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Abstract 

The importance of evaluation of an orthopedic operation such as hip or knee arthroplasty 

has long been recognized. Many definitions of outcome and scoring questionnaires have 

been used in the past to assess the outcome of joint replacement. However, these as-

sessments are subjective and not accurate enough. In addition, orthopedic surgeons 

require now more subtle comparisons between potentially efficacious treatments (e.g. two 

types of prostheses). Therefore, the use of objective instruments that have a better 

sensitivity and specificity than traditional scoring systems is needed. Gait analysis is one 

of the most currently used instrumented techniques in this respect. However, a gait 

analysis system is accessible only in a few specialized laboratories, as it is complex, 

expensive, need a lot of room space and fixed devices, and not convenient for the patient.  

In this thesis, we proposed an ambulatory system based on kinematic sensors attached 

on the lower limbs to overcome the limitations of the previously mentioned techniques. 

Technically the device is portable, easily mountable, non-invasive, and capable of con-

tinuously recording data in long term without hindrance to natural gait. The goal was to 

provide gait parameters as a new objective method to assess Total Knee Replacement 

(TKR). New solutions to fusing the data of accelerometers and gyroscopes were proposed 

to accurately measure lower limbs orientations and joint angles. The methods propose a 

minimal sensor configuration with one sensor module mounted on each segment. The 

models consider anatomical aspects and biomechanical constraints. In the proposed 

techniques, the angles are found without the need for integration, so absolute angles can 

be obtained which are free from any source of drift. These data were then used to develop 

a gait analysis system providing spatio-temporal parameters, kinematic curves, and a 

visualization tool to animate the motion data as synthetic skeletons performing the same 

actions as the subjects. Moreover, a new algorithm was proposed for assessing and 

quantification of inter-joint coordination during gait. The coordination model captures 

the whole dynamics of the lower limbs movements and shows the kinematic synergies at 

various walking speeds. The model imposes a relationship among lower limb joint angles 

(hips and knees) to parameterize the dynamics of locomotion for each individual. It 

provides a coordination score at various walking speeds which is ranged between 0 and 

10. An integration of different analysis tools such as Harmonic Analysis, Principal Com-
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ponent Analysis, and Artificial Neural Network helped overcome high-dimensionality, 

temporal dependence, and non-linear relationships of the gait patterns.  

In order to show the effectiveness of the proposed methods in outcome evaluation, we 

have considered a clinical study where the outcomes of two types of knee prostheses were 

compared. We conducted a randomized controlled study, including 54 patients, to assess 

TKR outcome between patients with fixed bearing and mobile bearing tibial plates of 

implants. The patients were tested preoperatively and postoperatively at 6 weeks, 3 

months, 6 months, and 1 year. Various statistical analyses were done to compare the 

outcomes of the two groups. Finally, we provided objective criteria, using ambulatory gait 

analysis, for assessing functional recovery following TKR procedure. We showed signifi-

cant difference between the two groups where the standard clinical evaluation was 

unable to detect such a difference. 

 

Keywords: Ambulatory system, Biomechanics, Coordination, Gait analysis, Kinematic 

sensors, Motion capture, Outcome evaluation, Total knee arthroplasty. 
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Résumé 

L'importance de l'évaluation d'une opération orthopédique telle que l'arthroplastie de la 

hanche ou du genou a depuis longtemps été identifiée. De nombreux scores cliniques,  

ainsi que des questionnaires d'évaluation sont utilisés pour évaluer les résultats d'une 

arthroplastie. Cependant, ces évaluations sont subjectives et peu précises. De plus, le 

chirurgien a besoin de comparaisons plus subtiles entre les traitements potentiellement 

efficaces (par exemple deux types de prothèses). Par conséquent, l'utilisation d'instru-

ments objectifs qui ont une meilleure sensibilité et spécificité que les systèmes  d'évalua-

tion traditionnels est nécessaire. L'analyse de la marche est l'une des techniques 

instrumentales les plus utilisées actuellement à cet égard. Pourtant, les systèmes d'ana-

lyse de la marche ne sont accessibles que dans quelques laboratoires spécialisés, car ils 

sont complexes et coûteux. Ces dispositifs nécessitent de grandes salles, ils sont fixes et 

non portables et ils ne sont pas toujours commodes pour le patient. 

Dans cette thèse, nous avons proposé un système ambulatoire basé sur des capteurs 

cinématiques fixés sur les membres inférieurs afin de surmonter les limitations des 

techniques mentionnées précédemment. Le dispositif est techniquement portable, facile-

ment utilisable, non invasif, et capable d'enregistrer des données de longue durée dans 

l’environnement naturel du patient. Le but consiste à évaluer une arthroplastie du genou 

(TKR) à partir des paramètres de marche fournis par une nouvelle méthode objective. De 

nouvelles solutions ont été proposées pour fusionner les données des accéléromètres et 

des gyroscopes afin de mesurer précisément les orientations des membres inférieurs et 

les angles des articulations. Ces méthodes utilisent une configuration minimale de 

capteur avec un seul module de capteur fixé sur chaque segment. Une modélisation 

considérant à la fois les aspects anatomiques et les contraintes biomécaniques est 

proposée. Dans les techniques proposées, les angles sont calculés sans intégration, ainsi 

on peut obtenir des angles absolus sans aucune dérive. Ces résultats ont été utilisés 

pour concevoir un système d'analyse de la marche fournissant des paramètres spatio-

temporels, des courbes cinématiques et un outil de visualisation permettant d’animer un 

squelette virtuel effectuant les mêmes actions que le sujet. De plus, nous avons proposé 

un nouvel algorithme pour l'évaluation et la quantification de la coordination inter-

segmentaire pendant la marche. Le modèle de coordination détermine la dynamique des 

mouvements des membres inférieurs et illustre les synergies cinématiques pour diverses 
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vitesses de marche. Le modèle impose une relation entre les angles des articulations des 

membres inférieurs (hanches et genoux) pour paramétriser la dynamique de la locomo-

tion pour chaque individu. Il fournit des scores de coordination compris entre 0 et 10 

pour diverses vitesses de marche. L’intégration de différents outils d'analyse tels que la 

décomposition harmonique, l'analyse par composants principaux et les réseaux de 

neurones artificiels a permis de simplifier la haute dimensionnalité, la dépendance 

temporelle et les relations non linéaires des patterns de la marche. 

Afin de montrer l'efficacité des méthodes conçues dans l'évaluation des résultats, nous 

avons considéré une étude clinique où les résultats de deux types de prothèses de genou 

ont été comparés. Nous avons entrepris une étude randomisée comprenant 54 patients 

pour évaluer des résultats de TKR entre les patients portant des prothèses du genou à 

plateau mobile et articulé. Les patients ont été examinés avant l’opération, puis 6 semai-

nes, 3 mois, 6 mois et 1 an après l’opération. Diverses analyses statistiques ont été 

réalisées pour comparer les résultats des deux groupes. En conclusion, nous avons 

fourni des critères objectifs, en utilisant l'analyse ambulatoire de la marche pour évaluer 

le rétablissement fonctionnel après une arthroplastie totale du genou. Nous avons mon-

tré également une différence significative entre les deux groupes, là où l'évaluation 

clinique standard ne pouvait pas détecter une telle différence. 

 

Mots-clés: Système ambulatoire, biomécanique, coordination, analyse de la marche, 

capteurs cinématiques, capture de mouvement, évaluation des résultats, arthroplastie 

totale du genou.  
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Chapter 1  Introduction 

1.1 Background 
Osteoarthritis (OA) is the most common type of arthritis or degenerative joint disease. It 

is a common chronic, progressive musculoskeletal disorder characterized by gradual loss 

of articular cartilage (Aigner et al. 2006). When knees or hips are affected, it becomes one 

of the most debilitating ones, considerably reducing the patients’ physical and psychoso-

cial functions. OA affects people of all ethnic groups in all geographic locations, it devel-

ops in both men and women, and it is the most common cause of long-term disability in 

most populations of people over 65. The World Health Organization (WHO) estimates that 

10% of the world’s people over the age of 60 years suffer from OA, and that 80% of people 

with OA have limitation of movement and 25% cannot perform major daily activities 

(Buckwalter and Martin 2006). 

Arthroplasty is a surgery performed to relieve pain and restore range of motion by re-

aligning or reconstructing a dysfunctional joint.  In recent years, arthroplasty by joint 

replacement has become the operation of choice for most chronic knee and hip problems, 

particularly because of advances in the type and quality of prostheses (artificial joints). 

Elbow, shoulder, ankle, and finger joints are more likely to be treated with joint resection 

or interpositional reconstruction. Thanks to the continuing development of joint arthro-

plasties, physical therapy and psychosocial support, it is now possible to restore a near 

normal quality of life to patients. Joint replacement is usually reserved for older patients, 

because of the limited longevity of benefits. The younger the patient, the greater the 

reliance on medical treatment. 

The importance of evaluation of arthroplasty outcome has long been recognized. The 

rapidly rising cost of healthcare with its financial impact on the individual and national 

economy, and deficiencies in clinical research methods such as patient oriented evalua-

tion that is a functional and quality-of-life assessment, have stimulated the emergence of 

outcome research (Keller et al. 1993). A large variety of scores and evaluation systems 

have been used to assess the outcome of hip and knee arthroplasties. However, most of 

these assessments are subjective which is based on the observer’s experience and indi-

vidual bias. On the other hand, the large varieties of scores with different designs make it 
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difficult to compare the patient outcome, and none has been accepted as the universal 

standard (Konig et al. 1997).  

The difficulty lies in attempting to quantify the surgical result. For example, should one 

be putting more emphasis on the patient’s overall improvement or on the technical 

success of the surgery? Should one be putting more emphasis on a simple measure of 

the joint range of motion or the difficulties the patient has in changing positions or in 

coordinating his legs during walking? In fact, the increasing variety of outcome measures 

illustrates the need for an objective reference of assessing the results that is a gold 

standard outcome measure.  

The effectiveness of an arthroplasty in relieving pain and improving function has been 

well documented over the past 20 years. The influence of surgical procedures on quality-

of-life must be positive. However, health-related quality of life encompasses not only pain 

and physical functioning, but other domains such as social functioning and vitality. In 

addition, orthopedic surgeons require now more subtle comparisons between potentially 

efficacious treatments (e.g. two types of prostheses, two surgery procedures, and two 

rehabilitation programs). Therefore, the use of instruments that have a better sensitivity 

and specificity than traditional scoring systems is needed to evaluate the results of 

arthroplasty and enhance the surgeon’s ability to assess the overall outcome (Lieberman 

et al. 1997; Lieberman et al. 1996).  

Despite the fact that the most common human physical activity is walking, it still re-

mains one of the least explored biological function (Banks et al. 1997b). This paradox is 

due to two facts. Walking is very easily accessible to a detailed clinical analysis. As a 

result, the diagnosis has been developed on a clinical basis. The indications for surgery 

have mostly been laid down several years ago and rely on analysis and experience. 

Although the approach is effective in practice, it allows neither for the quantification of 

the spatio-temporal parameters of walking, nor for the assessment of the physical activity 

of everyday life in a reliable way.  

Quantitative gait analysis is one of the few measurement methods that offer objective 

evaluation of the effectiveness of arthroplasty. There is a growing acceptance of the 

clinical use of gait analysis system, and it has been shown to be of value in distinguish-

ing between functional outcomes of different types of surgery and predicting the out-

comes of surgery (Andriacchi et al. 1982; Andriacchi et al. 1997; Berman et al. 1987; 

Catani et al. 2003; Chao et al. 1980; Collopy et al. 1977; Deluzio et al. 1999; deQuervain 

et al. 1997; Kaufman et al. 2001; Kroll et al. 1989; Minns 2005; Otsuki et al. 1999; 

Simon et al. 1983; Smith et al. 2006; Solak et al. 2005; Steiner et al. 1989; Webster et al. 
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2003). However, all these measuring tools are accessible nowhere else than in a few 

specialized laboratories. They are often complex, expensive, need a lot of room space and 

fixed devices, and not convenient for the patient. In current practice, these techniques 

are not applicable for routine evaluation of patient outcomes. Moreover, instrumentation 

alone cannot make gait analysis clinically relevant. Clinical gait analysis is the correla-

tion and interpretation of the data and should be able to relate objective findings to 

functional measures and outcomes. So the physicians lack a convenient and simple 

method to reliably assess their patients’ activity and quality of life.  

1.2 Objectives 
In this thesis, we proposed an ambulatory system based on kinematic sensors attached 

on the lower limbs in order to overcome the limitations of the previously mentioned 

techniques. It involves development of improved methods for measurement and analysis 

of human gait.  

The main features of the measurement device were to be portable, easily mountable, 

accurate, non-invasive, and capable of continuously recording data in long-term without 

hindrance to natural gait. Moreover, new algorithms were proposed to accurately meas-

ure joints and segments angles in the sagittal plane. These data were then used to 

develop a gait analysis system providing spatio-temporal parameters, kinematic curves, 

and skeleton visualization. In addition, a new algorithm was proposed for assessing and 

quantification of inter-joint coordination during gait. The method provided a coordination 

score for outcome evaluation.  

In order to evaluate the efficacy of our method, we applied our gait analysis in a real 

orthopedic application: Total Knee Arthroplasty (TKA). We focused on comparing TKA 

using two prostheses types: posterior stabilized with fixed versus mobile tibial plateau 

bearings. Mobile bearing TKA system are emerging as the next wave of development in 

knee joint prosthetic reconstruction. Since 1977, mobile bearing knee prostheses have 

been designed and implanted in order to provide less constrained knee kinematics while 

minimizing polyethylene wear and reducing bone-cement prosthesis interface stress 

(Aglietti et al. 2002; Buechel and Pappas 1989; Catani et al. 2003; Lemaire 2002). Almost 

every manufacturer has introduced a mobile-bearing TKA system, or is developing one to 

introduce into the market. However, most studies on the outcomes of mobile-bearing TKA 

are open studies, and currently there is no objective evidence that mobile bearing pros-

thesis is more effective. 

We designed a clinical protocol and conducted a randomized controlled study to provide 

gait parameters as a new objective method to assess TKA outcome. In this study, gait 
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analysis and knee scoring system results of 54 patients were evaluated. Preoperative 

results were compared with postoperative (6 weeks, 3 months, 6 months, and 1 year) 

results. 

1.3 Outline of dissertation 
Chapter 2 reviews different methodologies (both scoring questionnaires and instrumented 

techniques) used to assess TKA outcome. It discusses the requirements of a scoring 

questionnaire that must be valid, reliable and responsive; and explains the problems with 

the questionnaires that are subjective, restricted to a specific pathology, and their low 

sensitivity to change. Then, it reviews the instrumented techniques such as fluoroscopic 

analysis and gait analysis systems. Finally, after comparing the advantages and disad-

vantages of the different systems, an ambulatory gait analysis system using kinematic 

sensors is proposed, as a promising solution, for quantitative evaluation of TKA outcome. 

Chapters 3 and 4 describe our new methods to estimate lower limbs orientations and 

joint angles using a combination of accelerometers and gyroscopes. The model of measur-

ing joint angle, presented in chapter 3, is based on estimating the acceleration of the 

joint center of rotation by placing a pair of virtual sensors on the adjacent segments at 

the center of rotation. This way, joint angles are found without the need for integration of 

gyroscope signals, so absolute angles can be obtained free from any source of drift. 

Chapter 4 presents a new complementary method to estimate lower limbs (shank and 

thigh) orientation in sagittal plane during walking. The proposed techniques consider 

human locomotion and biomechanical constraints, and provide new solutions to fusing 

the data of gyroscopes and accelerometers.  

The lower limbs motions data were then used in chapter 5 to design a gait analysis tool. 

Outputs from the software include spatio-temporal parameters of gait, kinematic dia-

grams, and animated graphic images simulating the patients’ gait at various conditions. 

The spatio-temporal parameters as well as their variabilities provided a tool for objective 

outcome measures to quantify the expected gait improvement of patients after arthro-

plasty. The kinematic diagrams provide supplementary information for representing 

movement and its variability as a function of time or other movement parameter in 

continuous format. The graphs could help clinician qualitatively assess time evolution of 

lower limb movements, variability at different phases of gait, symmetry, and ranges of 

rotations. The visualization tool provide additional tool to see the time evolution of lower 

limb movements. The visualization tool gives the physician visually appealing and easy to 

interpret information about how the patient performs several activities such as walking at 
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different speeds or climbing ramps and stairs. In addition, it allows us to evaluate the 

progression of a patient at different follow up tests by superposing several skeletons.  

Chapter 6 proposes a new method for quantitative analysis of inter-joint coordination 

during gait. A general model was designed to capture the whole dynamics of the lower 

limbs movement and show the kinematic synergies at various walking speeds. The 

proposed model imposed a relationship among lower limb joint angles (hips and knees) to 

parameterize the dynamics of locomotion for each individual. An integration of different 

analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial 

Neural Network helped overcome high-dimensionality, temporal dependence, and non-

linear relationships of the gait patterns.  

In chapter 7, the proposed gait and coordination analysis methods, proposed in previous 

chapters, were applied in a real clinical application. We conducted a randomized con-

trolled study, and included 54 patients, to assess total knee arthroplasty outcome be-

tween patients with fixed bearing and mobile bearing tibial plates of implants. The 

chapter presents both clinical scores and gait analysis results of patients preoperatively 

and postoperatively at 6 weeks, 3 months, 6 months and 1 year. Various statistical 

analyses were done to compare the outcomes of the two groups at different follow up 

tests. We provided objective criteria, using ambulatory gait analysis, for assessing func-

tional recovery following TKA procedure.  

Finally, chapter 8 summarizes the contribution of this thesis and outlines some perspec-

tives of the proposed methods. 
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Chapter 2  Outcome Evaluation in Arthroplasty:          
A Literature Review 

2.1 Introduction 
Many definitions of outcome and scoring questionnaires have been used in the past to 

assess the results after total joint replacement surgery. These differ in their approach to 

the measurement of outcome but all must be valid (they measure what they are designed 

to measure), reliable (they consistently produce the same score), and responsive (able to 

detect changes that may occur during a period). Responsiveness is crucial to distinguish 

those patients who benefit from a procedure from those who do not, and a more respon-

sive test will theoretically be able to identify more subtle changes in patient status.  

However, there are several problems with the questionnaires. The first is the subjectivity 

that governs most disability-oriented measurement tools, the second is the restriction to 

a specific pathology and the third is the low sensitivity to change. Therefore, the use of 

instruments that have a better sensitivity and specificity than traditional scoring systems 

is needed to evaluate the results of arthroplasty and enhance the surgeon’s ability to 

assess the overall outcome (Lieberman et al. 1997; Lieberman et al. 1996).  

Gait analysis is one of the most currently used instrumented techniques in this respect. 

There are several branches in studying gait analysis such as Gait kinetics, Dynamic 

electromyography (EMG), and Gait kinematics. A comprehensive gait analysis usually 

includes all branches (Vaughan et al. 1992) and this complex information can only be 

obtained in a dedicated laboratory. Kinematics, kinetics and electromyography are 

fundamental to characterize gait patterns and their underlying mechanisms (Frigo et al. 

1996; Romanò et al. 1996). However, simplified kinematic analysis (e.g., spatio-temporal 

parameters) can also be clinically valuable, and an ambulatory device may be advanta-

geous for these types of applications (Aminian et al. 2004b).  

In this chapter, we review different methodologies used to assess total knee arthroplasty 

outcome. 



Chapter 2: Literature Review 

 8 

2.2 Knee Arthroplasty Outcome Evaluation 

2.2.1 Clinical scores 
Judging the success of the intervention may relate more to subtler improvements in 

quality of life, including relief of pain and improvement in function. Furthermore, current 

prostheses have all benefited from technological learning curve in the design of the 

prostheses, and modern prostheses can be expected to survive in situ, barring infection, 

for at least a decade, or perhaps 2 decades, with relative certainty (Dunbar 2001). The 

net effect of the homogeneity of current prostheses (with respect to stable and lasting 

designs) has been for an emerging emphasis on somehow quantifying subtler outcomes 

after knee arthroplasty. 

With the advent of prosthesis components that demonstrated predictably good results, it 

became evident that more formalized outcome metrics were necessary. The initial re-

sponse was for surgeons to assess the results of their interventions. In 1976, Insall et al. 

introduced a surgeon derived outcome score for knee arthroplasty that incorporated 

various parameters including technical outcomes related to the procedure (e.g. align-

ment, range of motion, etc.) and subjective patient factors such as pain (Insall et al. 

