, a way

107

of modelling uncertain 3D data and fitting a plane to it in a probabilistic way. This al-
lows to keep the modelled uncertainty as realistic as possible without the need to make
additional assumptions. Secondly, two planar segmentation algorithms were developed,
both capable of processing uncertain data and robust with respect to noise and clutter typ-
ically appearing in robotic environment scans. Thirdly, the experimental validation of the
three-dimensional EKF-SLAM algorithm is new, which is concluded to be applicable in
environments of limited size. Finally, the extension to using planar segments is presented,
which not only improves the SLAM algorithm but also leads to visually appealing, very
compact and useful maps.

In future work, issues arising from singularities in the Jacobians of the transformations
of three-dimensional location vectors have to be further investigated, which can lead to
unexpected algorithm behavior. Alternative representations for rotations like quaternions
should be evaluated and compared to the representation based on location vectors and
homogenous matrices used in this work. Another way to tackle this issue could be to use
an unscented Kalman Filter (UKF) instead of the Extended Kalman Filter (EKF). It avoids
the use of Jacobians completely and generally leads to superior estimation performance.

A second issue to be addressed is the complexity of the EKF-SLAM algorithm, which
in the current implementation scales quadratically with the number of map features. In a
larger environment composed of several hundred features, this leads to unacceptably low
performance. Hence, techniques like local map sequencing could be used, decomposing
the global map into smaller local maps which are fused together when necessary. Or
a combination of particle filters with the used representation based on planar segments
could be considered, in a similar way as it is done with points in two dimensions already
(FastSLAM). It would be interesting to find out if this is possible and how many particles
are necessary to efficiently create consistent maps in 3D.

Finally, another track to follow would be to improve the discernibility of the planar
features used with the goal to simplify data association. If, for example, intensity infor-
mation was included, this could be exploited for data association and at the same time
lead to more appealing and useful maps.

108 Conclusions and Outlook

Appendix A

Some Mathematical Background

A.1 Error Propagation

Let f = f(x) be m functions fi = fi(x1, . . . , xn), (i = 1 . . . m) of n variables. Now
the question is how the expectation and the variance of f(x) look like supposing x is a
random variable. Applying Taylor leads to

fi(x) = fi(〈x〉) +
n∑

k=1

(xk − 〈xk〉) ∂fi

∂xk

∣∣∣∣
x=〈x〉

+ O(x2
k). (A.1)

Assuming errors are small, terms of second order and higher are generally omitted. The
(approximate) expectation of every component of f can then be calculated yielding

〈fi(x)〉 ≈ fi(〈x〉). (A.2)

To calculate the covariance matrixC[f(x)], the matrix notation of (A.1) is used:

f(x) ≈ f(〈x〉) + F(x − 〈x〉), (A.3a)

where

F =

⎡
⎢⎣

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xn

⎤
⎥⎦

x=〈x〉

(A.3b)

109

110 Some Mathematical Background

is the Jacobian of f at x = 〈x〉. Therewith, the following equations hold for the covari-
ance matrix:

C[x] = (x − 〈x〉)(x − 〈x〉)T

C[f(x)] ≈ (f(x) − 〈f(x)〉)(f(x) − 〈f(x)〉)T

= (f(〈x〉) + F(x − 〈x〉) − 〈f(x)〉)(f(〈x〉) + F(x − 〈x〉) − 〈f(x)〉)T

= (F(x − 〈x〉))(F(x − 〈x〉))T

= FC[x]FT

(A.4)

Note that the Jacobian F represents a linearization of f at x = 〈x〉. With non-linear f ,
this always represents and approximation. Also note that (A.4) can be rewritten as the
Gaussian law of error propagation:

cov(fi, fj) =
n∑

k=1

n∑
l=1

∂fi

∂xk

∂fj

∂xl
cov(xk, xl), (i �= l)

σ2
fi

=
n∑

k=1

(
∂fi

∂xk
σxk

)2

(i = l)

(A.5)

The following section describes how 3D points with associated uncertainty can be trans-
formed using the error propagation method described above.

A.2 Transforming 3D points with Uncertainty

This appendix describes how a point (xp, yp, zp)T ∈ R
3 represented in Cartesian three-

dimensional space with uncertainty covariance matrix Cp can be transformed using a
rigid-body motion written as location vector x = (x, y, z, φ, θ, ψ)T . This equals a change
of coordinate systems.

First of all, this location vector x has to be converted into a homogeneous matrix H,
yielding1:

H =
[
R T
0 1

]
(A.6a)

with

R =

⎡
⎣cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ

⎤
⎦ (A.6b)

1cφ stands for cos(φ), sθ for sin(θ) etc.

A.2 Transforming 3D points with Uncertainty 111

and

T =

⎡
⎣x

y
z

⎤
⎦ (A.6c)

The transformed point (xt, yt, zt)T can then be found by

⎡
⎣xt

yt

zt

⎤
⎦ = R

⎡
⎣xp

yp

zp

⎤
⎦ + T

=

⎡
⎣cφcθxp + (cφsθsψ − sφcψ)yp + (cφsθcψ + sφsψ)zp + x

sφcθxp + (sφsθsψ + cφcψ)yp + (sφsθcψ − cφsψ)zp + y
−sθxp + (cθsψ)yp + (cθcψ)zp + z

⎤
⎦

︸ ︷︷ ︸
f=(f1,f2,f3)T

(A.7)

In order to propagate the uncertainty of input point (xp, yp, zp)T which is encoded in
Cp ∈ R

3×3, the Jacobian of f has to be calculated:

J =
∂f

∂(xp, yp, zp, x, y, z, φ, θ, ψ)
(A.8a)

=

⎡
⎢⎣

∂f1
∂xp

∂f1
∂yp

∂f1
∂zp

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂φ

∂f1
∂θ

∂f1
∂ψ

∂f2
∂xp

∂f2
∂yp

∂f2
∂zp

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂φ

∂f2
∂θ

∂f2
∂ψ

∂f3
∂xp

∂f3
∂yp

∂f3
∂zp

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂φ

∂f3
∂θ

∂f3
∂ψ

⎤
⎥⎦ (A.8b)

=:
[
U V W

]
(A.8c)

112 Some Mathematical Background

with

U =

⎡
⎣cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ

⎤
⎦ , (A.8d)

V =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , (A.8e)

W(1:3,1) =

⎡
⎣−xpsφcθ − yp(sφsθsψ + cφcψ) − zp(sφsθcψ − cφsψ)

xpcφcθ + yp(cφsθsψ − sφcψ) + zp(cφsθcψ + cφsψ)
0

⎤
⎦ , (A.8f)

W(1:3,2) =

⎡
⎣−xpcφsθ + ypcφcθsψ + zpcφcθcψ

−xpsφsθ + ypsφcθsψ + zpsφcθcψ

−xpcθ − ypsθsψ − zpsθcψ

⎤
⎦ , (A.8g)

W(1:3,3) =

⎡
⎣yp(cφsθcψ + sφsψ) − zp(cφsθsψ − sφcψ)

yp(sφsθcψ − cφsψ) − zp(sφsθsψ + cφcψ)
ypcθcψ − zpcθsψ

⎤
⎦ . (A.8h)

Using the findings of the latter section, the covariance matrixCt of the transformed point
(xt, yt, zt)T can be found by

Ct = JCpJT . (A.9)

A.3 The Symmetries and PerturbationsModel (SPmodel)

A.3.1 Introduction to Location Vectors and Homogeneous Matrices

This work specifically addresses the problem of SLAM in 3D space. In three dimensions,
the robot’s pose xWR is described by six components x3D

WR = (x, y, z, φ, θ, ψ)T , where
the three rotation angles φ, θ and ψ are represented as yaw-pitch-roll angles, in compari-
son to three components x2D

WR = (x, y, θ)T with only one angle θ in two dimensions. In
the following, a location vector xWR describes the location of a reference frame R w.r.t.
the world reference frameW .

Especially due to the two added rotational degrees of freedom, the related equations
for transforming such location vectors between different coordinate frames get quite com-
plex. Hence, by introducing homogeneous matrices, this can be carried out in a convenient
way requiring a single 4 × 4 matrix multiplication for any rigid body motion2 in 3D. The

2a rigid body motion is equivalent to a transform in 3D space composed of a rotation and a translation.