1976). This questionnaire has come to be known as the Hospital for Special Surgery Knee 

Score (HSS). In 1989, Insall et al. developed a second surgeon derived score, which 

incorporated similar parameters. This score has come to be known as the Knee Society’s 

Clinical and Functional Scoring System (KSS) (Insall et al. 1989). The HSS and KSS have 

been used fairly extensively in outcome studies on knee arthroplasty (Amendola et al. 

1989; Armstrong and Whiteside 1991; Barrack et al. 1998; Fehring and Valadie 1994; 

Hirsch et al. 1994; Joseph and Kaufman 1990; Knight et al. 1997; Nafei et al. 1993). 

Unfortunately, and despite their continued popularity, the HSS and KSS scores have 

never been validated using formal psychometric validation procedures (Dunbar 2001). 

Furthermore, these questionnaires have been found to be exceedingly unreliable, leading 

some authors to conclude that these scoring systems should not be used (Konig et al. 

1997; Ryd et al. 1997).  

2.2.2 Psychometric considerations in outcome questionnaires 
Psychometrics can be defined as “the scientific measurement of mental capacities and 

processes and of personality” (Dalessandro 1994; Dunbar 2001). In other words, psy-

chometrics is the process that allows researchers to apply scientific methodology to the 

measurement of subjective outcomes. In practical terms, the published psychometric 

properties of a questionnaire pertain mostly to the validation of the questionnaire, or, 

defining how well the questionnaire measures what is supposed to measure, in a global 
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sense. The validation process usually involves three specific aspects of questionnaire 

testing: validity, reliability, and responsiveness (Dunbar 2001; Finch et al. 2002).  

Validity refers more specifically (as opposed to validation) to how well the questionnaire 

measures the question of interest. In order to comment on the validity of a questionnaire, 

the results of the questionnaire must be compared to something using criterion validity, 

construct validity, or content validity (Dunbar 2001). 

Criterion validity refers to the comparison of the metric to a “gold standard”. Unfortu-

nately there is no gold standard for knee arthroplasty (Kirshner and Guyatt 1985; 

Kreibich et al. 1996). Consequently, questionnaires for knee arthroplasty are usually 

validated against a postulated effect that should result from the intervention. Construct 

validity may be determined against another previously validated questionnaire or a 

consensus statement. However, construct validity in the absence of a gold standard is 

problematic. Content validity addresses whether a questionnaire has enough items and 

adequately covers the domain of interest (Dunbar 2001).  

Reliability refers to the ability of an outcome metric to remain unchanged when applied 

on two separate occasions and no clinical changes has occurred. Essentially, in its most 

basic sense, reliability is the measure of the noise within a metric. 

Responsiveness is a measure of a questionnaire’s ability to detect change when it is 

applied on separate occasions and a clinically significant change has occurred between 

applications.  

2.2.3 Review of common questionnaires 
In this section we review common scoring systems used to evaluate TKA outcome. 

2.2.3.1 General Health Questionnaires  
Nottingham Health Profile (NHP): The NHP is a self-report that poses 45 questions organ-

ized into 2 parts to which a response of yes or no is given. In Part 1, 38 questions are 

utilized to generate weighted scores for 6 domains: emotional reactions, physical mobil-

ity, pain, sleep, social isolation, and energy level. Scores in Part 1 range from 0–100 with 

0 representing the best possible health state. Part 2 contains 7 questions regarding 

perceived health problems affecting activities of daily life and the effect of health prob-

lems on occupation, jobs around the house, personal relationships, social life and hob-

bies. 

36-Item Short-Form Health Survey (SF-36): The SF-36 consists of 36 questions with 

Likertbox response keys that include 8 domains measuring Body Pain, Physical Func-
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tioning, Vitality, General Health, Social Functioning, Role-Physical, Role-Emotion, and 

Mental Health. Response choices range from two-level to six-level scales. The scores on 

all subscales range from 0 to 100, with higher scores indicating better health states. A 

physical and mental health component can be derived from the items. These two sub-

components have been standardized to have a mean of 50 and a standard deviation of 

10. 

12-Item Short-Form Health Survey (SF-12): The SF-12 consists of 12 questions which are a 

subset of those in the SF-36. One or two items from each of the 8 concepts represented 

in the SF-36 are included in the SF-12. Similarly, response choices range from two-level 

to six-level response scales, and physical and mental component summary scales are 

derived from the items. 

Sickness Impact Profile (SIP): The SIP is a 136-item questionnaire that can be interviewed 

or self-administered. The questionnaire produces weighted results for 12 domains as well 

as 3 summary scores. The domains of the SIP include Body Care and Movement, Ambu-

lation, Home Management, Mobility, Sleep and Rest, Alertness Behavior, Recreation and 

Pastimes, Social Interaction, Emotional Behavior, Communication, Work, and Eating. 

The summary scores include a Physical Dimension, a Psychosocial Dimension, and a 

Total Score. Scores range from 0–100 with 0 representing the best possible health state. 

EuroQol (EQ-5D): The EuroQoL comprises two sections, the EQ-5D index and the EQ-5D 

visual analog scale (VAS). EQ-5D index has a 3-level, 5-dimensional format, which 

provides a simple descriptive profile and a single index value for health status. Domains 

of mobility, self-care, usual activities, pain/discomfort, and anxiety/depression are 

assessed using a 3-level response scale. The EQ-5D VAS is a 0 to 100 thermometer scale 

that assesses self-perceived health status. Anchors on the thermometer are 0 (worse 

possible health state) and 100 (best possible health state). EQ-5D is designed for self-

completion by respondents and is ideally suited for use in postal surveys, in clinics and 

face-to-face interviews.  

2.2.3.2 Disease Specific Questionnaires  
Lequesne Index of Severity-Knee (Lequesne): The Lequesne consists of 11 questions with 

various scales utilized for different questions. Questions refer to Pain (5 questions), 

Walking (2 questions) and Activities of Daily Living (4 questions). Weights are applied in 

the scoring algorithm and a score range from 0 to 24 is produced. A score of 0 represents 

a perfect health state. 
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Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): The WOMAC 

consists of 24 Likertbox questions broken down into 3 domains: Pain (5 questions), 

Stiffness (2 questions) and Physical Function (17 questions). Scores range from 0-20 for 

Pain, 0-8 for Stiffness and 0-68 for Physical Function. A score of 0 represents the best 

possible health state. The Likert uses the adjectives none, mild, moderate, severe, and 

extreme. WOMAC scores can be transformed to a 0 to 100 percent scale to facilitate 

comparisons with other outcome measures. 

Oxford-12 Item Knee Score (Oxford-12): 12 questions are posed relating specifically to the 

knee. Each question has a Likertbox response key from 1 to 5. A single score is produced 

ranging from 12 to 60, with 12 indicating the best possible health state. 

Visual Analog Scale (VAS): The VAS is a subjective measurement of pain/stiffness inten-

sity in clinical and experimental settings. It consists of a 10 cm (100 mm) straight line of 

either horizontal or vertical orientation. For instance, the line for pain assessment is 

anchored by two extremes: “no pain” and “pain as bas as it could be”. 

Functional Assessment System of Lower-Extremity Dysfunction (FAS): The FAS is a per-

formance and self-report-based measure developed for use by physiotherapists. It has 

been tested on patients with osteoarthritis in the hip or knee who are accepted for ar-

throplasty. It consists of 20 variables, representing major lower extremity dysfunction 

related to daily life activities. The variables are divided into 5 groups: hip impairment, 

knee impairment, physical disability, social variables, and pain. 

In summary, there are two main categories of outcome questionnaires: general health 

and disease specific questionnaires. General health questionnaires inquire about various 

aspects of patients’ perception of their own health, including such diverse domains as 

ability to sleep, energy level, mood, and perception of body pain. General health ques-

tionnaires are not necessarily limited to any particular disease state. Disease specific 

questionnaires attempt to isolate the signal of interest by focusing questions around a 

particular disease state.  

Although there are many questionnaires to apply to knee arthroplasty patients, there is 

no general agreement whatsoever regarding specifically which questionnaires to use. 

There are several problems, however, with the questionnaires. The first is the subjectivity 

that governs most disability-oriented questionnaires, the second is the restriction to a 

specific pathology and the third is the low sensitivity to change.  
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Biomechanical instrumentation, on the other hand, is precise and reliable enough. The 

main problem does not lie in obtaining the objective data, but in defining a clinical 

significance and reliable criteria from the data (Lafuente et al. 2000).  

To assess the in-vivo functional performance of the different TKR designs, careful quanti-

tative analyses during in-vivo tests must be carried out. Many different techniques for 

measuring knee kinematics have been reported. Techniques which rely on direct attach-

ment of markers to bone, although potentially quite accurate (Murphy et al. 1985), 

cannot be considered with Total Knee Replacement (TKR) subjects for fear of infection 

(Banks and Hodge 1996). 

The measurement techniques currently most used in this respect are Fluoroscopic 

Analysis and Gait Analysis. 

2.2.4 Instrumented techniques: Fluoroscopy  
Fluoroscopy based technique can measure single plane or 3D TKR kinematics during 

dynamic activities. The measurement approach is based on the concept that, given the 

imaging geometry of the fluoroscope and the surface geometry of the prosthetic compo-

nents, a computer can create an image which matches any experimentally acquired 

image of the knee. Since the position and orientation (pose) of the prosthetic models are 

known for the synthesized images, these parameters can be used as estimates of the 

physical components’ pose accurately by avoiding errors due to skin and muscle move-

ments.  

Fluoroscopic analysis provides sufficient accuracy to detect relative rotations even of a 

few degrees between the tibial and femoral components and relative translations even of 

a few millimeters (~1.5 mm) in the sagittal plane (Banks and Hodge 1996; Dennis et al. 

1996; Hoff et al. 1998; Sati et al. 1996; Zihlmann et al.; Zuffi et al. 1999). Based on this 

method, several important observations on TKR kinematics have been reported. Mobile 

and Fixed bearing TKR designs have been analyzed during gait (Banks et al. 1997b; 

Callaghan et al. 2001; Stiehl et al. 1999), step-up (Banks et al. 1997a), and deep knee 

bend activity (Callaghan et al. 2001; Dennis et al. 1998; Dennis et al. 2001). 

The Fluoroscopy based technique, however, has several drawbacks that include: (a) small 

field of view, which is usually in a fixed position with a field of view of 320 mm, making it 

impossible to obtain kinematic data from the knee during walking, and also confining the 

analysis to only a single joint; (b) patient exposure to radiation; and (c) the extensive 

analysis of the fluoroscopic images (Fantozzi et al. 2003).   
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2.2.5 Instrumented techniques: Gait Analysis 
Gait analysis provides a non-invasive and convenient method for studying full body 

kinematics and kinetics over large fields of measurements. Gait analysis has been used 

to assess functional outcome after total knee arthroplasty in numerous studies 

(Andriacchi et al. 1982; Andriacchi et al. 1997; Berman et al. 1987; Catani et al. 2003; 

Chao et al. 1980; Collopy et al. 1977; Deluzio et al. 1999; deQuervain et al. 1997; Kauf-

man et al. 2001; Kroll et al. 1989; Minns 2005; Otsuki et al. 1999; Simon et al. 1983; 

Smith et al. 2006; Solak et al. 2005; Steiner et al. 1989; Webster et al. 2003).  

In this section we review the common branches in studying gait analysis: Gait kinetics, 

Dynamic electromyography (EMG), and Gait kinematics. 

2.2.5.1 Gait Kinetics 
Gait kinetics is defined as the forces, moments, and powers that change over the gait 

cycle. These measurements are captured by the use of force plates embedded in a walk-

way (Figure  2-1). Gait analysis using pressure measuring system has shown that some 

temporal and kinetic parameters change significantly after knee arthroplasty (deQuervain 

et al. 1997; Macellari and Giacomozzi 1996; Weidenhielm et al. 1993). The kinetic pattern 

continues to improve, although walking pain is reduced sooner after surgery.  

 
Figure  2-1 Force plates measure the ground reaction forces exerted by a person as he/she steps on 

it during gait. (Photo from Kistler® force plate, Type 9285) 

2.2.5.2 Dynamic electromyography 
Dynamic electromyography refers to the evaluation of muscle activity throughout the gait 

cycle. This is accomplished through the use of either surface or needle electrodes. Elec-

tromyography (EMG) techniques provide detection and monitoring of electrical muscle 

activity, however, it does not provide a direct measure of movement, and a substantial 

number of electrodes and huge amount of data processing are required for studying 

complex movements such as gait (Den Otter et al. 2006; Frigo et al. 2000; Kleissen et al. 
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1997; Sutherland 2005). While EMG measurements have provided information regarding 

the latency and sequencing of active muscle responses, the relationship between specific 

muscular activation and the resultant outcome cannot be determined from the EMG. In 

addition, the estimation of muscle force from EMG during dynamic contraction is diffi-

cult. 

2.2.5.3 Gait kinematics 
Gait kinematics refers to the branch of biomechanics that deals with joint angular 

changes over the gait cycle. Kinematic data can be captured by different motion capture 

systems such as camera system, electrogoniometer, inertial sensors, etc. Optical motion 

capture has in recent years become an increasingly helpful tool in the area of human 

movement science, typically providing valuable information for assessing orthopedic 

pathologies. In fact, most optical systems are manufactured for medical applications 

(Molet et al. 1999). The number of companies providing motion capture systems targeting 

the areas of biomechanics, sport performance, and gait analysis reflects their relevance in 

these domains. Complete systems are available from various providers, such as VICON™ 

system, Elite™ system, Ariel™ system, CODA™ system, Qualisys Proreflex system, Peak 

Performance’s Motus system, and Motion Analysis HiRes system (Ehara et al. 1997; 

Richards 1999; Sutherland 2002). They allow the collection of information for illustrating 

and analyzing gait dynamics and studying the behavior of body limbs and joints during 

various motions, such as walking, running, limb raising, etc.  

In addition, ultrasound based systems such as ZEBRIS system (ZEBRIS Medizintechnik 

GmbH, Germany), and magnetic tracking systems such as Liberty LATUS®, MotionStar® 

and (Inition Ltd., UK) allow a complete 3D kinematic analysis of human movements.  

 

However, the level of detail that is available through motion capture is open to discussion 

(Cappozzo et al. 1997; Cappozzo et al. 1995; Cappozzo et al. 1996b). Because the mak-

ers/sensors are placed on the skin surface, and not directly on the bones and joints, 

some systematic error do occur. This results in significant measurement uncertainty for 

determining knee translation and out-of-sagittal plane rotations (Cappozzo et al. 1996b; 

Ramsey and Wretenberg 1999). Furthermore, high quality systems are very expensive, 

require a dedicated laboratory with a lot of room space, and not convenient for the 

patient. The most inconvenient aspect of these systems is that the subject must move 

inside a closed and restricted space, hence capturing the motion is limited to a short 

distance (e.g. only a few steps during walking) and it is assumed that this data corre-

sponds to everyday and usual activity.  
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During the past decade, technical progress has made it possible to realize miniature 

kinematic sensors (e.g. accelerometers and gyroscopes) with integrated conditioning and 

capturing module (Dejnabadi et al. 2006). In addition, due to their very low consumption, 

these sensors can be battery powered and are promising tools for outdoor measurement 

and ambulatory monitoring. Unlike the standard technology which needs a dedicated 

controlled space, the body-fixed sensors can be used anywhere.  They are highly trans-

portable and do not need a stationary unit such as a transmitter, receiver, or camera. 

Therefore, signals can be continuously recorded without any trajectory loose due to 

obstacles or marker hiding. These sensors are much cheaper than ultrasonic, magnetic 

and optical motion captures. They are easy to set up and use, and do not require highly 

skilled operators. Furthermore, body-fixed sensors can also be used to determine kinetic 

parameters such as hip abduction moments (Zijlstra and Bisseling 2004). 

Conversely, body-fixed sensors require a high number of sensors in order to be able to 

provide an accurate 3D kinematics. Cables between sensors and the recording units may 

in some cases limit the performance of the motion capture. So, the number of sensors 

and their sights of attachments must be reduced and optimized while keeping sufficient 

information to reconstruct and synthesize the movement. Additionally, unlike to camera-

based systems, body-segment coordinates cannot be measured directly, and requires a 

complex kinematic modeling and data processing of raw sensory data.  

Electro-goniometers (Myles et al. 2002b; Roduit et al. 1998; Shiratsu and Coury 2003a), 

foot pressure sensors (AbuFaraj et al. 1997; Zhu et al. 1991), accelerometers (Aminian et 

al. 1998; Aminian et al. 1999; Zijlstra 2004; Zijlstra and Hof 2003), gyroscopes 

(Dejnabadi et al. 2005a; Tong and Granat 1999b), and magnetic compass (Lee et al. 

2003; Roetenberg et al. 2005) are the main body-fixed sensors used in ambulatory 

monitoring.  

2.3 Conclusion 
In this chapter we reviewed common evaluation systems (both scoring questionnaires 

and instrumented techniques) used to assess total knee arthroplasty outcome. A large 

variety of scoring questionnaires have been used to assess the outcome of TKR. There 

are, however, several issues with the questionnaires. The first is the subjectivity which is 

based on the observer’s experience and individual bias, the second is the restriction to a 

specific pathology, and the third is the low sensitivity to change.  

Therefore, the use of objective instruments that have a better sensitivity and specificity 

than traditional scoring systems is needed to evaluate the results of arthroplasty and 

enhance the surgeon’s ability to assess the overall outcome. Among measuring tech-
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niques used for TKR outcome evaluation, gait analysis is well standardized and currently 

most used. Gait analysis and questionnaires are complementary for arthroplasty out-

come measure (Lindemann et al. 2006).  

However, all these measuring tools are accessible only in a few specialized laboratories, 

as they are complex, expensive, need a lot of room space and fixed devices, and not 

convenient for the patient.  

In this thesis, we proposed an ambulatory system based on kinematic sensors attached 

on the lower limbs in order to overcome the limitations of the previously mentioned 

techniques. The main features of the measurement device were to be portable, easy to 

use, accurate, unobtrusive, and capable of continuously recording data in long-term 

without hindrance to natural gait. Moreover, new algorithms were proposed to accurately 

measure joints and segments angles in the sagittal plane. These data were then used to 

develop a gait analysis system providing spatio-temporal parameters, multi-joint coordi-

nation analysis, kinematic curves, and skeleton visualization.  
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Chapter 3  Estimation of  Lower Limbs Joint Angles  

Abstract 
In this chapter, a new method of measuring joint angle using a combination of acceler-

ometers and gyroscopes is presented. The method proposes a minimal sensor configura-

tion with one sensor module mounted on each segment. The model is based on 

estimating the acceleration of the joint center of rotation by placing a pair of virtual 

sensors on the adjacent segments at the center of rotation. In the proposed technique, 

joint angles are found without the need for integration, so absolute angles can be ob-

tained which are free from any source of drift. The model considers anatomical aspects 

and is personalized for each subject prior to each measurement. The method was vali-

dated by measuring knee flexion-extension angles of eight subjects, walking at three 

different speeds, and comparing the results with a reference motion measurement sys-

tem. The results are very close to those of the reference system presenting very small 

errors (RMS = 1.3, mean = 0.2, SD = 1.1 deg) and excellent correlation coefficients 

(0.997). The algorithm is able to provide joint angles in real-time, and ready for use in 

gait analysis. Technically, the system is portable, easily mountable, and can be used for 

long term monitoring without hindrance to natural activities. 

3.1 Introduction 
During the last decade, body-mounted sensors consisting of accelerometers and/or rate 

gyroscopes have been used to obtain kinematic values such as shank and thigh inclina-

tion angles, and knee joint angle (Aminian et al. 2002a; Mayagoitia et al. 2002). These 

data can be derived by integration of angular acceleration or angular velocity. However, 

data obtained from integration can be distorted by offsets or any drifts (Aminian and 

Najafi 2004; Willemsen et al. 1990). The two major sources of drift are: 1) Electronic bias 

error (Titterton and Weston 1997), and 2) Deviation and turning out from the sensing 

axis. In order to eliminate any drift during integration, Morris (Morris 1973) identified the 

beginning and the end of the walking cycles, and made the signal at the beginning and 

the end of the cycle equal. Tong et al. (Tong and Granat 1999a) applied a low-cut high-

pass filter on the shank and thigh inclination angle signals. Time-frequency analysis 

(Wavelet Transform) was also applied to lower limb angular velocity in order to remove 
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the drift (Aminian et al. 2004a). However, all of these methods remove the dc and low 

frequency information of angles.  

Willemsen et al. (Willemsen et al. 1990) developed a technique to measure human joint 

flexion-extension angle without the need for integration, which used four accelerometers 

on each segment. The system used two metal bars with eight accelerometers for measur-

ing a single joint angle. Heyn et al. (Heyn et al. 1996) showed that shank and thigh 

inclination angles can be measured with eight accelerometers and two gyroscopes fixed 

on two rigid metal plates as well. They also found that using these metal plates was 

cumbersome. 