A.3 The Symmetries and Perturbations Model (SPmodel) 113

conversion from a location vector xWR to a homogenous matrixHR
W is given by

HR
W = Hom(xWR) =

[
R t
0 1

]
=

⎡
⎢⎢⎣

nx ox ax tx
ny oy ay ty
nz oz az tz
0 0 0 1

⎤
⎥⎥⎦ , (A.10a)

with

R =

⎡
⎣cφcθ cφsθsψ − sφcψ cφsθcψ − sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ

⎤
⎦ (A.10b)

and

t =
[
x y z

]T
. (A.10c)

The back conversion from a homogeneous matrixHR
W to a location vector xWR is given

by:

xWR =
[
x y z φ θ ψ

]T = Loc(HR
W) (A.11a)

with

x = tx, (A.11b)

y = ty, (A.11c)

z = tz, (A.11d)

φ = arctan 2(ny, nx), (A.11e)

θ = arctan 2(−nz, cos(φ)nx + sin(φ)ny), (A.11f)

ψ = arctan 2(sin(φ)ax − cos(φ)ay,− sin(φ)ox + cos(φ)oy. (A.11g)

A.3.2 Operations in 3D

Mainly two operations are needed to transform location vectors in 3D space: The com-
pounding operation denoted by ⊕ and the inversion denoted by �. Explicitly, the com-
pounding operation is given by:

xWB = xWA ⊕ xAB

= Loc(Hom(xWA)Hom(xAB))
(A.12)

114 Some Mathematical Background

The inversion is given by:

xAW = �xWA

= Loc(Hom(xWA)−1)
(A.13)

When for example a robot moves from pose xWRi
to the pose xWRi+1 and the transition

is defined by an odometry reading xRiRi+1 , the new pose of the robot w.r.t. the world
referenceW is given by xWRi+1 = xWRi

⊕ xRiRi+1 .

A.3.3 Jacobians of the Composition

The Jacobians of the composition x3 = (x3, y3, z3, φ3, θ3, ψ3)T = x1 ⊕ x2 are given by

J1⊕{x1,x2} =
∂(y ⊕ z)

∂y

∣∣∣∣
y=x1,z=x2

, (A.14)

J2⊕{x1,x2} =
∂(y ⊕ z)

∂z

∣∣∣∣
y=x1,z=x2

, (A.15)

with J⊕ = {J1⊕;J2⊕}. Their values can be calculated by

J1⊕ =
[
I3 M
0 K1

]
, J2⊕ =

[
R1 0
0 K2

]
(A.16)

with

M =

⎡
⎣−(y3 − y1) (z3 − z1)cφ1 ax1y2 − ox1z2

x3 − x1 (z3 − z1)sφ1 ay1y2 − oy1z2

0 −x2cθ1 − y2sθ1sψ1 − z2sθ1cψ1 az1y2 − oz1z2

⎤
⎦ , (A.17)

K1 =

⎡
⎢⎢⎣

1 [sθ3s(φ3−φ1)]/cθ3 [ox2sψ3 + ax2cψ3]/cθ3

0 c(φ3−φ1) −cθ1s(φ3−φ1)

0 [s(φ3−φ1)]/cθ3 [cθ1c(φ3−φ1)]/cθ3

⎤
⎥⎥⎦ , (A.18)

R1 =

⎡
⎣cφ1cθ1 cφ1sθ1sψ1 − sφ1cψ1 cφ1sθ1cψ1 + sφ1sψ1

sφ1cθ1 sφ1sθ1sψ1 + cφ1cψ1 sφ1sθ1cψ1 − cφ1sψ1

−sθ1 cθ1sψ1 cθ1cψ1

⎤
⎦ (A.19)

and

K2 =

⎡
⎣ (cθ2c(ψ3−ψ2))/cθ3 (s(ψ3−ψ2) 0

−cθ2s(ψ3−ψ2) c(ψ3−ψ2) 0
(ax1cφ3 + ay1sφ3)/cθ3 (sθ3s(ψ3−ψ2))/cθ3 1

⎤
⎦ . (A.20)

Note that ax1 and ay1 are elements of the homogeneous matrix equivalent to location
vector x1 similar to eq. (A.10a).

A.3 The Symmetries and Perturbations Model (SPmodel) 115

A.3.4 Jacobians of the Inversion

The Jacobian of the inversion of a location vector �x = (x′, y′, z′, φ′, θ′, ψ′)T is given
by

J�{x} =
∂(�y)

∂y

∣∣∣∣
y=x

(A.21)

=
[−RT N

0 Q

]
, (A.22)

where

N =

⎡
⎣nyx − nxy −nzxcφ − nzysφ 0

oyx − oxy −ozxcφ − ozysφ + zsθsψ z′

ayc − axy −azxcφ − azysφ + zsθcψ −y′

⎤
⎦ , (A.23)

Q =

⎡
⎣−az/(1 − a2

x) −aycφ/(1 − a2
x) nxax/(1 − a2

x)
ay/(1 − a2

x)0.5 −azcφ/(1 − a2
x)0.5 ox/(1 − a2

x)0.5

azax/(1 − a2
x) −oxcψ/(1 − a2

x) −nx/(1 − a2
x)

⎤
⎦ . (A.24)

Note that like above, the components ax, ay and so on are taken from the homogeneous
matrix corresponding to the input location vector x (see eq. (A.10a)).

A.3.5 Differential Transforms

Let A and B be two references, whose relative location is given by location vector xAB .
A differential change toB which takes it toB′ can be represented as a differential location
vector d = (dx, dy, dz, dφ, dθ, dψ)T . There are two ways of representing the transform
from A to B′:

xAB′ = xAB ⊕ dB (A.25)

xAB′ = dA ⊕ xAB (A.26)

Using the Jacobian of the composition, this can be transformed into

xAB′ = xAB + J2⊕{xAB ,0}dB (A.27)

xAB′ = xAB + J1⊕{0,xAB}dA. (A.28)

Hence, J2⊕{xAB ,0}dB = J1⊕{0,xAB}dA, and therefore

dA = J−1
1⊕{0,xAB}J2⊕{xAB ,0}︸ ︷︷ ︸

JAB

dB (A.29)

dB = J−1
2⊕{xAB ,0}J1⊕{0,xAB}︸ ︷︷ ︸

JBA

dA (A.30)

116 Some Mathematical Background

A.3.6 Operations with SP-Locations

Inversion

Given an uncertain location LAB = (x̂AB , p̂B ,CB ,BB), its inverse LBA is given by:

xBA = �xAB

= �(x̂AB ⊕ BT
BpB)

= �BT
BpB � x̂AB

= �BT
BpB ⊕ x̂BA

= x̂BA � JABBT
BpB

pA = −BBJABBT
BpB

BA = BB

CA = BBJABBT
BCBBBJT

ABBT

(A.31)

Composition

The composition of two uncertain locations LWF = (x̂WF , p̂F ,BF ,CF) and LFE =
(x̂FE , p̂E ,BE ,CE) is given by LWE with

x̂WE = x̂WF ⊕ x̂FE

p̂W
E = BEJEF BT

F pF + pE

CW
E = BEJEF BT

F CF BF JT
EF BT

E + CE

Centering

A location LWE = (x̂WE , p̂E ,CE ,BE) with p̂E �= 0 is transformed into location
LWE′ = (x̂WE′ , p̂′

E ,C′
E ,B′

E) with p̂E = 0, called centered, in the following way:

x̂WE′ = x̂WE ⊕ BT
Ep̂E

CE′ = (BEJ−1
2⊕{BT

Ep̂E ,0}BT
E)CE(BEJ−1

2⊕{BT
Ep̂E ,0}BT

E)T

Bibliography

H. Andreasson, R. Triebel, and W. Burgard. Improving plane extraction from 3d data by
fusing laser data and vision. In Proceedings of International Conference on Intelligent
Robots and Systems (IROS), pages 2656–2661, Edmonton, Canada, August 2005.

K. O. Arras, J. Castellanos, M. Schilt, and R. Siegwart. Feature-based multi-hypothesis
localization and tracking using geometric constraints. Robotics and Autonomous Sys-
tems, 1056:1–13, 2003.

K.O. Arras. Feature-Based Robot Navigation in Known and Unknown Environments.
PhD thesis, EPFL, 2003.

N. Ayache and O.D. Faugeras. Building, registrating, and fusing noisy visual maps. In-
ternational Journal on Robotics Research, 7(6):45–65, 1988. ISSN 0278-3649.