In this chapter we present a new method to estimate flexion-extension angles based on a 

combination of accelerometers and gyroscopes. The number of sensor units has been 

optimized to one unit on each segment. The model is based on estimating acceleration of 

the joint center of rotation. Since it is not physically possible to place accelerometers at 

the joint center of rotation, virtual sensors are used by mathematically shifting the 

location of the physical sensors. In order to minimize the error, it is necessary to obtain 

accurate positions of the physical and virtual sensors. Therefore, the model was person-

alized by including anthropometric data and the position of the sensors obtained by 

photography. 

3.2 Methods 

3.2.1 Model description 
Considering the two-dimensional model of a segment motion (Figure  3-1), a sensor 

module including a biaxial accelerometer and a gyroscope was placed at point P on the 

segment. The first step was to calculate the expected signals of a virtual sensor module 

placed at an arbitrary point C on the bone segment with an arbitrary orientation with 

respect to the physical sensor module. The vector r indicates the PC distance, and the 

angles α and β represent the orientations of the physical and virtual sensors with respect 

to r. 
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Figure  3-1 A physical sensor module at point P, and a virtual sensor module on point C on a 2D 

rigid body. Each sensor module consists of 2D accelerometers and a gyroscope. 

In order to estimate the virtual signals, a description of the outputs of the sensors was 

required. A single axis accelerometer measures the difference of acceleration  ( )a  and 

gravity ( )g  along its sensitive axis given by the unit vector ( )n . The measured electrical 

signal ( )S  could thus be expressed as 

   ( )S = a - g .n .  (3.1) 

Similarly, by considering a 2D accelerometer with sensitive axes along xu and yu , the 

two measured signals were given by 

 
( )
( ) .

x

y

S

S

=

=
x

y

a - g .u

a - g .u
 (3.2)  

The angular velocity of the segment was obtained by measuring the rate of change of the 

unit vector n 

 
d
dt
nω = n× . (3.3)  

This parameter could directly be measured by a gyroscope with its sensitive axis perpen-

dicular to the plane of motion. 
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For analytical convenience, human body segments were considered as rigid bodies. The 

main strategy in analyzing the motion of a rigid body was to split the motion into the 

linear motion of the non-inertial reference point P, and the angular motion of the segment 

about it. Thus the relationship between the physical and virtual sensors readings could 

be expressed as 

 
2

2. .x x

y y

S S dR R
S S dtβ α

′

′

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

r
 (3.4) 

where xS and yS  are physical 2D accelerometer readings; xS ′  and yS ′are virtual acceler-

ometer readings. Rα  and Rβ  are axis rotation matrices of the physical and virtual sen-

sors in relation to the direction of vector r  by angles α and β respectively. These rotations 

align both physical and virtual coordinate systems to the direction of PC line. 

The first term in the right hand of (3.4) considers the effect of a linear motion, and the 

second term expresses the effect of a pure rotation about point P. The latter term can be 

expanded into components aligned with and normal to r (unit vectors ru and θu ) 

 ( )
2

2
2 . .d d r r

dt dt
θ θ= = − +r r θ

r r.u u u  (3.5) 

where θ and θ are the first and second derivatives of angle of r with respect to a fixed 

inertial frame. 

The two latter parameters can be measured by the gyroscope placed at point P. The 

virtual gyroscope reading at point C will also give the same signal (Tong and Granat 

1999a). So considering θ  and θ  equal to ω  and ω  respectively, (3.4) can be rearranged 

to yield the virtual accelerometer readings with respect to known physical accelerometers 

and gyroscope readings 
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. (3.6) 

The next step was to calculate joint angle (ϕ ) between two segments using two modules 

of sensors mounted on each segment Figure  3-2. Thus, the two physical sensor modules 

on each segment were shifted to the joint center, or more precisely the center of rotation 

point, such that each virtual sensor aligns with its corresponding segment orientation. 

Since one point should physically have a unique acceleration, the two virtual sensors 
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meeting at the center of rotation should give equal accelerations. However, the correction 

for coordinate frames rotation by angle ϕ  should be considered  

 1 2

1 2

.x x

y y

S S
R

S Sϕ
′ ′

′ ′

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.7) 

where 
1 1x yS S′ ′

′⎡ ⎤′ = ⎣ ⎦1S  and 
2 2x yS S′ ′

′⎡ ⎤′ = ⎣ ⎦2S  are virtual accelerometers readings at point C on 

segments 1 and 2 respectively. These vectors can be rewritten in polar representation 
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where iS′  and iθ  represent for modulus and argument of i′S ; and thus equation (3.7) can 

be rewritten to yield joint angle ϕ  

 1 2

2 1.
S S
ϕ θ θ
′ ′=
= −

 (3.9) 

  

 
Figure  3-2 Position of sensors on thigh and shank, and their corresponding virtual sensors on the 

knee joint center of rotation. 
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3.2.2 Sensor configuration 
Throughout this thesis, a unique sensor configuration was used. Lower limbs movements 

were captured by 5 modules of sensors attached on shanks, thighs, and sacrum. Each 

module consisted of a gyroscope and bi-axial accelerometers. Dual axis accelerometer 

chips ADXL202/210 and yaw rate gyro chips ADXRS150/300 were chosen. Temperature 

drift rates were less than 0.1 deg/s for the gyroscopes and few mg for the accelerometers.  

 

Physilog

Sensor 
module

 
Figure  3-3 Sensor configuration used throughout this thesis. Five modules of sensors were placed 
on thighs, shanks, and sacrum. The kinematic data were recorded by the Physilog system (diman-

tions 13 cm x 7 cm x 3 cm, weight: 300g). 

To calculate the knee angle (flexion-extension) using the proposed model, the sensor 

modules attached on thighs and shanks were used. The sensors (dimension: 20 mm x 20 

mm x 10 mm) were mounted on the shank and thigh segments using a strap [Figure 

 3-4(a)]. The sensing axes were adjusted in the anterio-posterior plane so that the flexion-

extension angle could be measured. All signals were sampled at 200-Hz using the Physi-

log® [BioAGM, CH] ambulatory system carried on the waist (Aminian et al. 2002a).  
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3.2.3  Test protocol 
Eight healthy subjects, who had given informed consent, participated in this experiment, 

5 men and 3 women, aged between 44 and 70 yr (mean = 58.7 yr). The volunteers per-

formed three 30 s flat treadmill walking trials at speeds 2, 3, and 4 km/h, wearing their 

basket shoes. One of the subjects was also requested to perform a freely arbitrary flexion 

and extension of knee, such as sitting, standing, and swinging.  

Before the walking trials, three small markers were pasted over the left lateral malleolus 

(M2), the lateral epicondyle (C), and the junction of the first and second proximal lateral 

third of the thigh (M1) [Figure  3-4(b)]. Then each subject was asked to stand in two 

positions at extended [Figure  3-4(b)] and flexed [Figure  3-4(c)] left knee positions, while 

the shank was kept stationary. At each position the subject stayed for a few seconds (<5 

s) at standstill, while the system was recording kinematic parameters, a lateral view 

photograph was taken as well. The camera’s image plane was adjusted to be in parallel 

with sagittal plane to avoid perspective errors. The position and orientation of the camera 

was kept constant so that the two photos would have the same field of view. The known 

length of the metal frame (70 cm height) was used to calibrate the photos from pixels to 

metric units (cm). Theses images were used to estimate the coordinates of markers and 

kinematic sensors. Any arbitrary point in the images (e.g., top-left pixel) can be defined 

as the coordinate reference. The accelerometer’s readings during standstill were used to 

estimate the sensor’s orientation with respect to horizontal place. These information were 

used to calculate the angles α1, α2, β1, β2, and the lengths of  P1C and P2C.      
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Figure  3-4 (a) Attachment of the kinematic sensors on both thighs and shanks using straps. The 

Physilog system is placed in the waist bag. (b) Sagittal view of a subject with extended left knee and 
(c) with flexed left knee, representing the sensor configurations.  The white circles indicate the 
position of markers (M1, C and M2), and the white squares indicate the position of kinematic 

sensors (P1 and P2). 

It is important to accurately find the knee center of rotation. Many researchers have 

established methods based on minimizing an optimization function in which data from 

gait kinematics, anthropometric measurements and statistically derived morphological 

parameters are properly weighted (Frigo et al. 2000; Gamage and Lasenby 2002; 

Schwartz and Rozumalski 2005). In this study, we applied a simpler method to better 

adjust the position of the center of rotation (C). It is based on the geometric relationship 

between the positions of marker M1 and sensor P1 at the two different positions. Since 

the shank is stationary, any point on thigh always lies on the circle they form with the 

knee joint being the center. In this case the line connecting two different positions of the 

same point at the two different trials is always perpendicular to the line drawn from the 

joint to their mid point (Halvorsen et al. 1999) 



Chapter 3: Estimation of Joint Angles 
 

 25 

 

1 1

1 1 1 1

1 1

1 1

1 1 1 1

1 1

2. 0

2

2. 0

2

M M
C

M M M M
M M

C

P P
C

P P P P
P P

C

x x
x

x x y y
y y

y

x x
x

x x y y
y y

y

′

′ ′
′

′

′ ′
′

+⎡ ⎤
−⎢ ⎥

⎢ ⎥⎡ ⎤− − =⎣ ⎦ +⎢ ⎥
−⎢ ⎥⎣ ⎦

+⎡ ⎤
−⎢ ⎥

⎢ ⎥⎡ ⎤− − =⎣ ⎦ +⎢ ⎥
−⎢ ⎥⎣ ⎦

 (3.10) 

where the indices P1 and M1 indicate the sensor and marker on thigh in the first trial 

[Figure  3-4 (b)], and 1P′  and 1M′  in the second trial [Figure  3-4 (c)] respectively. Conse-

quently, the modified coordinates of point C was obtained: 
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The angle β1 was obtained from the dot product formula: 

 1
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1 1

cos
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 (3.12) 

where 
1 1P C P Cx x y y ′⎡ ⎤= − −⎣ ⎦1P C , and 

1 1M C M Cx x y y ′⎡ ⎤= − −⎣ ⎦1M C .  

The angle α1 was obtained by calculating the difference between inclination angles of the 

kinematic sensor (S1) and the vector 1P C : 
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where 1xS and 1yS are averages of the 2D accelerometer readings during the standstill 

trial. 

Similarly, the values of α2 and β2 were obtained by changing all indices ‘1’ to ‘2’ in equa-

tions (3.12) and (3.13).  

For comparison, a Zebris CMS-HS (Zebris, D) ultrasound-based motion measurement 

system was used as the reference system (Kiss et al. 2004). This system consists of three 

fixed sonic emitters which send out a burst of ultrasound, and receivers placed on body 
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segments. The time taken for the burst to reach each receiver is recorded. Using this 

delay, the distances between the receiver and each emitter can be calculated from the 

sound velocity. Knowing the distance from three emitters, the coordinates of the receiver 

placed on body segment can be computed by triangulation with an absolute accuracy 

better than 1.0 mm (GmbH 1999; Overhoff et al. 2001) with a sampling rate of 100-Hz. In 

this study, three ultrasound receivers were attached over the same adhesive markers (M1, 

M2 and C). Spatial marker positions (x, y, z) were recorded and used for calculation of 

knee flexion-extension angle. Synchronization between the reference and the Physilog 

systems was performed by electrical trigger. The angle data obtained by the body-fixed 

sensors were down sampled to 100-Hz for comparison purpose. 

3.2.4 Data analysis 
Matlab was used for all signal processing. A third order Savitzky-Golay filter (Savitzky 

and Golay 1964) was applied to smooth the accelerometers and gyroscopes signals. 

Anthropometry data obtained by photography were also fed to the model to estimate the 

expected virtual sensors readings shifted to the knee center of rotation.  

For comparison with the reference system, the error signal was defined as the difference 

between the angle obtained by the proposed method and the reference system. 

Statistical analyses comprised RMS, mean and standard deviation of difference error, as 

well as correlation coefficient calculations between the joint angles obtained by the 

proposed method and the reference system’s data. 

3.3 Results 
Figure  3-5 to Figure  3-8 show the steps of calculating knee angle of subject no. 8 during 

a flat walking at 3 km/h. Figure  3-5 shows the physical accelerometers and gyroscopes 

(raw data) readings placed on thigh and shank. Figure  3-6 shows the virtual accelerome-

ters readings placed at the knee center of rotation on the adjacent segments. Figure  3-7 

shows the polar representation (modulus, argument) of the same virtual accelerometers, 

as well as the difference between the two moduli signals ( ) ( )( )2 1modulus modulus′ ′−S S . 

Since both 1′S  and ′2S  express the accelerations of the same point C, the value of the 

difference is very small (0.05±0.18 m/s2). Figure  3-8(a) shows the final step yielding the 

knee angle calculated from the difference between the two argument signals 

( ) ( )( )2 1argument argument′ ′−S S . Figure  3-8(b) shows the knee angle calculated from 
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position data as measured by the reference system, and difference error between the two 

results. 
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Figure  3-5 Physical accelerometers and gyroscopes (raw data) readings during walking at 3 km/h. 

The site on thigh consists of two accelerometers ( 1xS and 1yS ) and a gyroscope ( 1ω ). Similarly, there 

are two accelerometers ( 2xS and 2yS ) and a gyroscope ( 2ω ) on shank module. 
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Figure  3-6 Virtual accelerometers readings placed at the knee center of rotation on the adjacent 

segments. 1xS ′  and 1yS ′  are biaxial virtual accelerometers on thigh. Correspondingly, 2xS ′  and 2yS ′  

are biaxial virtual accelerometers on shank. The signals are calculated from the raw signals shown 
in Figure  3-5. 
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Figure  3-7 Polar representation (modulus, argument) of the virtual accelerometers calculated from 

the signals shown in Figure  3-6. ′
1S  and ′

2S  are complex vectors equal to  
1 1x yS S′ ′

′⎡ ⎤⎣ ⎦ and 

2 2x yS S′ ′
′⎡ ⎤⎣ ⎦  respectively. The top-right figure shows also the difference between the two moduli 

signals ( ) ( )( )2 1modulus S modulus S′ ′−  in dashed line. 
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Figure  3-8 (a) Knee angle calculated from the difference between the two argument signals shown 

in Figure  3-7 ( ) ( )( )2 1argument S argument S′ ′− . (b) Calculated from position data as measured by 

the reference system (solid line), and difference error between the two results (dashed line). 
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Figure  3-9 shows also the final step of calculating knee angle and its comparison with the 

reference system during a freely arbitrary flexion and extension of knee (correlation 

coefficient = 0.9995, error=0.30±1.1 deg).  
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Figure  3-9 Absolute knee angle during a freely arbitrary flexion and extension of knee. (a) Calcu-
lated from the new accelerometers and gyroscopes settings. (b) Calculated from position data as 

measured by the reference system (solid line), and difference error between the two results (dashed 
line). 
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The whole results are summarized in Table  3-1, which outlines the mean and standard 

deviation of difference errors, together with the calculated correlation coefficients of eight 

subjects. The average RMS error is 1.30 degrees (mean = 0.20, SD = 1.1 deg) and the 

average correlation coefficient is 0.997. 

Table  3-1 Comparison between knee angle measurements obtained by body-mounted sensors and 
Zebris markers for 8 subjects at 3 speeds. The error represents the RMS, mean and SD of the 

difference signal between Zebris and our measuring device. ‘r’ represents the Correlation Coefficient 
between the two measuring systems.  

Slow (2km/h) Intermediate (3km/h) Fast (4km/h) 
Subject Error, deg 

RMS,(mean±SD) 
Correlation 
Coefficient (r) 

Error, deg 
RMS,(mean±SD) 

Correlation 
Coefficient (r) 

Error, deg 
RMS,(mean±SD) 

Correlation 
Coefficient (r) 

Subject 1 1.60, (0.70±1.04) 0.9975 1.75, (0.23±1.03) 0.9966 2.35, (-0.42± 1.07) 0.9941 

Subject 2 1.11, (-0.16±1.09) 0.9984 1.10, (0.00±1.09) 0.9985 1.39, (-0.50±1.29) 0.9980 

Subject 3 1.13, (-0.34±1.07) 0.9977 1.68, (-0.23±1.65) 0.9959 2.04, (0.009±2.04) 0.9956 

Subject 4 1.00, (0.12±0.99) 0.9990 1.12, (-0.01±0.91) 0.9988 1.25, (-0.44±1.01) 0.9980 

Subject 5 0.91, (-0.09±0.90) 0.9975 0.91, (-0.09±0.90) 0.9985 1.09, (-0.26±1.05) 0.9985 

Subject 6 0.99, (0.39±0.90) 0.9978 1.07, (0.18±1.05) 0.9982 1.09, (0.11±1.07) 0.9984 

Subject 7 0.98, (0.16±0.97) 0.9973 1.06, (0.10±1.05) 0.9982 1.38, (-0.02±1.38) 0.9962 

Subject 8 1.30, (-0.32±1.26) 0.9975 1.36, (-0.48±1.27) 0.9975 1.77, (-0.08±1.16) 0.9953 

 

3.4 Discussion and conclusion 
The proposed method based on body-fixed sensors gave an accurate estimation of knee 

flexion-extension angles. Though the study has focused on the use of body-fixed sensors 

for measuring knee flexion-extension angle, the method can be applied to measure other 

joint angles like elbow (by attaching sensors on arm and forearm). Although multiaxial 

measurement is more powerful, in many cases a simple uniaxial measurement can be 

effective as well, giving a lot of information for pathologies related to knee.  

The results of all tests (Table  3-1) were very close to those of the reference system pre-

senting small errors in RMS (1.30 deg), mean (0.20 deg) and standard deviation (1.1 deg) 

of the difference signal, reflecting accurate and precise estimations respectively; and 

excellent correlation coefficient values (0.997) reflecting highly linear response.  

In comparison with the previous methods using metal plates (Willemsen et al. 1990) 

which were cumbersome and needed 4 fixation sites of sensors, the proposed used a 

minimal sensor configuration with one fixation site on each segment. In addition, our 

method is more accurate and more precise, since the reported mean error in (Willemsen 

et al. 1990) is 2.9 deg, and standard deviation of error ranges from 2.3 deg to 5.1 deg. 
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Other authors reported joint angle measurement by integrating gyroscopes and acceler-

ometers (Aminian et al. 2004a; Morris 1973; Tong and Granat 1999a). However, data 

obtained from integration can be distorted by offset or any drift, so additional filtering or 

assumptions based on cyclic nature of gait are required for drift canceling that will also 

remove the dc and low frequency information of angles. In contrast to other studies 

where the relative knee angle was estimated, in this study the absolute joint angle was 

found without the need of integration with the advantage to be free from any source of 

drift. In addition, no assumption based on cyclic nature of gait is made in the model, so 

the knee joint angle can be obtained for any freely arbitrary movements as it was shown 

in Figure  3-9. 

Since the angle computation needs simple multiplications and derivative operations, this 

system is able to provide real-time knee angle for any type of activity. So the clinicians 

are able to view joint angle motion as the subject performs the prescribed activity, or 

generally it can be used in many other applications that require real-time feedback. 

The proposed model considers anatomical aspects of each subject prior to each meas-

urement that leads to higher accuracy in the results. In this way, a better orientation of 

bone segments (femur and tibia) can be estimated from the sensors placed on the skin as 

it was described in Figure  3-2 and (3.10)–(3.12). 

However, there are some limitations in the model due to assuming the joint center of 

rotation as a fixed position point, and segments as rigid bodies. Although the joint center 

of rotation changes slightly depending on the knee angle (Moorehead et al. 2003), this 

effect induces very minimal changes in the knee joint angle. The model allows a uniaxial 

(flexion-extension) estimation of joint angle; however it does not constrain the joint 

motion to take place in sagittal plane: any flexion-extension even out of the sagittal plane 

can be estimated. 

Skin motion artefact, a common source of error to all body mounted devices, affects the 

measurement accuracy. The thigh sensor is more susceptible to skin and soft tissue 

artifact where the majority of the femur is concealed by a substantial amount of soft 

tissue. The effect of skin artefact was minimized by using adequate elastic band to fix the 

sensors, and applying low-pass filtering on the raw signal. 

From a practical standpoint, misalignmentof the sensors or sensor deviation during 

movement reduces the system’s accuracy. Fortunately, there is a redundant information 

in the system which cab be used to check the overall effects of error sources, but the 

information is not enough to correct or compensate for the errors.  This information is 
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obtained by checking the error difference between the moduli signals of the two virtual 

accelerometers (Figure  3-7).  