Yaakov Bar-Shalom and Xiao-Rong Li. Estimation and Tracking: Principles, Techniques,
and Software. Artech House, 1993.

Paul J. Besl and Ramesh C. Jain. Three-dimensional object recogni-
tion. ACM Comput. Surv., 17(1):75–145, 1985. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/4078.4081.

Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell., 14(2):239–256, 1992. ISSN 0162-8828. doi:
http://dx.doi.org/10.1109/34.121791.

J.-Y. Bouguet. Complete camera calibration toolbox for matlab, 2000. URL
http://www.vision.caltech.edu/bouguetj/calib_doc/. last visited
on April 12th, 2006.

W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial
Intelligence, 114:3–55, 1999.

117

118 BIBLIOGRAPHY

J. A. Castellanos and J.D. Tardós. Mobile Robot Localization And Map Building. Kluwer
Academic Publishers, 1999.

J. A. Castellanos, M. M. Montiel, J. Neira, and J. D. Tardós. The spmap: A probabilis-
tic framework for simultaneous localization and map building. IEEE Transactions on
Robotics and Automation, 15:948–952, 1999.

H. Christensen. Slam summer school. 2002. URL
http://www.cas.kth.se/SLAM/toc.html. last visited on April 12th,
2006.

Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. Computer Graphics, 30:303–312, 1996. URL
citeseer.ist.psu.edu/article/curless96volumetric.html.

Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte carlo local-
ization for mobile robots. In Proceedings of International Conference on Robotics and
Automation (ICRA), volume 2, pages 1322–1328, Detroit, USA, May 1999.

A. Diosi and L. Klemman. Uncertainty of line segments extracted from static sick pls
laser scans. In Proceedings of Australasian Conference on Robotics and Automation,
2003.

M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba.
A solution to the simultaneous localization and map building (slam) problem. IEEE
Transactions on Robotics and Automation, 17:229–241, 2001.

Hugh F. Durrant-Whyte. An autonomous guided vehicle for cargo handling applications.
Int. J. Rob. Res., 15(5):407–440, 1996. ISSN 0278-3649.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,
22(6):46–57, 1989a. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.30720.

A. Elfes. A probabilistic framework for robot perception and navigation. PhD thesis,
Carnegie Mellon University, 1989b.

T.-J. Fan, G. Medioni, and R. Nevatia. Segmented descriptions of 3-d surfaces. IEEE
Jounal of Robotics and Automation, 3:527–538, 1988.

Olivier Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT Press,
Cambridge, MA, USA, 1993. ISBN 0-262-06158-9.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartograph. Communications of the
ACM, 24:381–395, 1981.

BIBLIOGRAPHY 119

D. Fox, M. Burgard, and Thrun S. Active markov localization for mobile robots. In
Robotics and Autonomous Systems, volume 25, pages 195–207. 1998.

D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research, 11, 1999.

D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for mobile robot localiza-
tion. 2001. URL citeseer.ist.psu.edu/fox01particle.html.

R.C. Gonzalez and S.E. Woods. Digital Image Processing. Addison-Wesley, 1992.

N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEEE Proceedings of Radar and Signal Processing, vol-
ume 140, pages 107–113, 1993.

M. S. Grewal and A. P. Andrews. Kalman filtering: theory and practice. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1993. ISBN 0-13-211335-X.

J. Guivant and E. Nebot. Optimization of the simultaneous localization and map-building
algorithm for real-time implementation. IEEE Transactions on Robotics and Automa-
tion, 17:242–257, 2001a.

J. Guivant and E. Nebot. Compressed filter for real time implementation of simultaneous
localization and map building. In FSR 2001 International Conference on Field and
Service Robots, pages 309–314, Helsinki, Finland, June 2001b.

J. Guivant, F. Masson, and E. Nebot. Simultaneous localization and map building using
natural features and absolute information. Robotics and Autonomous Systems, 2002.

D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient fastslam algorithm for gen-
erating maps of large-scale cyclic environmnets from raw laser range measurements.
In Proceedings of the Conference on Intelligent Robots and Systems (IROS), volume 1,
pages 206–211, Las Vegas, USA, October 2003.

Janne Heikkila and Olli Silven. A four-step camera calibration procedure with implicit
image correction. In CVPR ’97: Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition (CVPR ’97), page 1106, Washington, DC, USA, 1997.
IEEE Computer Society. ISBN 0-8186-7822-4.

D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3d models of indoor and outdoor
environments with a mobile robot. Robotics and Autonomous Systems, 44(1):15–27,
2003.

A. Hoover, J.-B. Gillian, X. Jiang, P. J. Flynn, Horst Bunke, D. B. Goldgof, K. Bowyer,
D. W. Eggert, A. Fitzgibbon, and R. B. Fisher. An experimental comparison of range
image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(7):673–689, July 1996.

120 BIBLIOGRAPHY

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, andW. Stuetzle. Surface reconstruction
from unorganized points. In ACM Siggraph, 1992.

Hugues Hoppe. Progressive meshes. Computer Graphics, 30:99–108, 1996.

J. Horn and G. Schmidt. Continuous localization of a mobile robot based on 3d-laser-
range-data, predicetd sensor images, and dead-reckoning. In Robotics and Autonomous
Systems, volume 14, pages 99–118. 1995a.

J. Horn and G. Schmidt. Continuous localization for long-range indoor navigation of
mobile robots. In Proceedings of International Conference on Robotics and Automation
(ICRA), volume 1, pages 387–394, Nagoya, Japan, May 1995b.

P. V. C. Hough. Machine analysis of bubble chamber pictures. In International Confer-
ence on High Energy Accelerators and Instrumentation, CERN, 1959.

P. Jensfelt and S. Kristensen. Active global localization for a mobile robot using multiple
hypothesis tracking. IEEE Transactions on Robotics and Automation, 17:748–760,
2001.

X. Jiang and H. Bunke. Fast segmentation of range images into planar regions by scan
line grouping. Mach. Vision Appl., 7(2):115–122, 1994. ISSN 0932-8092. doi:
http://dx.doi.org/10.1007/BF01215806.

S. J. Julier and J. K. Uhlmann. A new extension of the kalman filter to nonlinear systems.
In AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sim-
ulation and Controls, 1997.

T. Kahlmann and H. Ingensand. Calibration and improvements of the high-resolution
range-imaging camera SwissRanger. In Optical Materials in Defence Systems Tech-
nology. Edited by Vere, Anthony W.; Grote, James G.; Kajzar, Francois. Proceedings
of the SPIE, Volume 5665, pp. 144-155 (2004)., pages 144–155, December 2004. doi:
10.1117/12.582513.

Kenichi Kanatani. Statistical Optimization for Geometric Computation: Theory and
Practice. Elsevier Science Inc., New York, NY, USA, 1996. ISBN 0444824278.

P. Kohlhepp, P. Pozzo, and R. Dillmann. Sequential 3d-slam for mobile action planning.
In Proceedings of International Conference on Intelligent Robots and Systems (IROS),
volume 1, pages 722–729, Sendai, Japan, September 2004.

E. Kraft. A quaternion-based unscented kalman filter for orientation tracking. In Pro-
ceedings of the 6th International Conference on Infornation Fusion, 2003.

BIBLIOGRAPHY 121

P. Lamon, A. Tapus, E. Glauser, N. Tomatis, and R. Siegwart. Environmental modeling
with fingerprint sequences for topological global localization. In Proceedings of the
IEEE International Conference on Intelligent Robots and Systems (IROS), volume 3,
pages 3781–3786, Las Vegas, USA, October 2003.

R. Lange and P. Seitz. Solid-state, time-of-flight range camera. IEEE Journal of Quantum
Electronics, 37(3):390–397, 2001.

J. J. Leonard and H.F. Durrand-Whyte. Simultaneous map building and localization for
an autonomous mobile robot. In Proceedings of International Workshop on Intelligent
Robots and Systems (IROS), 1991.

J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Transactions on Robotcs and Automation, 7, 1991.

Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Using EM to learn 3D
models of indoor environments with mobile robots. In Proceedings of International
Conference on Machine Learning (ICML), 2001.

F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2d
range scans. In Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 935–938, Seattle, USA, June 1994.

F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2d
range scans. Journal of Intelligent and Robotic Systems, 18:249–275, 1997.