Technically, the system is portable, easily mountable, and it can also be used for long 

term monitoring without hindrance to the natural gait (Aminian et al. 2002a). In com-

parison with video-based systems, this system can be an alternative solution for captur-

ing kinematic information over a non-limited distance and outside a laboratory 

environment. 

The proposed method was found very promising in providing actual knee flexion-

extension angle during daily activities. Based on its MEMs technology, gyroscopes and 

accelerometers also offer a cheaper and more practical solution to the cumbersome 

electro-goniometer link over the knee as well (Myles et al. 2002a; Shiratsu and Coury 

2003b). Moreover, unlike electro-goniometers, the proposed system provides also ante-

rior-posterior rotations and linear accelerations of thigh and shank independently, which 

can further be used for a better estimation of lower limbs kinematics. However, with this 

method only relative motion of shank and thigh orientations is provided. In the next 

chapter, we will extend this method to estimate absolute thigh and shank orientations. 
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Chapter 4  Estimation of  Lower Limbs Orientations 

Abstract 
A new method of estimating lower limbs orientations using a combination of accelerome-

ters and gyroscopes is presented in this chapter. The model is based on estimating the 

accelerations of ankle and knee joints by placing virtual sensors at the centers of rota-

tion. The proposed technique considers human locomotion and biomechanical con-

straints, and provides a solution to fusing the data of gyroscopes and accelerometers that 

yields stable and drift-free estimates of segment orientation. The method was validated by 

measuring lower limb motions of eight subjects, walking at three different speeds, and 

comparing the results with a reference motion measurement system. The results are very 

close to those of the reference system presenting very small errors (Shank: rms = 1.0, 

Thigh: rms = 1.6 deg) and excellent correlation coefficients (Shank: r = 0.999, Thigh: r = 

0.998). Technically, the proposed ambulatory system is portable, easily mountable, and 

can be used for long term monitoring without hindrance to natural activities. 

4.1 Introduction 
Human motion capture is usually performed based on camera, magnetic and ultrasound 

systems (Dejnabadi et al. 2005b; Meyer et al. 1992). Although these standard technolo-

gies allow a complete 3D kinematics of body segment they require a dedicated laboratory 

where the subjects should walk in a pre-defined specific path, and assume that data 

measured from only a few seconds are representative of usual performance. This con-

straint beside the time needed for the analysis and also the cost of these technologies has 

limited the use of these standard technologies in clinical practice. Ambulatory monitoring 

of body movement takes a different approach: collecting data from body-fixed sensors in 

the natural environment of the subject. In this regard, movement analysis using body 

fixed inertial sensors as a complementary method has many potential in clinical field 

(Patla and Clous 1997; Saleh and Murdoch 1985). 

While standard technologies provide directly body segment position and orientation 

relative to a fixed referential, the outputs of inertial sensors are rather relative angles, 

segment acceleration or velocity. Finding 3D segment orientation, absolute angles and 

complete kinematics are a major difficulty when using body fixed inertial sensors. 
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Orientation angle estimation using inertial sensors, consisting of accelerometers and/or 

rate gyroscopes has been studied by many authors. In fact, both an accelerometer and a 

gyroscope can measure orientation angle of a segment. However, an accelerometer is slow 

in response and sensitive to linear accelerations, and a gyroscope suffers from slow drift 

and unknown initial inclination (Foxlin 1996; Luinge and Veltink 2004; Rehbinder and 

Hu 2004). In order to eliminate drift of integration, Morris (Morris 1973) identified the 

beginning and the end of the walking cycles, and made the angle signal at the beginning 

and the end of the cycle equal. Tong et al. (Tong and Granat 1999a) applied a low cut-off 

high-pass filter on the shank and thigh angle signals obtained from integration of angu-

lar velocities. Time-frequency analysis (Wavelet Transform) was also applied to lower limb 

angular velocity in order to remove the drift (Aminian et al. 2004a). However, all of these 

methods remove the dc and low frequency information of angles. Heyn et al. (Heyn et al. 

1996) showed that shank and thigh inclination could be measured with eight accelerome-

ters and two gyroscopes fixed on two rigid metal plates. They found that using these 

metal plates was cumbersome.  

Many authors designed Kalman filters to fuse gyroscope, accelerometer and/or magne-

tometer signals (Barshan and Durrant-Whyte 1995; Foxlin 1996; Luinge and Veltink 

2004; Luinge and Veltink 2005; Marins et al. 2001; Rehbinder and Hu 2004; Zhu and 

Zhou 2004). Kalman filter is seeking for a fusion method to make the best use of all the 

data available from different types of sensors.  

Foxlin (Foxlin 1996) described the design of a Kalman filter to integrate the data from 

gyroscopes and inclinometers (gravity accelerometer). He used a complementary Kalman 

filter which operates only on the errors. One advantage of this structure is that it guaran-

tees that the rapid dynamic response of the inertial system will not be compromised by 

the Kalman filter. 

By studying mobile robot attitude estimation, Vaganay et al. (Vaganay et al. 1993) pro-

vided a method in which gyroscope drift is compensated using two accelerometers. An 

extended Kalman filter was used to fuse the information from five inertial sensors: two 

accelerometers and three gyroscopes. The integration of angular rate is done outside of 

the Kalman filter, and is treated as part of a measurement system that provides gyro-

scopically determined measurements of pitch and roll. 

Zhu and Zhou (Zhu and Zhou 2004) presented a real time motion-tracking system using 

tri-axis accelerometers, gyroscopes and earth magnetic sensors. Kalman-based fusion 

algorithm was applied to obtain dynamic orientations and further positions of segments 

of the subject’s body. They showed that utilizing the Kalman filter to integrate the sen-
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sors could incorporate excellent dynamics of gyroscope and stable drift-free performance 

of gravity acceleration and magnetic field. Haid and Breitenbach (Haid and Breitenbach 

2004) presented a low cost inertial orientation tracking with Kalman filter using a gyro-

scope and a magnetic field sensor. They augmented the accuracy of an orientation 

detection system by estimating the drift of the gyroscope. 

Rehbinder and Hu (Rehbinder and Hu 2004) proposed a state estimation algorithm that 

fuses the data from gyroscopes and accelerometers to give long-term drift free attitude 

estimation. They combined two linear Kalman filters between which a trigger based 

switching takes place. Thus the kinematics representation used made it possible to 

construct a linear algorithm that was shown to give convergent estimates for this nonlin-

ear problem. 

Luinge and Veltink (Luinge and Veltink 2004; Luinge and Veltink 2005) proposed a 

method for inclination measurement of human movement using a 3-D accelerometer. 

They designed a Kalman filter to estimate inclination from the signals of a triaxial accel-

erometer. The design was based on assumptions concerning the frequency content of the 

acceleration of the movement that was measured, the knowledge that the magnitude of 

gravity is 1g and taking into account a fluctuating sensor offset. They estimated inclina-

tion of trunk and pelvis and showed that their method was twice as accurate as an 

estimate obtained by low-pass filtering of the accelerometers.  

Bachmann, Xiaoping et al. (Bachmann et al. 2003; Xiaoping et al. 2005; Xiaoping et al. 

2004; Xiaoping et al. 2003) employed this configuration to track the movement of human 

limbs. The gyroscopes were used for fast movement periods and magnetometers and 

accelerometers during slow periods. A quaternion-based Kalman filter was used to fuse 

the data from the nine sensors. They designed a constant-gain complementary filter to 

estimate the attitude of a rigid body. It was based on minimizing the error by adjusting 

the derivative of an estimated orientation quaternion using Gauss-Newton iteration. As a 

result of this approach, the measurement equations of the Kalman filter become linear, 

making it possible to estimate orientation in real time.  

However, the performance of the Kalman filter will considerably be reduced in measuring 

orientation angle of segments, like shank, with fast movements and large centripetal 

acceleration components (Luinge and Veltink 2004; Rehbinder and Hu 2004). Moreover, 

Kalman filter based methods do not consider biomechanical constraints and human 

locomotion aspects in their models.  

In chapter 3, we proposed a method to estimate uniaxial joint angles based on two sensor 

modules, mounted on the shank and thigh, each containing two accelerometers and one 
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gyroscope. By considering the two-dimensional model of segments, we calculated the 

expected signals of virtual sensors placed at knee joint with respect to the physical 

sensors. The method of estimating joint angle, however, does not estimate orientations of 

shank and thigh segments with respect to a fixed frame.  

This chapter presents a new complementary method to estimate shank segment orienta-

tion in sagittal plane during walking, and subsequently calculate thigh angle by adding 

the two values of shank and knee angles. We provide a solution to fusing data from a 

gyroscope and a biaxial accelerometer that provides stable estimates of the segment 

orientation. The fusing method considers human locomotion and biomechanical con-

straints, and incorporates excellent dynamic response of gyroscopes and stable drift-free 

performance of accelerometers. A geometric calibration is needed to give position of 

sensors to the model. These parameters are obtained by photography.  

4.2 Methods 

4.2.1 Estimation of Shank Orientation 
To estimate orientation of shank segment, the kinematic data of the sensor module 

placed on shank at point Q1 was processed (Figure  4-1). The sensor module consisted of a 

biaxial accelerometer and a gyroscope. Both the gyroscope and accelerometer signals 

contain information about the orientation of the sensor (Luinge and Veltink 2005). A 

gyroscope signal ( gS ) is the sum of angular velocity (ω ) and a slowly varying offset (b ) 

 gS bω= +  (4.1) 

where the offset (b ) is caused by electronic bias error and deviation from the sensing axis 

(see chapter 3). 

The sensor orientation ( gϕ ) can be obtained by integration of the gyroscope signal 

 ( ) ( )g gt S dt dt d tϕ ω= = +∫ ∫  (4.2) 

 
where ( )d t  including both offset and drift, distorts the sensor orientation.  

On the other hand, a single axis accelerometer measures the difference of acceleration 

(a ) and gravity ( g ) along its sensitive axis given by the unit vector (n ). The measured 

signal can thus be expressed as 

 ( )S = a - g .n . (4.3) 
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Similarly, by considering a biaxial accelerometer with sensitive axes along xu  and yu , 

the two measured signals were given by 

 
( )
( )
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y

S

S

=

=
x

y

a - g .u

a - g .u
 (4.4) 

The acceleration vector can be rewritten in polar form 

 .ie Sϕ=S  (4.5) 

where S and ϕ  represent for modulus and argument of S.  
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Figure  4-1 Position of sensor on shank, and its corresponding virtual sensor on ankle. 

The gravitational component can be used to make an estimation of the inclination angle 

(Bouten et al. 1997; Kemp et al. 1998). The inclination is defined as the angle between 

the sensor axes and the horizontal plane. If the acceleration (a ) is small compared to the 

gravity ( g ), the accelerometer can be used as an inclinometer, and the inclination angle 

is equal to the argument (ϕ ). The problem is of course that when the segment is acceler-

ated, the accelerometer is not an accurate inclination sensor (Foxlin 1996). When the 

acceleration is low, the amplitude of accelerometer ( S ) corresponds rather to the gravity 

constant ( g ), this is a necessary condition to detect low acceleration intervals. However, 

this condition alone is not enough. Since a body segment cannot sustain a constant 

linear acceleration very long with no rotation, therefore the rule for detecting low accel-
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eration is to demand S g=  for a certain amount of time 0T  (Foxlin 1996; Foxlin and 

Harrington 2000; Rehbinder and Hu 2004). 

In order to fuse the data from gyroscope and accelerometer, the constraints of having low 

accelerations on ankle during foot flat periods of gait and also during quiet standing were 

applied. In foot flat periods, the entire foot comes in contact with the floor and the shank 

segment performs a pure rotation around ankle joint, while the ankle joint does not 

move. In quiet standing periods, the shank segment has no rotation or translation.  

Since the magnitude of acceleration on ankle is low during foot-flat and quiet standing 

periods, a virtual accelerometer placed on ankle and aligned with the shank segment 

orientation is a good estimator of inclination during those periods. Therefore, the first 

step was to calculate the expected signals of a virtual sensor placed on the ankle joint at 

point P1, and aligned with the shank segment orientation. The relationship between the 

virtual sensor and the physical sensor on shank could be derived as (see chapter 3) 

 
2.
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 (4.6) 

where xS  and yS  are physical accelerometer readings; xS ′  and yS ′  are virtual acceler-

ometer readings. Rα  and Rβ  are axis rotation matrices of the physical and virtual sen-

sors in relation to the direction of vector r  by angles α  an β  respectively (see also 

Figure  4-1). It is assumed that the two sensors are fixed on a rigid segment, so their 

distance (r ) is constant, and both sensors have identical angular velocities (ω ). So the 

Coriolis term will not appear in (4.6). 

Similarly, the virtual acceleration vector on ankle can be rewritten in polar form 

 .aie Sϕ′ ′=S  (4.7) 

where S ′  and aϕ  represent for modulus and argument of ′S .  

The second step was to detect the periods when the magnitude of translational accelera-

tion on ankle is low. This magnitude could be expressed as 

 ( )e t S g′= − . (4.8) 

Then the two necessary conditions for detecting low acceleration periods were applied on 

the magnitude signal ( )e t . The first condition was to find the periods when ( )e t  is 

small. So a binary mask was defined such that it has value ‘1’ during low acceleration 
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periods, and ‘0’ otherwise. The mask can be obtained by thresholding the magnitude 

signal ( )e t . However, selection of an appropriate global threshold is difficult, and varies 

from subject to subject and for different walking speeds. So instead of using a single 

threshold value, a hysteresis thresholding method (Canny 1986) was applied on ( )e t  to 

obtain the mask M1 

 ( )
( )
( )

1

1 2

1
0

if e t c
M t if e t c

p otherwise

<

= >

⎧
⎪
⎨
⎪
⎩

 (4.9) 

where c1 (‘hard’ threshold) and c2 (‘weak’ threshold, 1 2c c< ) are small constant parame-

ters chosen heuristically. All values in the magnitude signal ( )e t  having a value less 

than c1 are immediately accepted (‘secure’ values). Conversely, all values greater than c2 

are immediately rejected. ‘Potential’ samples (p) with values between both thresholds are 

accepted if they are connected to secure samples by a path of potential samples. Hystere-

sis thresholding is more immune to noise than simple ‘hard’ thresholding. It helps to 

ensure that a noisy interval (e.g.: foot flat) is not broken into multiple fragments and 

preserves the connectivity of the mask.  

The second condition for detecting low acceleration intervals was to select only the high 

state ( =1) periods in the mask (M1) that persists for at least a certain amount of time T0. 

So narrow pulses shorter than T0 in the mask were eliminated. This was performed by 

applying a morphological ‘Opening’ filter (Ronse and Heijmans 1991) on M1 with window 

size T0 to obtain the mask M2 

 ( )2 1 0,M OPEN M T= . (4.10) 

The window size (T0) was heuristically chosen as 0.1 s.  

Based on the given conditions, the shank orientation angle, estimated by the virtual 

accelerometer on ankle ( aϕ ), was valid during the period where the resulting mask (M2) 

had value equal to 1. These valid values of aϕ  were used to correct the drift in the esti-

mated shank angle using the gyroscope ( gϕ ) 

 ( ) 2

2

1
0

g a if M
d t

if Munkown
ϕ ϕ =−

=
=

⎧
⎨
⎩

 (4.11) 

where ( )d t  represents for the drift signal expressed in (2). 
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In order to estimate the drift ( )d t  at ‘unknown’ times, first the signal at known times 

were smoothed by applying a 2nd order Butterworth lowpass filter. This operation would 

not lose any information in the signal, because the drift was expected to have low varia-

tions in time. Then an interpolation technique based on Piecewise Cubic Hermite Interpo-

lation was applied on the drift signal at known intervals (Fritsch and Carlson 1980). The 

resulting interpolant has no overshoots or oscillations during unknown times, and 

preserves monotonicity in the signal.  

This drift is then subtracted from the angle estimated by gyroscope to yield absolute 

shank angle at all times 

 ( ) ( ) ( )Shank gt t d tϕ ϕ= − . (4.12) 

4.2.2 Estimation of Thigh Orientation  
We proposed in chapter 3 a method of measuring knee joint flexion-extension angle 

( Kneeϕ ) based on two modules of sensors placed on shank and thigh. We considered the 

two-dimensional model of segments, and calculated the expected signals of virtual sensor 

modules placed at knee joint with respect to the physical sensor modules. The method 

was validated by measuring knee flexion-extension angles during walking at different 

speeds. Joint motion is actually the relative motions between the articulating segments. 

So considering the thigh segment as an articulated rigid segment connected to the shank 

segment, the relative motion of thigh to shank could be expressed with knee joint motion 

( Kneeϕ ), and hence the orientation angle of thigh segment with respect to horizontal frame 

could be given by 

 Thigh Shank Kneeϕ ϕ ϕ= + . (4.13) 

4.2.3 Test Protocol 
Eight healthy subjects, who had given informed consent, participated in this experiment, 

5 men and 3 women, aged between 44 and 70 yr (mean = 58.7 yr). The volunteers per-

formed three 30 s flat treadmill walking trials at speeds 2, 3 and 4 km/h, wearing their 

basket shoes.  

The sensor configuration is similar to the configuration in chapter 3. However, for valida-

tion with the reference system, only the data of left shank and thigh were used (Figure 

 4-2). The sensing axes were adjusted in the anterio-posterior plane so that the motion in 

the sagittal plane could be measured. A geometric calibration was required to obtain 

position of sensors with respect to anatomical landmarks. This information was then 
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given to our proposed models to estimate the expected virtual sensor readings shifted to 

the ankle and the knee joints respectively. So before the walking trials, three small 

markers were pasted over the left lateral malleolus (P1), the lateral epicondyle (P2), and the 

junction of the first and second proximal lateral third of the thigh (P3) (Figure  4-2). Then 

the subject stayed for a few seconds (<5 s) at standstill, while the system was recording 

kinematic parameters, a lateral view photograph was taken as well. The camera’s image 

plane was adjusted to be in parallel with sagittal plane to avoid perspective errors. The 

known length of the metal frame (70 cm height) was used to calibrate the photo from 

pixels to metric units. This image was used to estimate the coordinates of markers and 

kinematic sensors. The accelerometer’s readings during standstill were used to estimate 

the sensor’s orientation with respect to horizontal place. The calibration procedure is 

simple and can be completed within less than 60 seconds. It is not critical to find exact 

positions of markers (P1, P2, and P3). For example, moving the markers 1cm in each 

direction causes very minimal changes in the segment angles (less than 2 deg). 

 
Figure  4-2 Attachment of the kinematic sensors on both thighs and shanks using straps. The 

kinematic data are recorded by the Physilog® system (dimensions: 13 cm x 7 cm x 3 cm, weight: 
300 gr) placed in a waist bag. The white circles indicate the position of markers (P1, P2 and P3), and 

the white squares indicate the position of kinematic sensors (Q1 and Q2). 

The angles α and β, and the length r were calculated afterwards to be used in (4.6). The 

angle α was obtained by calculating the difference between inclination angle of the sensor 

( 1S ) and the vector 1 1P Q  
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where 
1xS  and 

1yS  are averages of the 2-D accelerometer readings during the standstill 

trial. 

The angle β was obtained from the dot product formula 

 1

1 2 1 1

cos
.PP PQ

β − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
1 2 1 1P P .P Q

 (4.15) 

where 
1 2 1 2P P P Px x y y ′⎡ ⎤= − −⎣ ⎦1 2P P , 

1 1 1 1P Q P Qx x y y ′⎡ ⎤= − −⎣ ⎦1 1P Q , and finally 

1 1r PQ= . 

For comparison, a Zebris CMS-HS (Zebris, D) ultrasound-based motion measurement 

system was used as the reference system (see chapter 3). In this study, three ultrasound 

receivers were attached over the same adhesive markers (P1, P2 and P3). Spatial marker 

positions (x, y, z) were recorded and used for calculation of shank and thigh orientation 

angles. Synchronization between the reference and the Physilog systems was performed 

by electrical trigger. The angle data obtained by the body-fixed sensors were down sam-

pled to 100-Hz for comparison purpose. 

4.2.4 Data Analysis  
Matlab was used for all signal processing. A third order Savitzky-Golay filter (Savitzky 

and Golay 1964) was applied to smooth the accelerometers and gyroscopes signals. For 

comparison with the reference system, the error signal ( )Er t  was defined as the differ-

ence between the time series angle obtained by the proposed method and the reference 

system. 

The accuracy of the results was calculated in terms of RMS, mean and standard devia-

tion of the error signal ( )( )Er t , as well as correlation coefficient between the orientation 

angles obtained by the proposed method and the reference system’s data. 

4.3 Results 

4.3.1 Estimation of Shank and Thigh Orientations 
The main steps of calculating shank angle during typical walking trail at 3 km/h are 

shown in Figure  4-3 to Figure  4-8. Figure  4-3 to Figure  4-5 indicate how the magnitude 
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and phase of the virtual sensor on ankle are derived from the measured accelerometer 

and gyroscope signals. The measured accelerometer and gyroscope signals on shank 

(Figure  4-3) are transformed to the virtual accelerometer reading on ankle (Figure  4-1) 

using (4.5). The polar representation (modulus, argument) of the virtual accelerometer 

(Figure  4-5) is then obtained using (4.6). 

 
Figure  4-3 Physical sensor readings on shank during walking at 3 km/h. The sensor module 

consists of two accelerometers (Sx and Sy) and a gyroscope (ω). 
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Figure  4-4 Virtual accelerometer readings on ankle during walking at 3 km/h. The signals are 

calculated from the raw signals shown in Figure  4-3. 

 

 

Figure  4-5 Polar representation (modulus: S ′ , argument: aϕ ) of the virtual accelerometer on ankle 

calculated from the signal shown in Figure  4-4.  

 
Figure  4-6 indicates how the periods of motion with low acceleration are detected by 

employing hysteresis thresholding and morphological filter. Figure  4-6(a) shows the 

magnitude of translational acceleration on ankle [ ( )e t  in solid line], and two thresholds 

( 1 0.4c = m/s2 and 2 0.8c = m/s2 in dashed lines) set for hysteresis thresholding. The result 

of hysteresis thresholding is the binary mask M1 [Figure  4-6(b)]. The second step applies 



Chapter 4: Estimation of Lower Limbs Orientation 
 

 47 

a morphological opening filter on M1 to eliminate narrow pulses shorter than T0 [Figure 

 4-6(c)]. 

 
Figure  4-6 Detection of the periods of motion with low acceleration by employing hysteresis thresh-
olding and morphological filter. (a) Magnitude of translational acceleration on ankle e(t) (solid gray 

line), and two thresholds c1 and c2 (dashed lines) set for hysteresis thresholding. (b) Result of 
hysteresis thresholding as binary mask M1. (c) Result of morphological opening filter as binary 

mask M2. The filter was applied on M1 to eliminate narrow pulses shorter than T0 = 0.1 s. 

Figure  4-7 shows how the two angle information obtained by gyroscope ( gϕ ) and virtual 

accelerometer ( aϕ ) are combined to estimate the offset and drift ( )d t . The process 

consists of subtracting the two signals using (4.11) followed by applying the Piecewise 

Cubic Hermite Interpolation. The estimated drift ( )d t  is then used to calculate the 

correct orientation of shank ( Shankϕ ) using (4.12).  
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Figure  4-7 Estimation of drift by combining the two angle information obtained by gyroscope and 
virtual accelerometer. (a) Estimated shank angle using gyroscope (φg). (b) Estimated shank angle 
using the virtual accelerometers (φa). The angle is valid only during low acceleration periods indi-

cated by mask M2. (c) Estimated drift by combining (a) and (b). The procedure consists of subtract-
ing the two signals followed by applying Piecewise Cubic Hermite Interpolation. The estimated drift 

is then used to calculate the correct orientation of shank (φShank). 

 
The comparison between the reference angles and the measured angles using the pro-

posed method for shank motion is shown in Figure  4-8. The error ( )( )Er t  is defined as 

the difference between the shank orientation angle ( Shankϕ ) estimated by the proposed 

method [Figure  4-8(a)], and calculated from position data as measured by the reference 

system [Figure  4-8(b)]. It can be seen that the value of the ( )Er t  [Figure  4-8(c)] is very 

small (< 1.2 deg). Similarly, the thigh orientation angle ( Thighϕ ), calculated using (4.13), is 

compared with its corresponding reference angle as shown in Figure  4-9. 
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Figure  4-8 Comparison between the measured angles using the proposed method and the reference 
angles (a) Shank angle calculated by the proposed method using the body-fixed sensors. (b) Calcu-
lated from position data as measured by the reference system. (c) Difference error between the two 

results. Note that the scale is zoomed to -5.0 to 5.0 deg for better viewing. 

 
Figure  4-9 Comparison between the measured angles using the proposed method and the reference 
angles (a) Thigh angle calculated by the proposed method using the body-fixed sensors. (b) Calcu-
lated from position data as measured by the reference system. (c) Difference error between the two 

results. Note that the scale is zoomed to -5.0 to 5.0 deg for better viewing.  

 
The whole results of the validating shank and thigh angles with reference system are 

summarized in Table  4-1, which outlines the mean and standard deviation of RMS errors 

and correlation coefficients of all subjects. The average RMS error for shank angles was 
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1.0 deg (mean = 0.5 deg, SD = 0.8 deg) and the average correlation coefficient was 0.999. 

In the same way, the average RMS error for thigh angles was 1.6 deg (mean = 0.1, SD = 

1.4 deg) and the average correlation coefficient was 0.998. 

Table  4-1 Comparison between shank and thigh angle measurements obtained by body-fixed 
sensors and Zebris markers for all subjects at 3 speeds. The error represents the mean and SD of 
RMS error (the difference signal between Zebris and our measuring device), as well as the mean 

and SD of the Correlation Coefficient between the two measuring systems 

 Slow (2km/h) Intermediate (3km/h) Fast (4km/h) 

Segment RMS Error Correlation Coeff. RMS Error Correlation Coeff. RMS Error Correlation Coeff.

Shank 0.74± 0.18 0.9991±0.0008 0.73±0.14  0.9994±0.0004 0.78±0.17  0.9994±0.0003 

Thigh 1.42±0.23  0.9985±0.0002 1.57±0.35  0.9986±0.0003 1.69±0.48 0.9986±0.0008 

 

4.4 Discussion and Conclusion 
The proposed method based on body-fixed sensors gave an accurate estimation of lower 

limbs orientations during gait. The results of all tests (Table  4-1) were very close to those 

of the reference system presenting small errors in RMS, mean and standard deviation of 

the difference signal, reflecting accurate and precise estimates respectively; and excellent 

correlation coefficients reflecting highly linear response.  

Our method compares favorably with other methods used to estimate shank or body 

segment orientation. Mayagoitia et al. (Mayagoitia et al. 2002) showed that shank and 

thigh inclination angles can be measured with the need of signal integration with eight 

accelerometers as wells as two gyroscopes fixed on two rigid metal plate. They found that 

RMS error for shank ranges from 1.3 deg to 2.7 deg. Using single gyroscope on shank, 

Tong and Granat (Tong and Granat 1999a) estimated the RMS error of relative shank 

angle (not absolute) to around 4.95 deg while using two gyroscopes (shank and thigh), 

Aminian et al. (Aminian et al. 2004a) have found for arthritis patients standard errors of 

3.3 deg and 4.2 deg respectively for relative shank and thigh orientation. In comparison 

with the methods using Kalman filtering, the proposed method has faster response, no 

phase delay, no convergence problem, and less computational load. Although the Kalman 

filter can have a higher accuracy in many applications, and can even be applied in real 

time, the performance of the filter will considerably be reduced in measuring orientation 

angle of segments, like shank, with fast movements and large centripetal acceleration 

components (Luinge and Veltink 2004; Rehbinder and Hu 2004). Many authors designed 

Kalman filters to fuse gyroscope, accelerometer and/or magnetometer signals (Barshan 

and Durrant-Whyte 1995; Foxlin 1996; Luinge and Veltink 2004; Luinge and Veltink 

2005; Marins et al. 2001; Rehbinder and Hu 2004; Zhu and Zhou 2004). However, the 

performance of the filter was only validated on the motions of segments such as trunk or 
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head, which have relatively slower motions than shank and thigh. Nevertheless, the 

presented algorithm in this chapter is limited to post-processing of data, and the time lag 

to find low acceleration points is an inevitable consequence. 

In contrast to the method presented in previous chapter for measuring joint angle, the 

proposed method in this chapter requires to find low acceleration points in order to 

measure orientation of a segment with respect to a fixed frame. Joint angle is the relative 

angle of two connecting segments with a known center of rotation at the joint point. So a 

pair of virtual sensors could be placed at the joint center of rotation to find joint angle. A 

similar concept was used in this chapter to find orientation of a segment by considering it 

as the joint angle between the segment and a fixed frame. However, a freely moving 

segment has not a constant center of rotation. So only at zero motion points the assump-

tion is valid as the center of rotation is known. 

From a practical standpoint, misalignment of the sensors or sensor deviation during 

movement reduces the system’s accuracy, such that the sensor reading is multiplied by 

the cosine of the misalignment angle ε. However, this will not seriously disturb the 

signals, since cos 1ε ≈  if ε  is sufficiently small. The accuracy of the angles are still 

limited by the bias drift of the accelerometers, however it is much less severe than inte-

grating gyro drift. In addition, skin motion artifact, a common source of error to all body 

mounted devices, affects the measurement accuracy. The thigh sensor is more suscepti-

ble to skin and soft tissue artifact where the majority of the femur is concealed by a 

substantial amount of soft tissue (Cappozzo et al. 1996a; Reinschmidt et al. 1997a; 

Reinschmidt et al. 1997b). The effect of skin artifact was minimized by using adequate 

elastic band to fix the sensors, and applying low-pass filtering on the raw signal. 

The results show that using gait constraints imposed by ankle joint, and virtually placing 

an accelerometer on ankle, can improve the accuracy of the measurements. In addition, 

the information of the virtual sensor on ankle can further be used to detect foot-flat 

phases. Identifying the foot-flat phase (Loading Response) of the gait cycle is one of the 

most demanding tasks in the study of human locomotion (Coley et al. 2005; Hunt et al. 

2001).  

The current model is limited to 2-D sagittal measurement of lower limbs. However, in gait 

analysis, a 2-D sagittal approach seems to be satisfactory, because sagittal plane is the 

plane where majority of the movement takes place, and gives a lot of information for gait 

pathologies (Tong and Granat 1999a). Therefore many applications in gait analysis and 

orthopedics are concerned with the proposed method. For example, lower limbs absolute 

angles can be used to provide outcome evaluation after orthopedic surgery since there is 
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a correlation between functional improvement found by clinical Harris Hip Scores (HHS) 

(Harris 1969) and range of flexion of the thigh (r = 0.69, p < 0.01) in arthritis patients 

(Dejnabadi et al. 2003). Moreover main activity such as lying, sitting, standing, walking 

and stair climbing can be identified by a subtle combination of the shank, thigh and knee 

angle in sagittal plane (Coley et al. 2005; Morlock et al. 2001) and provide in this way 

useful outcome for mobility improvement after hip arthroplasty. 
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Chapter 5  Quantitative Gait Analysis 

Abstract 
In this chapter, a gait analysis tool using body-fixed sensors is presented. It provides 

both quantitative and qualitative evaluation of gait functionality. Outputs from the 

software include spatio-temporal parameters of gait, kinematic diagrams, and animated 

graphic images simulating the patients’ gait at various conditions. The spatio-temporal 

parameters provide a tool for objective outcome measures to quantify the expected gait 

improvement of patients with knee or hip arthroplasty.  

The kinematic diagrams including time series graphs and angle-angle graphs provide 

additional information for representing movement and its variability in continuous 

format. The graphs help clinician qualitatively assess time evolution of lower limb move-

ments, variability at different phases of gait, symmetry, and ranges of rotations.  

Finally, a visualization tool was designed to show the motion data as synthetic skeletons 

performing the same actions as the subjects. It provides auxiliary tool to see the time 

evolution of lower limb movements.  

5.1 Introduction 
Human gait is a very complicated, coordinated series of movements that involve both the 

upper and lower extremities. Winter states: “The sole purpose of walking or running is to 

transport the body safely and efficiently across the ground, on the level, uphill and 

downhill with a minimal expenditure of energy. The neuromuscular control system must 

also provide appropriate shock absorption, prevent collapse, and maintain balance of the 

upper extremity” (Valmassy 1996; Winter 2005). Human gait is one of the most difficult 

tasks that we learn but, once learned, it becomes almost subconscious. Only when 

walking is disturbed by injury, disease, degeneration or fatigue, we realize our limited 

understanding of this complex biomechanical process.  

Observational gait analysis (OGA), or the visual evaluation of walking, is the clinician's 

primary tool for describing the quality of a patient's walking pattern. However, simple 

observation of a gait pattern cannot define and quantify its many potential and complex 

elements. Moreover, the identification and grading of gait deviations depends on the 

observer’s experience and individual bias (Valmassy 1996). Attempts to systematize 
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observational gait analysis and to maximize its reliability have led quantitative (or in-

strumented) gait analysis. Quantitative gait analysis is a method by which modern 

technologies are used to incorporate information from a number of inputs to illustrate 

and analyze the dynamics of gait. It describes for the clinician (physician, surgeon, and 

therapist) in quantitative and dynamic terms the movement of the body and its limbs and 

the changing relationships of one extremity to other extremities during motion. Gait 

analysis has become particularly useful to the surgical team when decisions need to be 

made about the applicability of a surgical procedure for correction of a faulty gait. It is 

also valuable after surgery to learn whether the dysfunction has been corrected and how 

motion of the treated limb is now affecting the dynamics of walking. 

As mentioned in chapter 2, there are several branches in studying gait analysis such as 

Gait kinematics, Gait kinetics, and Dynamic electromyography (EMG). A comprehensive 

gait analysis usually includes all branches (Vaughan et al. 1992) and this complex 

information can only be obtained in a dedicated laboratory. However, simplified kine-

matic analysis (e.g., spatio-temporal parameters) can also be clinically valuable, and an 

ambulatory device may be advantageous for these types of applications (Aminian et al. 

2004b).  

In this chapter, a gait analysis system based on body-fixed sensors is presented. The 

outputs of the system are spatio-temporal parameters of gait and kinematic diagrams. 

Spatial and temporal parameters of gait have clinical relevance in the assessment of 

motor pathologies, particularly in orthopedics (Aminian et al. 2004b). Additionally, a gait 

analysis tool was designed to visualize the motion data as synthetic skeletons performing 

the same actions as the subjects. The tool gives the physician an intuitive information 

about how the patient performs several activities such as stair climbing, or walking at 

different speeds.  

5.2 Gait Terminology 
Over the past several decades, the evolution of gait science has produced an array of 

terms and concepts relating to gait analysis. The terminology of human walking began 

with descriptive phrases obtained as a result of observational and kinematic analysis of 

normal subjects (Perry 1992; Saunders et al. 1953; Sutherland et al. 1994). This ap-

proach yielded terms such as “gait cycle”, “heel strike”, “toe off”, and so on. When we 

walk, we progress through a series of repetitive events. Our feet are picked up and swung 

forward, placed on the ground, walked over, and picked up and swung forward again. 

Each of these repetitive motions is termed a gait cycle. One gait cycle is measured from 

floor contact of the heel (heel strike) to the following heel contact of the same limb. So the 
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gait cycle time is the time between the two successive heel strikes. By contrast, the gait 

stride is the distance from heel strike of one foot to the following heel strike of the same 

foot (Ayyappa 1994; Najafi 2003).  

Each gait cycle is divided into two periods, swing and stance. The swing phase is that 

period of time in which the foot does not touch the ground and is swung forward. The 

swing phase occupies approximately one third of a total gait cycle (38%-42%). The stance 

phase of the gait cycle is that period of time when the foot makes contact with the 

ground. The stance phase starts with heel strike, and ends with toe off (when the foot 

leaves the ground). The stance phase is approximately two thirds of the gait cycle (51%-

62%). Both the start and end of the stance phase involve a period of bilateral foot contact 

with the floor, which is referred to as initial and terminal double supports respectively. In 

normal walking, each double support period occupies 8% to 12% of the gait cycle. Conse-

quently, the period of time when only one foot is in contact with the ground is referred to 

as single support. Figure  5-1 shows subdivisions of stance, swing, and single and double 

support. 

 
Figure  5-1 Subdivisions stance (right), swing (right), and single and double supports during gait 

cycle. 

5.3 Methods 

5.3.1 Estimation of Spatio-Temporal parameters  
 
A method for computing spatio-temporal parameters of gait using gyroscopes was first 

proposed by Aminian et al. (Aminian et al. 2002b) and modified by Salarian et al. 

(Salarian et al. 2004). In this study, we used the sensor configuration explained in 

chapter 3, and applied the modified method proposed by Salarian et al. to determine the 
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precise moments of heel strikes and toe offs. The method utilizes shank sagittal angular 

velocities and searches the two minima on either sides of a peak in angular velocity (mid-

swing area) (Figure  5-2). The first minimum was associated with toe off, and the second 

minimum with heel strike. 

Based on these time events, the temporal parameters of gait were computed as a per-

centage of gait cycle time (GCT). These parameters were the durations of stance, swing, 

initial double support (IDS), terminal double support (TDS) and the sum of initial and 

terminal double supports (DS) (Aminian et al. 2002b).  

Spatial parameters were estimated by first calculating the knee, shank, and thigh angles 

as explained in chapters 3 and 4. These angles were then used to find the range of 

rotations (difference between maximum and minimum) of thigh (left: RαL, right: RαR), 

shank (left: RβL, right: RβR), and knee (left: RγL, right: RγR) during each gait cycle. Afterwards, 

the stride length, stride velocity (Speed), and normalized speed (to subject’s height) were 

calculated using the range of thigh and shank rotations and applying the double pendu-

lum model for swing and inverse double pendulum model for stance (Aminian et al. 

2002b). In addition, the maximum values of shank angular velocities (left: PSωL, right: 

PSωR) and knee angular velocities (left: PKωL, right: PKωR) were reported as spatial parame-

ters. 
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Figure  5-2 Shank angular velocity. Marked area show where important gait events occur. 
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The mean and variability of spatio-temporal parameters across gait cycles was assessed 

using 3 common descriptive statistics, including mean, variance, and coefficient of 

variation.  

The first statistics measure used to describe a gait parameter was mean 
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where M is the sample mean, ix  is the ith sample data value, and n is the number of gait 

cycles.  

The second measure was standard deviation 
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where SD represent the sample standard deviation.  

The third quantity that represents a relative (normalized) variability measure is the 

coefficient of variation which is the standard deviation normalized to the percentage of 

the mean value 

 ( ) 100CV SD M= ×  (5.3) 

where CV is the sample coefficient of variation. 

5.3.2 Kinematic diagrams 
Spatio-temporal parameters do not capture all of the information relevant for under-

standing the movement and movement variability of a motion pattern performed across 

the time (James 2004). Kinematic diagrams provide an alternative for representing 

movement and its variability as a function of time or other movement parameter and can 

also represent both spatial and temporal characteristics (Hamill et al. 2000). In this 

study, we utilized two common types of kinematic diagrams: time series graphs and 

angle-angle plots. The kinematic data, consisting of knee, shank and thigh angles, were 

obtained by the methods presented in chapters 3 and 4. 

5.3.2.1 Time series graphs 
Time series graphs (i.e., plot of a variable vs. time) are among the most commonly used 

methods for representing continuous biomechanical data. First, the kinematic signals 

were time normalized by first detecting the heel strike events of each leg, and then 
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rescaling each cycle time to have the same length (0% to 100%). Then, ensemble average 

curve was computed as the mean across multiple time-normalized gait cycles (James 

2004) 
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where iM  is the mean for the ith sample, ijx  is the data value for the ith sample and jth 

gait cycle, and n is the number of gait cycles. The variability band was calculated using 

point-by-point method. Point-by-point method consists of calculating the standard 

deviation across all cycles for each data sample 
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where iSD  is the standard deviation for the ith sample.  

A graphical representation of these variability values can be obtained by plotting the 

ensemble average curve ( iM ) plus and minus the standard deviation value for each data 

point ( iSD ), that is, i iM SD± .  

5.3.2.2 Angle-Angle graphs 
Angle-angle graphs represent the angular movement of one body segment or joint against 

another segment or joint. Grieve (Grieve 1968b) is credited with devising the angle-angle 

diagram to evaluate walking patterns. In order to plot the ensemble angle-angle diagram, 

first ensemble average of each variable was calculated (Sidaway et al. 1995) 
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where ijx  and ijy  are the data values for the ith sample and jth gait cycle for the x- and 

y-axis variables, and xiM  and yiM  are corresponding x and y multiple-cycle mean values 

for the ith sample. Similarly, the variability band was calculated the standard deviation of 

each variable across all cycles for each data sample 
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where xiSD  and yiSD  are corresponding x and y multiple-cycle standard deviation values 

for the ith sample.  