P. C. Mahalanobis. On the generalised distance in statistics. In Proceedings of the Na-
tional Institue of Science of India, number 12, 1936.

I. Mahon and S. Williams. Three-dimensional robotic mapping. In Proceedings of Aus-
traliasian Conference on Robotics and Automation, Brisbane, Australia, December
2003.

M. Matos, V. Santos, and P. Dias. 3d reconstruction of real world scenes using a low-cost
3d range scanner. In In Proceedings of the 4th Conference of Construction Applications
of Virtual Reality - CONVR2004, 2004.

M. Montemerlo, S. Thrun, D. Koller, and Wegbreit B. Fastslam: a factored solution to the
simultaneous localization and mapping problem. In Proceedings of the AAAI National
Conference on Artificial Intelligence, 2002.

M. Montermerlo, S. Thrun, Koller D., and B. Wegbreit. Fastslam 2.0: an improved par-
ticle filtering algorithm for simultaneous localization and mapping that provably con-
verges. In Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), 2003.

122 BIBLIOGRAPHY

Hans Moravec. Sensor fusion in certainty grids for mobile robots. AI Mag., 9(2):61–74,
1988. ISSN 0738-4602.

Hans Moravec and A. E. Elfes. High resolution maps from wide angle sonar. In Proceed-
ings of the 1985 IEEE International Conference on Robotics and Automation, pages
116 – 121, March 1985.

P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot location
and environement modelling. In International Symposium of Robotics Research, 1989.

A. Nüchter and H. Surmann. 6d slam with an application in autonomous mine mapping.
In Proceedings of International Conference on Robotics and Automation (ICRA), pages
1998–2003, New Orleans, USA, April 2004.

P. M. Newman, D. M. Cole, and K.L. Ho. Outdoor slam using visual appearance and
laser ranging. In Proceedings of International Conference on Robotics and Automation
(ICRA), Orlando, Florida, May 2006.

University of Southern Florida. Range image database. URL
http://marathon.csee.usf.edu/range/DataBase.html. last vis-
ited on April 12th, 2006.

T. Oggier, M. Lehmann, R. Kaufmann, M. Schweizer, M. Richter, P. Metzler, G. Lang,
F. Lustenberger, and N. Blanc. An all-solid-state optical range camera for 3d real-time
imaging with sub-centimeter depth resolution (swissranger). In SPIE Optical Design
and Engineering, volume 5249, pages 534–545, 2004.

A. Reina and J. Gonzalez. Characterization of a radial laser scanner for mobile robot nav-
igation. In Proceedings of International Conference on Intelligent Robots and Systems
(IROS), volume 2, pages 579–585, Grenoble, France, September 1997.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes. Com-
puter Graphics, 26(2):65–70, 1992.

V. Sequeira, J.G.M. Gonçalves, and Ribeiro M.I. High-level surface descriptions from
composite range images. In IEEE International Symposium on Computer Vision, pages
163 – 168, November 1995.

V. Sequeira, K. Ng, E. Wolfart, J.G.M. Gonçalves, and D. Hogg. Automated recon-
struction of 3d models from real environments. ISPRS Journal of Photogrammetry &
Remote Sensing, 54:1–22, 1999.

BIBLIOGRAPHY 123

R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in ro-
botics. In I. J. Cox and G. T. Wilfong, editors, Autonomous Robot Vehicles, pages
167–193. Springer-Verlag, 1990.

C. Stachniss, G. Grisetti, and W. Burgard. Recovering particle diversity in a rao-
blackwellized particle filter for slam after actively closing loops. In Proceedings
of International Conference on Robotics and Automation (ICRA), pages 655 – 660,
Barcelona, Spain, April 2005.

P. Steinhaus and R. Dillmann. Aufbau und modellierung des rosi scanners zur 3d-
tiefenbildakquisition. In 18. Fachgespräch "Autonome Mobile Systeme (AMS 2003)",
Karlsruhe, Germany, December 2003.

Minsoo Suk and Suchendra M. Bhandarkar. Three-Dimensional Object Recognition from
Range Images. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1992. ISBN
0387701079.

H. Surmann, A. Nüchter, and J. Hertzberg. An autonomous mobile robot with a 3d laser
range finder for 3d exploration and digitalization of indoor environments. Journal of
Robotics and Autonomous Systems, 45(3-4):181–198, 2003.