5.3.3 Visualization 
In collaboration with Computer Vision Laboratory of EPFL (CVLab), we developed a data-

driven visualization software for animating human gait. Motion data can be visualized as 

synthetic skeletons performing the same actions as the subjects. The tool gives the 

physician visually appealing and easy to interpret information about how the patient 

performs several activities such as walking at different speeds or climbing ramps and 

stairs. Because the animated skeleton is 3D it can be viewed from arbitrary angles, 

thereby further helping the physician to interpret the results.  

The human body was modeled as a system of articulated rigid links, which represent the 

lower limb segments. The model employed forward kinematics that gets position and 

orientation of the end segment in a kinematic chain by defining angles for every joint. The 

kinematic structure contained 6 joints (for hips, knees and ankles), and the joint motions 

were generally 3D. In order to obtain the joint movement, quaternion representation 

(Shoemake 1985) of the rotations was used. The quaternion representation was chosen 

for its compactness and accuracy in representing rotations. The animation software takes 

data in the form of 2D sagittal orientation angles, then transform to quaternion represen-

tations, and computes the skeleton’s configuration and position at each frame.  

In addition, the visualization tool’s interface provides clinicians with the ability to visual-

ize the effect of treatment (e.g surgery, rehabilitation) by superimposing for instance the 

two gaits obtained before and after the treatment.  

5.4 Results 
Our system was tested on actual patients with knee arthroplasty at Hôpital Orthopédique 

de la Suisse Romande (HOSR). In this chapter we have selected a patient (ID: MS-37) and 

show the gait analysis results of the patient during walking at normal speeds at two 
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tests: baseline and 6 months after surgery. Each trial consisted of approximately 30 

consecutive gait cycles.  

5.4.1 Spatio-temporal Parameters 
Table  5-1 illustrates the mean, standard deviation (SD), and coefficient of variation (CV) 

of spatio-temporal parameters of the gait trials of patient (ID: MS-37) at baseline and a 

follow up test (6 months).  
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Table  5-1 Spatio-temporal parameters of the gait trials of a patient  (ID: MS-37) at baseline and 6 
months after surgery. 

Baseline  After 6 Months 
Gait Parameter 

Mean SD CV%  Mean SD CV% 

Gait Cycle Time  
(GCT), s 1.12 0.04 3.9  1.07 0.03 2.4 

Left Stance, % 60.29 2.19 3.6  62.76 1.16 1.8 

Right Stance, % 64.94 2.16 3.3  60.20 0.74 1.2 

Double Support,  
DS% 25.36 3.20 12.6  22.97 1.21 5.3 

Limp, % 3.44 2.88 -  1.08 0.93 - 

Left Stride, m 0.93 0.05 5.1  1.12 0.03 2.7 

Right Stride, m 0.93 0.06 5.9  1.12 0.03 2.7 

Speed, m/s 0.83 0.04 5.3  1.05 0.03 2.9 

Normalized Speed, /s 0.50 0.03 5.3  0.64 0.02 2.9 

Left Shank Peak Velocity,  
PSωL, deg/s 225.5 24.7 11.0  343.7 17.3 5.0 

Right Shank Peak Velocity, 
PSωR, deg/s 292.6 22.5 7.7  303.6 13.6 4.5 

Left Knee Peak Velocity,  
PKωL, deg/s 238.5 24.8 10.4  376.1 28.1 7.5 

Right Knee Peak Velocity,  
PKωR, deg/s 291.2 35.9 12.3  366.4 20.2 5.5 

Left Thigh Rotation, 
RαL, deg 30.7 2.1 6.7  35.7 1.1 3.1 

Right Thigh Rotation, 
RαL, deg 32.0 2.4 7.5  37.6 1.1 2.9 

Left Shank Rotation, 
RβL, deg 50.6 3.7 7.2  67.6 2.8 4.2 

Right Shank Rotation, 
RβL, deg 54.0 3.1 5.8  65.4 2.2 3.4 

Left Knee Rotation,  
RγL, deg 31.0 3.8 12.2  56.1 2.8 4.9 

Right Knee Rotation,  
RγR, deg 40.5 2.8 6.8  48.2 1.51 3.1 
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5.4.2 Kinematic Diagrams 
Figures 5-3 and 5-4 show ensemble average graphs for lower limb angles of the patient 

(ID: MS-37) with knee arthritis at baseline and 6 months after surgery respectively. Each 

graph shows the mean value (in solid black) with its variability band (in gray).  

 
Figure  5-3 Ensemble average graphs for lower limb angles of a patient (ID: MS-37) with knee 

arthritis pre-operatively during 30 complete. Each graph shows the mean value (solid black) with 
its variability band (gray). 
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Figure  5-4  Ensemble average graphs for lower limb angles of a patient (ID: MS-37) 6 months after 

knee arthroplasty. 
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Figures 5-5 and 5-6 show ensemble knee-hip angle-angle diagrams of the patient (ID: 

MS-37) at baseline and 6 months after surgery respectively. The heel strike (HS) and toe 

off (TO) events are shown by circles on the graphs. 

◄
 E

xt
.

◄
 E

xt
.

Fl
ex

io
n 
►

Fl
ex

io
n 
►

Kn
ee

 A
ng

le
, d

eg

Kn
ee

 A
ng

le
, d

eg

 
Figure  5-5 Ensemble knee-hip angle-angle diagram of a patient (ID: MS-37) at baseline. 
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Figure  5-6 Ensemble knee-hip angle-angle diagram of a patient 6 (ID: MS-37) months after surgery. 

5.4.3 Visualization 
Figure  5-7 shows the visualization tool’s interface. The middle window shows the ani-

mated skeleton of the patient (ID: MS-37) during walking at normal speed. The rightmost 

window of Figure  5-7 compares the gait of the same patient just before operation with 6 

months later by superposing several skeletons.  
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Figure  5-7 Interface of our visualization tool. The animated skeleton of a patient (ID: MS-37) during 
walking with knee arthroplasty is shown in the middle window. The knee prosthesis is colored in 
light gray. The right window compares the gait of the same patient just before operation (black) 

with 6 months later (gray). 

5.5 Discussion and conclusion 
We proposed a gait analysis tool based on body-fixed sensors (consisting of gyroscopes 

and accelerometers) with various types of reports: spatio-temporal gait parameters, 

kinematic diagrams, and visualization.  

Spatio-temporal parameters of gait provide quantitative scores of gait analysis. It allows 

the clinician to compare the gait parameters of a patient at baseline and different follow 

up tests. For example, by looking at the Table  5-1 and comparing the gait parameters of 

the patient (ID: MS-37) between 6 months after surgery and baseline, we can see that the 

variability (CV%) of all parameters have decreased. This indicates that the patient could 

walk more consistently and regularly. Moreover, the parameters of speed, stride, ranges 

of rotations, maximum angular velocities have increased. This indicates that the patient 

could walk faster, and use more dynamic ranges of rotations. Finally, the ‘Limp’ parame-

ter has decreased, which indicates that the patient could walk more symmetric after 

surgery. 

The kinematic diagrams provide supplementary information for representing movement 

and its variability as a function of time or other movement parameter in continuous 
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format. The graphs help clinician qualitatively assess time evolution of lower limb move-

ments, variability at different phases of gait, symmetry, and ranges of rotations.  

Finally, the visualization tool provide additional tool to see the time evolution of lower 

limb movements. The visualization tool gives the physician visually appealing and easy to 

interpret information about how the patient performs several activities such as walking at 

different speeds or climbing ramps and stairs. In addition, it allows us to evaluate the 

progression of a patient at different follow up tests by superposing several skeletons.  

The proposed system was tested on actual patients with knee arthroplasty at Hôpital 

Orthopédique de la Suisse Romande (HOSR), and appears a promising ambulatory gait 

analysis system for outcome evaluation or as a monitoring tool to assess progress 

through rehabilitation (see chapter 7). 
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Chapter 6  Analysis of  Inter-Joint Coordination 

Abstract 
Control of movement is one of the most difficult issues in the area of human function. A 

range of different research approaches have been employed in an effort to understand 

human motor control, however knowledge of the mechanisms associated with limb 

movement are still limited. In this chapter, a new method of quantitative analysis of 

interjoint coordination during gait is presented. It provided a general model to capture 

the whole dynamics of the movement and showed the kinematic synergies at various 

walking speeds. The proposed model imposed a relationship among lower limb joint 

angles (hips and knees) to parameterize the dynamics of locomotion for each individual. 

An integration of different analysis tools such as Harmonic analysis, Principal Compo-

nent Analysis, and Artificial Neural Network helped overcome high-dimensionality, 

temporal dependence, and non-linear relationships of the gait patterns. The trained 

model was fed with only 2 control parameters (cadence and stride length) at each gait 

cycle, and predicted the corresponding gait waveforms. Considering the differences 

between predicted and actual gait waveforms, a coordination score was defined at various 

walking speeds which ranged between 0 and 10. The scores determined the overall 

coordination as well as contribution of each joint to the total coordination. The model was 

applied on 8 patients with knee arthroplasty at different follow-ups as well as to 8 

healthy subjects, walking at 3 different speeds. Although the study group was small, the 

results showed that knee replacement and rehabilitation programs improved the gait 

coordination. The technique, along with the ambulatory device using body-fixed sensors, 

provides an analytical tool that is easy to use in the clinical diagnosis of human gait 

abnormalities.   

6.1 Introduction 
Researchers and clinicians have been interested in understanding the kinematics and 

kinetics of human gait system for many years. Human gait is a complex cyclical activity 

that involves coordination of many oscillating segments. Given the number of segments 

involved in human locomotion, there are an infinite set of possible trajectories deter-

mined both by the path as well as by the time at which each point on the path is 

reached. Accessing or computing such trajectories would require significant motor 



Chapter 6: Inter-Joint Coordination 

 68 

memory storage and computational power (Medendorp et al. 2000; Reisman et al. 2005; 

To et al. 2005). To produce a functional movement or synergy, the movement components 

have to be sequentially processed and temporally organized and their relative magnitudes 

need to be determined (Scholz 1990). This consideration leads to the question of whether 

the human motor system might use a simplified strategy that restricts the set of possible 

movement trajectories.  

Coordination is a strategy chosen by the central nervous system (CNS) to control the 

movements and maintain stability during gait. Coordinated multi-joint movements 

demand a complex interaction between the motor outputs of the CNS, the biomechanical 

constraints, and the proprioception (Field-Fote and Tepavac 2002; Rosenbaum 1991; 

Skinner and Mulloney 1998). In a multi-joint movement, the motion at a particular joint 

depends not only on the muscular torques actively generated at that joint, but also on 

dynamic interactions with other joints. Thus, it presents the CNS with control problems 

distinct from those in single-joint coordination (Verschueren et al. 1999). The CNS 

appears to use proprioception to monitor and adjust for these interaction torques on-line, 

as a movement is launched, without consciously taking into account the complex limb 

dynamics. Proprioception can be described as afferent information arising from periph-

eral mechanoreceptors that contribute to postural control, joint stability and conscious 

sensation of movement. Patients with loss of proprioception encounter problems in the 

performance of multi-joint movements, at least in part, due to their inability to control for 

interaction torques (Abelew et al. 2000; Carson and Swinnen 2002; Cordo et al. 1994; 

Rosenbaum 1991; Sainburg et al. 1995; Sainburg et al. 1993; Verschueren et al. 2002; 

Wallace 1989). 

Quantitatively understanding and modeling of gait coordination has been a challenging 

endeavor. The main challenges can be summarized as high-dimensionality, temporal 

dependence, and nonlinear relationships of the gait patterns (Chau 2001a; Kurz and 

Stergiou 2004; Winter 2005). Bernstein, who first identified the degree of freedom prob-

lem, defined coordination as a problem of mastering the very many degrees of freedom 

involved in a particular movement pattern, and to use a simplified strategy that restricts 

the set of possible movement trajectories, in other words, making it a controllable system 

(Bernstein 1967; Turvey 1990). He proposed that the motor apparatus was functionally 

organized into synergies or classes of movement patterns. Synergies are classes of move-

ment patterns involving collections of joint variables that act as basic unit in the regula-

tion and control of movement. Synergies are used by the nervous system to reduce the 

number of both controlled parameters and afferent signals needed to generate and guide 

an ongoing movement (Berthoz 2000). In this way, the CNS controls global variables, not 
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local variables (the multiplicity of the joint angles). Thus, a possible approach for study-

ing gait coordination is to reduce the number of independent variables to be controlled, 

or summarize the relations between the various components by one or several essential 

variables. This approach to the degree of freedom problem supposes that there are 

dependencies between components of the motor system. Having such dependencies 

reduces the degree of freedom that must be independently controlled. 

Many researchers have been carried out to determine the coordinative structure of 

human movements. A common limitation of the past studies is that they could not 

provide a general model to capture kinematic synergies at various walking speeds. In 

fact, the people alter their gait patterns and hence their kinematic synergies when they 

walk faster or slower than normal speed to maintain their stability and minimize the 

energy cost of locomotion (Frigo and Tesio 1986; Wallace 1989). Furthermore, a compre-

hensive quantitative description of the synergies under a multi-joint task paradigm has 

been lacking. This study was an attempt to fulfill these voids based on dynamical sys-

tems approach to quantitatively describe human gait coordination. Moreover, the model 

can synthesize classes of movement patterns at various walking speeds. To this end, 

different analysis techniques were integrated to parameterize the dynamics of locomotion 

of each individual. 

6.2 Literature review 
A full understanding of human movement and coordination can come about if we inte-

grate behavioral work (which tends to focus on the outcome of performance) with kinesi-

ology (which provides us with information about the kinematics of human movement) 

and neurophysiology (which tells us the nature of underlying neural mechanisms in-

volved in controlling movement) (Kelso 1982). Classification of motor control theories in 

the past studies can be divided into two classes based on 1- neurophysiology, and 2- 

outcome of performance including kinematics and kinetics of human movement.  

In this section, we focus on the motor control theories based on movement variables 

(kinematic and kinetics of movement). Schmidt (Schmidt 1988) has stated that the 

nervous system may control movement not muscles. This thought supports the percep-

tion that it is the goal or the movement pattern which seems to be what the performer is 

controlled of rather than the particular muscles or motor units involved.  

The study of movement variables such as, movement time, displacement, velocity, or 

forces has provided information about a number of models or concepts which have aimed 

to elucidate the complexity of the control of movement. Many different models have been 
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proposed to explain movement coordination. In this section, we review some of the most 

common methods of analyzing movement coordination. 

6.2.1 Variable-Variable plots 
Variable-variable plots have been used extensively to analyze the motion of one joint 

relative to the motion of another joint (angle-angle plot) and the angle of one joint relative 

to the angular velocity of that joint (phase-plane plot) (Abelew et al. 2000; Bloomberg and 

Mulavara 2003; Davids and Renshaw 2005; Earhart and Bastian 2001; Grieve 1968a; 

Higgins and Higgins 1990; Ivanenko et al. 2002; Rushworth et al. 1998). Figure  6-1 

shows examples of angle-angle plots of hip-knee segments in sagittal plane over several 

gait cycles for a healthy subject [Figure  6-1(a)] and a patient with knee arthritis [Figure 

 6-1(b)]. 
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Figure  6-1 Hip-knee phase portrait during gait: (a) normal healthy gait, (b) knee arthritis gait. 

Angles correspond to the hip and knee flexion-extension angles during walking. 

Figure  6-2 presents the corresponding phase plots for the knee joint for a healthy subject 

[Figure  6-2 (a)] and a patient with knee arthritis [Figure  6-2 (b)] during gait. The phase 

plots consist of the joint angle on the x-axis and the joint’s angular velocity on the y-axis.  
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Figure  6-2 Knee phase plots during gait: (a) normal healthy gait, (b) knee arthritis gait. 

Inspection of Figures 6-1 and 6-2 indicates that the behavior of the lower extremity joints 

during the gait cycle conforms to the shape of a limit cycle system that has a closed 

periodic orbit. Additionally, it is evident that there are slight variations in the path of the 

trajectory for each gait cycle. The plots help understand the behavior of the dynamic 

system, although the differential equation for the system is typically unknown. The 

disadvantages of phase plane plots and angle-angle plots are that time is omitted from an 

explicit representation. Moreover, quantitatively understanding the inter-joint coordina-

tion and control mechanisms cannot be achieved with this methodology alone.  

6.2.2 Dynamic Systems (Relative Phase) 
Another possible approach to uncover the coordinative structure of gait is to model it as a 

dynamical system and to study its stability and performance in terms of input-output 

characteristics. A dynamical system is any well-specified set of functions (rules, equa-

tions) that specifies how variables change over time. A key feature of the dynamical 

system approach is that systems comprised of many elements (i.e., having high dimen-

sionality) can be described in low dimensional terms (e.g., one variable). A common 

dynamical systems technique to the study of interjoint coordination has been based upon 

the relative phase (RP) analysis (Beek et al. 2002; Burgess-Limerick et al. 1993; Calvitti 

and Beer 2000; Hamill et al. 2000; Kelso 1995; Kurz and Stergiou 2002; Lamoth et al. 

2004; Marghitu and Hobatho 2001; Reisman et al. 2005; Ridderikhoff et al. 2005; Ster-

giou et al. 2001; Swinnen and Carson 2002). RP represents the phasing relationships 

(the spatial and temporal coupling) of a pair of interacting joints during a movement.  

The first step to calculate RP is to obtain phase angles of each of the two interacting 

segments (proximal and distal) 
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 1tan
Segment AngularVelocity

Segment Angle
−Φ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6.1) 

Then the relative phase is calculated by subtracting the phase angles of the proximal 

segment from that of the distal segment for each i-th data point of the time-normalized 

gait cycle (Peters et al. 2003) 

 relative phase distal segment proximal segmentθ = Φ −Φ  (6.2) 

where θrelative phase is the relative phase angle between the distal and proximal segments, 

Φdistal segment is the phase angle of the distal segment, and Φproximal segment is the phase angle of 

the proximal segment. The uniqueness of the relative phase measure is that it com-

presses 4 variables (i.e., proximal and distal segments’ angles and angular velocities) into 

one measure.  

Relative phase values close to 0° indicate that the two segments are moving in a similar 

fashion or in-phase, while values close to 180° indicate that the two segments are moving 

in opposite directions or out-of-phase. Positive relative phase values indicate that the 

distal segment is ahead of the proximal segment in phase space, and negative relative 

phase values indicate that the proximal segment is ahead in phase space. The slope of 

the relative phase configuration indicates which segment is moving faster during periods 

of the gait cycle. A positive slope indicates that the distal segment is moving faster in 

phase space, while a negative slope indicates that the proximal segment is moving faster 

in phase space. The local minimum and maximum of the relative phase curve provide 

insight into changes in coordination between the two segments, since they represent 

reversals in the coordination dynamics. Changes in the timing of the reversals and the 

number of reversals help advance understanding of normal and pathological gait pat-

terns.  

Figure  6-3 shows the time-normalized relative phase angles between shank and thigh 

segments during gait for a healthy subject [Figure  6-3 (a)] and a patient with knee arthri-

tis [Figure  6-3 (b)].  
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Figure  6-3 Relative phase between shank and thigh during gait: (a) normal healthy gait, (b) knee 
arthritis gait. The RP curves are time-normalized to gait cycle time. 

Additionally, variability in the relative phase provides objective information about the 

stability of the selected gait pattern. Some researchers utilized the variability of RP on the 

basis of inter-cycle standard deviation of ensemble relative phase curves as an index of 

coordinative stability (Barela et al. 2000; Donker and Beek 2002; Lamoth et al. 2002; 

Yang et al. 2002). Functionally, a low variability indicated a more stable relationship 

between the two joints’ movements. Although relative phase provides a quantitative 

variable for the assessment of interjoint coordination, interpretation of this collective 

variable is difficult.  

6.2.3 Frequency domain analysis 
Many authors employed frequency-domain analysis (cross correlation and spectral 

analysis) to evaluate the degree of coupling between pair of joint angles (Amblard et al. 

1994; Bianchi et al. 1998; Cheron et al. 1998; Crosbie and Vachalathiti 1997; Li and 

Caldwell 1998; Wu and Meijer 2002). Frequency-domain techniques are based on the 

assumption that linear relationships exist between two sets of kinematic time series data 

and identify the best fit linear transfer function between pairs of angles (Davids and 

Renshaw 2005). So they are not particularly useful in determining the degree of linkage 

between body segments that have a nonlinear relationship. On the other hand, the latter 

studies have focused on pair of joint movements, whereas coordination of multi-joint 

movements has remained largely unexplored (Verschueren et al. 1999).  

6.2.4 Principal Component Analysis 
Many authors applied principal components analysis (PCA) to examine temporal covaria-

tion between joint angles (Alexandrov et al. 1998; Braido and Zhang 2004; Chau 2001a; 

Courtine and Schieppati 2004; Daffertshofer et al. 2004; Deluzio et al. 1999; Deluzio et 
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al. 1997; Grasso et al. 1998; Gueguen et al. 2005; Jerde et al. 2003; Ko et al. 2003; 

Martin et al. 2002; Mouchnino et al.; Reisman and Scholz 2003; Sanger 2000; Yang et al. 

2002). They could show that the multi-joint movements could be described as a linear 

combination of a small number of principal components or eigencurves. The results 

indicated that a strong coupling existed between joint movements. There are however 

limitations to the use of PCA, as it does not model nonlinear relationships among vari-

ables, and interpretation of components is heavily subjective as well.  

6.3 Methods 

6.3.1 Model Description 
As defined earlier, coordination is the imposing or constraining of a relationship among 

multiple variables (Kugler et al. 1980). This relationship can be lawfully described as a 

function that somehow captures all the relevant information of the process. In coordina-

tion dynamics this process can be generally expressed as an equation of motion of the 

form (Mitra et al. 1998; Scott Kelso and Clark 1982) 

 ( ) ( ), ;t F ε=x x c  (6.3) 

where ( )t=x x  is the system state vector, c is control parameter, and F is the dynamical 

law governing the process. The remaining term ε refers to random influences or chance 

events, arising from the multiple degrees of freedom, not absorbed by, or organized 

through, the state vector x. There are, therefore, two aspects of (5.2): A deterministic 

aspect in which the time-evolution of the process is specified uniquely by the values of x, 

c, and F, and a stochastic aspect ε that perturbs the systematically changing process. 

Roughly speaking, the process of learning a new coordination characterized by (5.2) 

entails discovering the deterministic part and reducing the stochastic part.  

In this study, we considered a five segment model in the sagittal plane with two legs and 

a trunk. Each leg had a knee with a degree of freedom, and a hip with another degree of 

freedom. Thus, we defined x as the spatio-temporal patterning of lower limb angles and 

their consecutive derivatives during a gait cycle  

 [ ]1 2 3 4, , ,x x x x=x       (6.4) 

where ( )j jx x t=  ( )1 4j≤ ≤  represents the time series of the left hip, right hip, left knee 

and right knee angles respectively. These flexion-extension angles were obtained using 

the methods presented in chapters 3 and 4. The control parameters, c, were considered 

the parameters that are controllable in human gait to adjust the walking velocity 
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(Magdalena and Monasterio 1993). Walking velocity is the product of cadence and stride 

length, implying that a certain walking velocity can be achieved by different combinations 

of these two parameters 

 [ ],Cadence StrideLength=c . (6.5) 

The control parameters are constant during the execution of a gait cycle, so they carry no 

information about the patterns that emerge. 

The dynamical system expressed by (5.2) can be identified by observing a sequence of 

gait cycles at different walking speeds and fitting a parametric model to the dataset. 

Consequently, by feeding the model with control parameters, we can obtain a simulated 

trajectory of the joint angles. The definition of coordination by (5.2) implies that the 

system is able to reproduce consistent movement patterns of knee and hip angles over 

multiple cycles knowing the control parameters for each cycle. So the difference error 

between the actual and predicted trajectories at a given control parameter yields an 

estimation of the stochastic part ε  

 ( ) ( ) ( )ˆ ˆ, ,j j jt x t x tε = −c c  (6.6) 

where ( )jx t  is the actual trajectory of joint j, and ( )ˆ ,jx t c  is the predicted trajectory with 

the given control parameter c. This residual error was used to define a score for coordina-

tion, since a low value of the residual error implies that the system is in possession of a 

lawful way of producing a wide variety of systematically related, functionally specific 

patterns over different control parameters. 

Figure  6-4 shows a block diagram of the proposed method. The model consisted of two 

main parts: Training and Testing. In this model, the focus was to use the least number of 

parameters to describe the synergies and dynamics of lower limbs in a more manageable 

and understandable format. Sections  6.3.1.1 through  6.3.1.7 discuss each of these 

blocks in detail. 
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Figure  6-4 Block diagram of the model: (a) Training, (b) Testing. 

6.3.1.1 Calculating Control Parameters 
The control parameters were calculated by first detecting the heel strike instances of the 

right leg, and subsequently calculating the cadence and stride length at each gait cycle 

using the algorithm proposed in (Aminian et al. 2002b). So, for a sequence containing K 

gait cycles, the control parameter matrix could be expressed as 

 [ ]2K
k

× =C c  (6.7) 

where k ( )1 k K≤ ≤  is gait cycle number. 

6.3.1.2 Time Normalization 
In order to account for the temporal differences between strides, kinematic signals were 

time normalized for adjusting the gait cycles to have the same length (Beek et al. 2002; 

Crosbie and Vachalathiti 1997; Li et al. 2005; Sadeghi et al. 2003; Schollhorn 2004). 

Moreover, the invariance in the spatial trajectories can be more clearly found in the 

normalized curves (Yang et al. 2002). Time normalization of gait cycles was performed by 

rescaling each cycle time, based on right heel strikes, to a fundamental period length of 

1. The normalized waveforms were re-sampled using a cubic spline interpolation to 

100N =  samples per cycle (Lamoth et al. 2004). Therefore, the whole dataset containing 

K gait cycles could be expressed as 

 ( )4
,

K N
k j Nx t× × = ⎡ ⎤⎣ ⎦X  (6.8) 
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 where j ( )1 4j≤ ≤  is joint number and tN ( )0 1Nt≤ <  is normalized time. 

6.3.1.3 Harmonics Analysis 
Harmonic Analysis is a common method for reducing a long periodic time series to a 

small number of Fourier coefficients (Unuma et al. 1995). In general, a discretised signal 

with N sample points during a cycle can be expressed with a finite number of terms in 

the series 

 ( ) ( ) ( )( )( )
/ 2

0
1

cos 2 sin 2
N

n n
n

f t A A nt B ntπ π
=

= + +∑  (6.9) 

where ( )f t  is a periodic function with the fundamental frequency of 1, n is the harmonic 

number, and t is time. 

From the mathematical point of view, (5.8) is a parametric curve fitting which can be 

used to study the entire temporal gait waveforms, and also reflects the periodic behavior 

of the waveforms. Fourier transforms, on the other hand, is an effective smoothing 

technique (Dujardin et al. 1997) that eliminates the high-frequency noise such as skin 

artifact. 

The magnitude spectrum of the hip and knee rotations drop to near-zero at around 5Hz 

(Cunado et al. 2003). Accordingly, only the low order components of Fourier series are 

required to reconstruct the signal (Grasso et al. 2000). The essential number of harmon-

ics, m, required for 98% degree of data reconstruction was defined as the number of 

harmonics satisfying the condition that the sum of the relative amplitudes of each har-

monic over total amplitude was less than or equal to 0.98 (White et al. 2005)  
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The required number of harmonics, m, was calculated for each gait cycle in the database 

(all subjects, all trials, and all joints), and for consistency the maximum value was 

considered as the required number of harmonics, m, for all analyses.  

However, truncating the Fourier series or rectangular windowing (by m harmonics) causes 

oscillations in the neighborhood of discontinuities or sharp changes in ( )f t . This oscilla-

tion or ringing is known as Gibb’s phenomenon. The Gibb’s oscillations could be greatly 
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damped using other windows with better frequency behavior (Jerri 1998). We used 

Hamming window (Acton 1990) and evaluated the function as: 

 ( ) ( ) ( ) ( )( )( )0
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sin 2
. cos 2 sin 2
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n n
n

n m
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where m is the last term in the finite series that we are using. So considering nA′  and nB′  

as the modified Fourier coefficients by the Hamming window, the function ( )f t  could be 

mapped to a new vector of harmonic components 

 [ ]0 1 1, , , ..., ,m mA A B A B′ ′ ′ ′=h  (6.12) 

where h has 2 1m +  elements. Similarly, the Fourier coefficients of the dataset X could be 

expressed by concatenating the harmonic components of ,k jx  of the 4 joints 

 ,1 ,2 ,3 ,4, , ,K Q
k k k k

× = ⎡ ⎤⎣ ⎦H h h h h  (6.13) 

where ( )4 2 1Q m= × + . 

6.3.1.4 Principal Components Analysis (PCA) 
PCA is a statistical technique used to reduce the dimensionality of data and examine the 

relationship between a set of correlated variables (Jackson 2003). The history of PCA 

technique in gait data analysis does back more than a decade (Chan-Su and Elgammal 

2004; Chau 2001a). We applied PCA to represent most of the variation of the harmonic 

components (H) using only a few “Principal Components”. This step is a further reduction 

of the dimensions of the gait waveforms.  

The principal components (PCs) are linear combinations of the original data, and a 

weighted sum of the PCs can exactly reconstruct the original data. The PCs are ordered 

by the amount of variance they account for in the data, so that the majority of variation 

is captured by the first few PCs.  

We examined the cumulative variance threshold criterion to choose the required number 

of PCs to keep. The cumulative variance accounted for by the first P principal compo-

nents is given by 
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where λi is i-th eigenvalue which is equal to the variance of the i-th PC. Assuming a 

cumulative variance threshold 0.98η = , P is the smallest value for which Pη η≥ . Hence, 

the harmonic components matrix (H) was transformed to the reduced space  

 ,
K P

k ps× = ⎡ ⎤⎣ ⎦S  (6.15) 

where ,k ps  is the p-th PC of the k-th gait cycle. 

Since the PCA solution is sensitive to the units of input data, the input data (H) were 

standardized (data centered and scaled) (Orloci 1967) before applying PCA. This implies 

that they were normalized to have zero-mean and unit variance. Moreover, this stan-

dardization avoids saturation of the processing units and facilitates training of the 

artificial neural network (Schollhorn 2004). 

6.3.1.5 Artificial Neural Network (ANN) 
ANNs can model the nonlinear relationship between inputs and desired outputs. This 

nonlinear property can facilitate the study of complicated behavior of locomotor system 

which has traditionally been difficult to model with conventional linear tools (Barton and 

Lees 1997; Ohno-Machado and Rowland 1999; Schollhorn 2004; Secco and Magenes 

2002; Stergiou et al. 2004). Furthermore, ANNs has the ability to generalize, meaning to 

be able to make reliable predictions for new inputs that are not in the training set. It 

enables the system to provide smooth interpolations for the untrained data space. 

We implemented a multilayer perceptron (MLP) architecture because of its good predict-

ing power in supervised training mode for mathematical functional relationships. During 

the training  [Figure  6-4(a)], the inputs consisted of the control parameters (C), and the 

output layer (target) should produce the principal components of the gait waveforms (S). 

The total number of layers in the MLP and the number of nodes in each layer were 

empirically determined, since they depend on the degree of nonlinearity of the model. 

However, a two-layer network is known to be theoretically sufficient for learning most 

functional relationships (Chau 2001b). So, a two-layer network with 3 P×  neurons in the 

first (hidden) layer and P neurons in the output layer was configured. Then the neural 

network was trained by employing the Levenberg-Marquardt algorithm (Hagan and 

Menhaj 1994). During the testing phase [Figure  6-4(b)], based on estimated coefficients of 

training phase, the ANN outputs provided an estimate of the principal components of the 

gait waveforms ( Ŝ ). 
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6.3.1.6 Reconstruction 
In order to reconstruct the predicted trajectories in time domain, first inverse PCA trans-

form followed by inverse standardization (centering and scaling) were  applied on the ANN 

outputs ( Ŝ ) to go back to the harmonics domain. Knowing the harmonics, the joint 

angles in time domain ( ˆ jx ) were obtained through an inverse Fourier transformation. 

6.3.1.7 Scoring 
As shown before, the residual error expressed by (5.5) was used to define a score for 

coordination. First, the normalized Root Mean Squared (RMS) error of each joint, j, during 

each gait cycle, k, was computed as 

 
( )

( )

1
2

2
,

1
, 1

2
2
,

1

1

1

N

k j
t

k j
N

k j
t

tNE

x tN

ε
=

=

=

⎡ ⎤
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∑
. (6.16) 

Since the error value grows with the amplitude of the joint rotation, the RMS error was 

normalized to the RMS of the actual joint rotation to obtain a dimensionless relative 

error.  

Then a logarithmic mapping function was applied to give a coordination score between 0 

and 10 
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where 10Maxr =  is scaling constant to adjust the maximum score output, and EMin and 

EMax are constants chosen experimentally to adjust the range of the normalized RMS 

error values. EMin corresponds to the highest coordination score (minimum normalized 

RMS error) in healthy population, and EMax corresponds to the lowest coordination score 

(maximum normalized RMS error) in patients population. Logarithmic mapping nonline-

arly compresses the high dynamic range of E, such that small values of error are used for 

scoring in more detail (Stockham 1972). This score allows us to determine the contribu-

tion of each joint to the total inter-joint coordination. 

Consequently, the overall coordination score during each cycle was defined as the aver-

age of coordination scores of each joint 
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In order to evaluate the coordination scores at various speeds, the values of rk,j and Rk 

were calculated for each gait cycle, k, and then plotted versus the speed. Then a 3rd order 

polynomial (cubic) curve was fitted to the data (rj and R respectively) to better represent 

and interpret the results. Additionally, the coordination scores (Rk) of each trial at slow, 

normal, and fast speeds were averaged over their gait cycles, k, to give an average score, 

R, for each gait trial. 

6.3.2 Test Protocol 
In this framework, we applied our model on 8 patients with knee arthroplasty at different 

follow-ups as well as 8 healthy subjects. The subjects, 9 men and 7 women, had given 

informed consent. The patients were tested pre-operatively (baseline) and post-operatively 

at 6 weeks and 6 months. Each subject was asked to perform 6 walking trails of 30m 

long at 3 different self-selected speeds: normal (trials 1 and 2), slow (trials 3 and 4), and 

fast (trials 5 and 6). Only steady-state parts of walking trials were used for analysis, and 

the transient (initial and terminal) cycles were eliminated. Trials 1, 3, and 5 were used for 

training the model (ANN), and trials 2, 4, and 6 were used for testing coordination.  

To capture lower limbs motions, 5 sensor modules, each consisting two accelerometers 

and one gyroscope, were used. The sensors (dimension: 20mm x 20mm x 10mm) were 

mounted on sacrum, and both thighs and shanks. The sensing axes were adjusted in the 

anterio-posterior plane so that the motion in the sagittal plane could be measured. All 

signals were sampled at 200-Hz using the Physilog® [BioAGM, CH] ambulatory system 

carried on the waist.  

Statistical comparison of the results were made using paired Wilcoxon sign rank tests for 

comparison within patient groups, and independent Wilcoxon rank sum tests for com-

parison of patient group with the normal subjects. A value of p<0.05 was considered 

significant. 

6.4 Results 
Figures 5-2 to 5-6 show the intermediate steps of calculating the main parameters and 

outputs of the blocks indicated in Figure  6-4. The result of time-normalization of joint 

angles to gait cycle time is shown in Figure  6-5. The curves represent joint angles at 3 

typical gait cycles of a healthy subject (no. 1): slow (dashed line), normal (solid line), and 

fast speeds (dotted line). Figure  6-6 shows the result of applying the criterion (5-8) to 
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choose the essential number of harmonics, m, required for 98% degree of data recon-

struction (a typical case where m was maximum: patient no.3, gait cycle no.1, left knee). 

The dashed line shows the threshold set at 0.98, and the number of required harmonics 

where the criterion was met was 9m = , or 2 1 19m + =  numbers including the DC compo-

nent, to reconstruct the joint motion during the gait cycle. So the total numbers required 

to reconstruct the 4 joints motions during a cycle was 4 19 76× = . 

 
Figure  6-5 Time-normalization of lower limb joint angles to gait cycle time. The curves represent 3 

typical gait cycles of a healthy subject (no. 1) at slow (dashed line), normal (solid line), and fast 
speeds (dotted line). 

The cumulative variance of principal components vs. component numbers is reported in 

Figure  6-7. Based on the criterion (5.13), the number of required principal components to 

explain 98% of variance of the harmonic components (H) was 8P = . 
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Figure  6-6 Choosing the required number of harmonics (m) for 98% degree of data reconstruction. 
The dashed line shows the threshold set at 0.98, and the number of required harmonics where the 

criterion (5.9) is met is m=9. 

1 10 20 30
0.8

0.9

1

P  
Figure  6-7 Choosing the required number of PCAs based on cumulative variance criterion (5.13). 

The dashed line shows the threshold set at 0.98, and the number of required components to 
explain 98% of variance is P=8. 
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The results of predicting lower limbs trajectories and the residual error is shown in 

Figure  6-8. The trajectories shown in the top row (x1 to x4) represent actual measured 

joint angles of patient no. 1 at baseline with a very poor coordination. The first few cycles 

were chosen from slow speed, and the last few cycles were chosen from normal and fast 

speed trials respectively. The trajectories shown in the middle row ( 1x̂  to 4x̂ ) represent 

the predicted patterns reconstructed by the model. The residual errors between the 

actual and predicted trajectories ( 1ε̂  to 4ε̂ ) are shown in the bottom row. 
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Figure  6-8 Lower limbs trajectories (actual and predicted) and the residual error (Top panel: Left 

and Right Hips, Bottom panel: Left and Right Knees). The trajectories shown in the top rows of the 
panels (x1 to x4) represent actual measured joint angles of patient no. 1 at baseline with a very 
poor coordination. The first few cycles were chosen from slow speed (0<t<5s), the cycles in the 

middle part (5<t<10s) were chosen from normal speed, and the last few cycles were chosen from 
fast speed trials (10<t<15s). The trajectories shown in the middle row of the panels ( 1x̂  to 4x̂ ) 
represent the predicted motions reconstructed by the model. The residual errors between the 

actual and predicted trajectories ( 1ε̂  to 4ε̂ ) are shown in the bottom row of the panels. Note that 
the error scales are zoomed to -10.0 to 10.0 deg for better viewing. 
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The logarithmic mapping function, used in the scoring block to map normalized RMS 

error (Ek,j) to coordination score (rk,j), is plotted in Figure  6-9. The output score (rk,j) is 

ranged between 0 and 10, and the mapping function is identical for all subjects. The 

scaling constants in (5.16) were set to 10Maxr = , 0.01MinE = , and 0.15MaxE = . EMin corre-

sponds to the minimum normalized RMS error or the highest coordination score of a gait 

cycle in the dataset (a healthy subject), and EMax corresponds to the maximum normalized 

RMS error or lowest coordination score (a patient with poorest coordination). 

r k,
j

 
Figure  6-9 The logarithmic mapping function (5.16), used in the scoring block to map normalized 
RMS error (Ek,j) to coordination score (rk,j). The output score (rk,j) is ranged between 0 and 10. The 

scaling constants were set to 10MaxR = , 0.01MinE = , and 0.15MaxE = . 

Figure  6-10 to 5-9 show the results of coordination scores of patient no. 1. Figure  6-10 

shows the coordination score of affected (left) knee during the 3 walking speeds (slow, 

normal and fast) at baseline. The dots indicate the scores calculated for each gait cycle 

using (5.16). A polynomial curve was fitted to the data to better represent and interpret 

the scores. Figure  6-11 shows the coordination score of each joint versus walking veloc-

ity. The curves, obtained by polynomial curve fitting, allow us to determine the contribu-

tion of each joint in gait coordination. The affected knee (left knee) indicates the least 

score. Figure  6-12 shows the overall coordination scores of patient no. 1, at baseline and 

2 follow up tests at 6 weeks and 6 months, using (5.17).  
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Figure  6-10 Coordination score of affected (left) knee (j=3) of patient no.1 at 3 

walking speeds (slow, normal and fast) at baseline. The dots indicate the score of 
each gait cycle (rk,3). A polynomial curve was fitted to the data (r3) to better repre-

sent and interpret the scores. 
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Figure  6-11 Contribution of each joint to the inter-joint coordination during gait 

(patient no.1, baseline). The curves show the coordination score assigned to each 
joint versus walking velocity. The affected knee (left knee) has the least score (r3). 
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Figure  6-12 Overall inter-joint coordination score of patient no.1 at baseline and 2 follow up tests 

at 6 weeks and 6 months.  

The whole results of obtaining coordination scores of all subjects are summarized in 

Table  6-1, which outlines the scores of 8 patients (P1 to P8) at 3 different follow up tests, 

and 8 healthy subjects (H1 and H8), as well as their mean and standard deviation. The 

scores of each trial at slow, normal, and fast speeds are reported separately. By compar-

ing the scores of patients during follow up tests with baseline at each corresponding 

speed, all of the scores significantly increased. For instance, considering the patients’ 

scores at normal speeds, the mean value of scores at baseline was 4.4, which signifi-

cantly increased to 5.7 ( 0.008p = ) and 6.6 ( 0.008p = ) at 6 weeks and 6 months follow up 

tests respectively. However, the score of the healthy subjects was significantly higher 

than the score of patients at all tests ( 0.05p < ).  
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Table  6-1 Coordination scores of 8 patients (P1 to P8) at 3 different follow up tests, and 8 healthy 
subjects (H1 and H8). The scores of each trial at slow, normal, and fast speeds, as well as their 

mean and standard deviation for each group, are reported separately. 