Hartmut Surmann, Kai Lingemann, Andreas Nüchter, and Joachim Hertzberg. Fast ac-
quiring and analysis of three dimensional laser range data. In VMV ’01: Proceedings
of the Vision Modeling and Visualization Conference 2001, pages 59–66. Aka GmbH,
2001. ISBN 3-89838-028-9.

J.D. Tardós. Representing partial and uncertain sensorial information using the theroy
of symmetries. In Proceedings of IEEE International Conference on Robotics and
Automation, 1992.

S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors, Exploring
Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

S. Thrun, W. Burgard, D. Chakrabarti, R. Emery, Y. Liu, and C. Martin. A real-time algo-
rithm for acquiring multi-planar volumetric models with mobile robots. In Proceedings
of the 10th International Symposium of Robotics Research (ISRR’01), Lorne, Australia,
2001. Springer.

N. Tomatis, I. Nourbakhsh, and R. Siegwart. Hybrid simultaneous localization and map
building: a natural integration of topological and metric. Robotics and Autonomous
Systems, 44:3–14, 2003.

Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses. pages 221–244, 1992.

124 BIBLIOGRAPHY

R. Van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The unscented particle filter.
Technical report, Cambridge University Engineering Department, 2000.

J. Weingarten and R. Siegwart. Ekf-based 3d slam for structured environment reconstruc-
tion. In Proceedings of International Conference on Intelligent Robots and Systems
(IROS), pages 3834 – 3839, Edmonton, Canada, August 2005.

J. Weingarten, G. Gruener, and R. Siegwart. A fast and robust 3d feature extraction
algorithm for structured environment reconstruction. In Proceedings of International
Conference on Advanced Robotics (ICAR), pages 1142–1147, Coimbra, Portugal, June
2003.

J. Weingarten, G. Gruener, and R. Siegwart. Probabilistic plane fitting in 3d and an ap-
plication to robotic mapping. In Proceedings of International Conference on Robotics
and Automation (ICRA), pages 927–932, New Orleans, USA, April 2004a.

J. Weingarten, G. Gruener, and R. Siegwart. A state-of-the-art 3d sensor for robot navi-
gation. In Proceedings of International Conference on Intelligent Robots and Systems
(IROS), pages 2155–2160, Sendai, Japan, September 2004b.

G. Welch and G. Bishop. An introduction to the kalman filter, February 2001.

Wikipedia. the free encyclopedia, 2006. URL http://en.wikipedia.org. last
visited on April 12th, 2006.

O. Wulf and B. Wagner. Fast 3d-scanning methods for laser measurement systems. In
Proceedings of 14th International Conference on Control Systems and Computer Sci-
ence (CSCS14), Bucharest, Romania, July 2003.

C. Ye and J. Borenstein. Characterization of a 2-d laser scanner for mobile robot obstacle
negotiation. In Proceedings of International Conference on Robotics and Automation
(ICRA), pages 2512–2518, Washington DC, USA, May 2002.

N. Yokoya and M. D. Levine. Range image segmentation based on differential geometry:
a hybrid approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11:643–649, 1989.

Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations. In
Proceedings of International Conference on Computer Vision (ICCV), pages 666–673,
Corfu, Greece, September 1999.

Curriculum Vitae

I was born on the 16th of July 1975 in Bonn (Germany). After moving to Geneva at the
age of five, I entered the Deutsche Schule Genf (DSG) in 1981, which I finished 1994 by
obtaining the German Abitur. Then I moved to Germany to start Computer Science studies
at the Technische Universität Karlsruhe. After a semester project at the University of Port
Elizabeth (South Africa) in 1997/1998, I moved back to Karlsruhe and finished my studies
in 2001. My master thesis was entitled "Entwicklung eines Verfahrens zur Lokalisierung
und Entnahme chaotisch palettierter Objekte mit Tiefenbildern" and carried out at the
Fraunhofer Institut für Produktionstechnik und Automatisierung (IPA) in Stuttgart. In
2002, I moved to Lausanne (Switzerland) to start my doctoral thesis in mobile robotics
under the supervision of Prof. Siegwart at the Swiss Federal Institute of Technology
(EPFL).

125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