Baseline  + 6 Weeks  + 6 Months 
Subject 

Slow Normal Fast  Slow Normal Fast  Slow Normal Fast 

P1 1.4 2.3 2.1  3.7 4.8 4.6  5.2 6.5 6.5 

P2 2.0 2.8 2.8  3.3 4.3 3.0  5.1 5.7 5.8 

P3 3.5 4.0 4.1  5.6 5.8 6.1  5.6 6.7 6.9 

P4 4.1 6.7 5.0  5.9 6.8 6.7  6.0 6.8 6.8 

P5 4.4 6.0 5.5  5.4 6.2 6.0  5.8 6.4 6.6 

P6 3.9 4.4 4.2  5.8 6.7 6.7  6.7 7.1 7.1 

P7 2.7 4.5 3.7  5.2 5.6 5.9  6.0 6.7 6.9 

P8 3.9 4.4 4.1  4.8 5.7 5.5  6.1 6.6 6.2 

mean±SD 3.2±1.1 4.4±1.5 4.0±1.1  5.0±1.0 5.7±0.9 5.6±1.2  5.8±0.5 6.6±0.4 6.6±0.4 

H1 6.1 8.1 7.6  - - -  - - - 

H2 6.7 7.4 7.1  - - -  - - - 

H3 5.0 6.6 5.1  - - -  - - - 

H4 6.2 7.5 7.6  - - -  - - - 

H5 7.3 7.4 8.4  - - -  - - - 

H6 6.5 7.2 7.0  - - -  - - - 

H7 6.1 7.8 6.6  - - -  - - - 

H8 6.4 7.4 6.5  - - -  - - - 

mean±SD 6.3±0.7 7.4±0.4 7.0±1.0  - - -  - - - 

 

All subjects’ scores during normal and fast speeds were higher than their corresponding 

scores at slow speed. For example, the mean scores of patients at baseline during normal 

and fast speeds were 4.4 and 4.0 respectively, that were higher than the mean score at 

slow speed (3.2) ( 0.05p < ). This result is in accordance with (Li et al. 2005; Stergiou et al. 

2001), as in general, if one tries to walk at extremely slow pace, the movement is highly 

discoordinated, unstable and of poor efficiency. 

6.5 Discussion and conclusion 
We proposed a method that quantitatively analyzed multi-joint gait coordination at 

various walking speeds. In this study, the focus was to use the least number of parame-

ters to capture the whole dynamics and describe the classes of movement patterns, as 

trajectories with small number of components are properties of coordinated movements.  

We indicated how an integration of different analysis tools such as Harmonic analysis, 

Principal Component Analysis, and Artificial Neural Network helped overcome high-

dimensionality, temporal dependence, and nonlinear relationships of the gait patterns. 
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The Harmonic analysis adopted in this study is an optimum curve fitting that reflects 

also the periodic behavior of the gait waveforms. Higher order polynomials or other 

complex techniques might be used to parameterize the curves, but the number of the 

fitting parameters would increase. We showed that with 9m =  harmonics, or the total 

number of ( )4 2 1 76m× + =  parameters, the motions of the 4 joints during a gait cycle 

could be reconstructed with 98% accuracy. Then, the principal component analysis 

examined the relationship between the harmonic components of the various joints, and 

could reduce the redundancy and dimensionality of the data to 8P =  components. Since 

PCA only detects linear relationships in the data, the artificial neural network was used 

to model the nonlinear gait variable relationships, which has traditionally been difficult to 

model analytically. The ANN could model the data with only 2 inputs as control parame-

ters (cadence, stride length). Although the ANN would not offer biomechanical insight into 

the locomotion system and the basis has a lack in correspondence to the biomechanical 

system, the advantage of the technique was that the necessity to build a model of the 

human body was eliminated.  

The model could parameterize the locomotion, and hence it has the ability to generalize. 

It enables the system to make reliable predictions for new inputs that are not in the 

training set. Generalization allows us to generate new motion patterns by smooth inter-

polations for the untrained data set. 

We applied our proposed model on patients with knee osteoarthritis to delineate how 

pathology affects walking coordination. Knee osteoarthritis is marked by the progressive 

erosion of articular cartilage, subchondral sclerosis, and osteophytes growth at the joint 

margins. Individuals with knee osteoarthritis experience debilitating pain, joint laxity and 

instability (Deluzio et al. 1999; Deluzio et al. 1997; Lewek et al.). Although our study 

sample was small (8 patients and 8 controls), the results suggest that treatments and 

rehabilitation programs improve the gait function and coordination in individuals with 

knee arthroplasty. These results allow us to apply the model to larger groups of patients 

with knee osteoarthritis before and after surgery and compare, for example, the differ-

ences in outcome of fixed bearing and mobile bearing total knee arthroplasty. In the next 

chapter (chapter 7), we will show that coordination score is significantly improved in a 

population of 54 patients after knee replacement. 

In the present study we only examined the sagittal movements (flexion-extension) of 

lower limbs. However, in gait analysis, a 2D sagittal approach seems to be satisfactory, 

because sagittal plane is the plane where majority of the movement takes place, and 

gives a lot of information for gait pathologies (Tong and Granat 1999a).  



Chapter 6: Inter-Joint Coordination 
 

 91 

The proposed model is limited to steady state walking, so the transient cycles during gait 

initiation, termination, turning, or changes in the environment are not supported by the 

current model. However, the model could be enhanced by including additional control 

parameters such as stance period, range of flexion-extension of joints, or the control 

parameters of the previous cycle. 

The proposed technique, along with the ambulatory device using body-fixed sensors, 

provides an analytical tool that is easy to use in the clinical diagnosis of human gait 

abnormalities. The model can be applied widely in rehabilitation evaluation, prosthesis 

design, and robotics. The ambulatory device is easily mountable, and it can capture 

kinematic information over a non-limited distance and outside a laboratory environment 

without hindrance to natural gait, allowing the patient to walk freely and to reach 

his/her own steady state speed. In this way, coordination could be estimated during daily 

walking. 
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Chapter 7  Clinical Application 

Abstract 
In this chapter, we applied the gait analysis methods, proposed in previous chapters, in a 

real clinical application. The goal of this study was to provide gait parameters as a new 

objective method to assess total knee arthroplasty (TKA) outcome, using the current 

debate on the advantages of mobile bearing versus fixed bearing tibial plates of these 

implants as an interesting illustration for surgeons. This randomized controlled double-

blind study included 54 patients. Each participant was asked to perform different walk-

ing trials at different speeds and conditions, and to complete a general health question-

naire EuroQol questionnaire in 5 dimensions EQ-5D), a disease specific questionnaire for 

osteoarthritis Western Ontario and McMaster Universities Osteoarthritis Index WOMAC) 

and a semi-objective specific score filled by the surgeon (Knee Society Score, KSS) was 

also done. Preoperative results were compared with postoperative (6 weeks, 3 months, 6 

months, and 1 year) results. The results indicated that fixed bearing TKA performed 

better than mobile bearing TKA in the early period (3 months). However, after 6 months 

the mobile bearing performed as well as the Fixed bearing TKA. In general, the results 

indicated that gait function in all of the patients can be improved considerably after 

surgery. We provided objective criteria, using ambulatory gait analysis, for assessing 

functional recovery following TKA procedure.  

7.1 Introduction 
Total knee arthroplasty (TKA) is a widely used surgical treatment for severe osteoarthritis 

(OA) of the knee, which provides consistently good postoperative clinical results. Knee 

prosthesis designs and their surgical techniques have improved in recent years to provide 

more satisfactory results of joint reconstruction and improved walking ability (Solak et al. 

2005).  

Since 1977, mobile bearing knee prostheses have been designed and implanted in order 

to provide less constrained knee kinematics while minimizing polyethylene wear and 

reducing bone-cement prosthesis interface stress (Aglietti et al. 2002; Buechel and 

Pappas 1989; Catani et al. 2003; Lemaire 2002). Clinical and biomechanical studies have 

claimed that normal joint function and articular surface conformity are incompatible with 

fixed bearing knees (Goodfellow and O'Connor 1994). Usage can lead to excessive poly-
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ethylene wear and full conformity of the bearing surface leads to excessive constraint of 

joint kinematics. This dilemma can be solved by a prosthesis that has a polyethylene 

bearing component interposed between a femoral component and a polished tibial plate, 

in order that the polyethylene insert moves with the femur and slides with the plate 

(Goodfellow and O'Connor 1994). The mobility of the polyethylene insert permits rotation 

and gliding; the load can thus be shared by the soft tissues, and there is less loosening 

stress being transferred to the bone-prosthesis interface. 

Almost every manufacturer has introduced a mobile-bearing TKA system, or is developing 

one to introduce into the market. However, most studies on the outcomes of mobile-

bearing TKA are open studies. 

Currently, five randomized controlled clinical trials comparing fixed and mobile bearings 

for TKA have been published (Aglietti et al. 2005; Bhan et al. 2005; Hansson et al. 2005; 

Kim et al. 2001; Price et al. 2003) as wells as two prospective match pair studies (Chiu et 

al. 2001; Watanabe et al. 2005). No evidence of superiority for one of the two implants 

with regard to Range of Motion (ROM) or functional performance of the patients could be 

found as conducted in the systematic Cochrane review and meta-analysis of Jacobs et al.  

(Jacobs et al. 2004).  

Evaluation of the functional capacity of the knee joint has been performed by clinical 

scoring systems and by static radiographic and clinical examinations. Furthermore, gait 

analysis has been shown to be of value in distinguishing between functional outcomes of 

different types of knee surgery (Andriacchi et al. 1997; Chassin et al. 1996; Smith et al. 

2006), making preoperative and postoperative gait evaluation, comparing the variables 

with those of healthy controls (Andriacchi et al. 1982; Berman et al. 1987; Chao et al. 

1980; Kroll et al. 1989; Simon et al. 1983), and assessing preoperative and postoperative 

changes (Andersson et al. 1981; Andriacchi et al. 1977; Chao et al. 1980; Collopy et al. 

1977; Kirtley et al. 1985; Kroll et al. 1989; Otsuki et al. 1999; Steiner et al. 1989; Webs-

ter et al. 2003). Additionally, ambulatory gait analysis allows long-term monitoring of 

patient, is applicable for routine evaluation of patient outcomes and has already been 

validated for hip arthroplasty outcome evaluation (Aminian et al. 2004c). 

The purpose of this randomized controlled study was to provide gait parameters as a new 

objective method to assess total knee arthroplasty outcome between patients with fixed- 

and mobile-bearing. The measuring system designed for gait analysis during this project, 

which was described in the previous chapters, was used for this clinical study. Gait 

analysis and knee scoring system results of 54 patients were evaluated. Preoperative 
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results were compared with postoperative (6 weeks, 3 months, 6 months, and 1 year) 

results. 

7.2 Methods 

7.2.1 Subjects 
From February 2003 to April 2006, all patients diagnosed with unilateral (one lower limb, 

not both) knee osteoarthritis waiting for a TKA were asked to participate in the study. To 

date, 54 patients signed a consent form and were included and blinded to the type of 

prosthesis they received. Nexgen (Zimmer, Inc., Warsaw, IN, USA) postero-stabilized 

cemented implants were used for all patients, the only difference being the Mobile- or 

Fixed-bearing following the randomized process. Table  7-1 summarizes the demographic 

data of patients.  

Table  7-1 Patient Demographics 

Demographics Total cases Fixed bearing Mobile bearing 

Number of patients 54 30 24 

Age, yr (mean±std) 69.5±8.7 71.2±8.4 67.2±8.6 

Gender (Female / Male) 33 / 21 15 / 15 18 / 6 

Body weight, kg (mean±std) 77.0±20.1 76.8±15.8 77.3±24.7 

Body height, cm (mean±std) 165.3±8.6 164.6±8.7 166.2±8.5 

BMI, kg/m2 28.1±6.4 28.2±4.8 28.0±8.1 

Treated side (Left / Right) 23 / 31 9 / 21 14 / 10 

BMI=body mass index 

7.2.2 Clinical Evaluation 
Each patient was asked to complete an auto-administrated quality of life subjective 

EuroQoL (EQ-5D) in five dimensions questionnaires (Brazier et al. 1993; EuroQoL-Group 

1990), an auto-administrated subjective disease-specific WOMAC (Western Ontario 

McMaster) Osteoarthritis Index (Bellamy et al. 1988), a VAS-pain and stiffness auto-

administrated subjective scores (Visual Analog Scale), and a semi-objective disease-

specific Knee Society Score (KSS) (Insall et al. 1989) by an independent blinded observer. 

The Knee Society score rated the patient’s overall functional performance of the knee 

(maximum score 100 points). The KSS was evaluated for both healthy and operated 

knees. The questionnaires were completed preoperatively and postoperatively at 6 weeks, 

3 months, 6 months and 1 year. For the details concerning these clinical evaluations 

please see chapter 2. 
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7.2.3 Gait Analysis 
Each subject was asked to perform 15 trials at different conditions. The trials included 6 

walking trails of 30m long at 3 different self-selected speeds: normal (trials 1 and 2), slow 

(trials 3 and 4), and fast (trials 5 and 6). Then the patient was asked to perform 2 trials of 

stair descending (trials 7 and 8), 4 walking trials of 20m long on ramp (inclination = 7.5 

deg): going up (trials 10 and 12), and going down (trials 9 and 11). Afterwards, the pa-

tient performed 2 trials of stair climbing (trials 13 and 14). Finally the patient performed 

5 times of sit-stand-sit movements on a chair (trial 15). 

The gait analyses were performed preoperatively and postoperatively at 6 weeks, 3 

months, 6 months and 1 year. Lower limb rotations were measured using the kinematic 

sensors as explained in Chapter 3 and 4. Multi-joint coordination was evaluated using 

the method described in chapter 6. 

In this chapter, we present the spatio-temporal gait results and coordination scores at 

normal speed (trial 1). Only steady-state parts of walking trials were used for analysis, 

and the transient (initial and terminal) cycles were eliminated. 

7.2.4 Statistical Analysis 
Preoperative and postoperative results (including clinical scores and gait analysis results) 

were compared with paired t test, and the results of the Mobile bearing and fixed Bearing 

groups were compared with independent-samples t test. A value of 0.05P <  was consid-

ered as significant difference. All statistical computations were performed using the 

MATLAB 7.0 software. 

7.3 Results 

7.3.1 Clinical Evaluation 
From the total of 54 patients who were included in the study and were tested at baseline, 

we could follow up 52 patients at 6 weeks, 50 patients at 3 months, 40 patients at 6 

months and 32 patients at 1 year. 

The pain scores, knee scores, and functional scores of all patients are summarized in 

Table  7-2. The improvement (difference between each follow up test and preoperative test) 

is shown in Table  7-3. The significant differences (p<0.05) are shaded in gray. Many of 

the scores have significantly improved after 6 weeks (all WOMAC scores, VAS scores, and 

KSS-op). The improvements indicated by FCTN-op and EQ5d-Visual scores were signifi-

cant after 3 months. However, the FCTN-healthy and KSS-healthy scores of the healthy 

knees did not significantly change after operation. 
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Table  7-2 Clinical scores of all patients at baseline and different follow up tests at 6-week, 3-
month, 6-month, and 1-year 

Parameters 
Mean ± std 

Baseline 
N=54 

6 weeks 
N=52 

3 months 
N=50 

6 months 
N=40 

1 year 
N=32 

VAS-stiffness 6.56 ± 2.00 3.69 ± 2.18 2.87 ± 2.3 2.24 ± 1.97 2.40 ± 2.46 

VAS-pain 5.84 ± 2.60 3.89 ± 2.18 3.06 ± 2.28 2.27 ± 2.23 2.38 ± 2.64 

Womac-pain 11.85 ± 3.07 6.36 ± 3.39 5.17 ± 3.66 4.40 ± 3.78 4.72 ± 4.56 

Womac-stiffness 4.84 ± 1.49 3.3 ± 1.39 2.58 ± 1.61 2.58 ± 1.68 2.52 ± 1.99 

Womac-function 36.84 ± 11.72 22.38 ± 9.99 17.17 ± 11.20 14.6 ± 10.27 16.68 ± 14.27 

Womac-total 53.51 ± 15.24 32.02 ± 13.84 24.91 ± 15.68 21.58 ± 14.81 23.92 ± 20.29 

Womac%-pain 59.24 ± 15.31 31.76 ± 16.92 25.84 ± 18.30 22.00 ± 18.90 23.60 ± 22.76 

Womac%-stiffness 60.39 ± 18.6 41.21 ± 17.28 32.18 ± 20.12 32.25 ± 21.00 31.50 ± 24.77 

Womac%-function 54.17 ± 17.24 32.9 ± 14.68 25.25 ± 16.47 21.47 ± 15.10 24.53 ± 20.98 

Womac%-total 55.74 ± 15.87 33.36 ± 14.41 25.95 ± 16.34 22.49 ± 15.43 24.92 ± 21.14 

KSS-op 49.78 ± 16.7 66.35 ± 14.10 70.1 ± 14.02 76.90 ± 11.60 73.48 ± 15.23 

KSS-healthy 79.04 ± 16.82 83.8 ± 16.78 81.88 ± 18.56 77.94 ± 19.02 77.88 ± 17.79 

FCTN-op 60.6 ± 16.82 58.8 ± 19.45 73.71 ± 14.87 83.60 ± 16.76 84.20 ± 17.66 

FCTN-healthy 79.41 ± 20.45 82.6 ± 18.83 82.60 ± 15.17 84.6 ± 16.90 83.00 ± 18.26 

EQ5d-Visual 69.88 ± 22.44 73.34 ± 17.75 76.56 ± 16.65 80.1 ± 17.46 74.80 ± 19.78 

VAS=visual analog scale, KSS=knee society score, EQ5d=EuroQol measure, s=healthy knee, raid=stiffness, 
op=operated knee, visual=VAS. A lower WOMAC and VAS scores and higher KSS, FCTN and EQ5d scores 
indicate improvement. For the definition of different scores please see the text and chapter 2. 
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Table  7-3 Differences in clinical scores between Follow up tests and Pre-op test. The statistically 
significant differences (p<0.05) between the groups are shaded in gray . The p-value is provided 

only for non-significant changes 

Clinical Score Pre-op vs. 6 weeks, 
N=52 

Pre-op vs. 3 months, 
N=50 

Pre-op vs. 6 months, 
N=40 

Pre-op vs. 1 year, 
N=32 

VAS-stiffness -2.92±2.44 -3.74±2.28 -4.21±2.87 -3.45±3.2 

VAS-pain -2.09±3.02 -2.7±2.99 -3.47±3.45 -2.98±3.4 

Womac-pain -5.33±4.19 -6.49±3.63 -7.21±3.99 -7.05±5.48 

Womac-stiffness -1.46±1.8 -2.02±1.82 -2.18±2.01 -2.2±2.63 

Womac-function -13.8±13.25 -19.7±12.62 -20.82±13.55 -21.4±16.91 

Womac-total -20.59±17.6 -28.21±17.05 -30.21±18.35 -30.65±24.28 

Womac%-pain -26.63±20.95 -32.44±18.14 -36.03±19.95 -35.25±27.41 

Womac%-stiffness -18.21±22.47 -25.29±22.74 -27.21±25.09 -27.5±32.85 

Womac%-function -20.3±19.49 -28.97±18.56 -30.62±19.92 -31.47±24.86 

Womac%-total -21.44±18.33 -29.38±17.76 -31.46±19.12 -31.93±25.29 

KSS-op 15.33±18.65 20±22.08 28.85±22.98 21.2±21.05 

KSS-healthy 7.52±14.71 2.86±17.21 
p=0.28 

-0.82±17.13 
p=0.78 

0±15.49 
p=1.0 

FCTN-op -2.17±24.55 
p=0.65 12.79±20.07 22.79±20.38 25.5±18.77 

FCTN-healthy 1.63±19.12 
p=0.51 

1.28±21.27 
p=0.69 

2.06±18.91 
p=0.53 

1±15.36 
p=0.77 

EQ5d-Visual 7.18±24.7 
p=0.062 11.2±21.08 11.4±24.01 16.75±21.48 

VAS=visual analog scale, KSS=knee society score, EQ5d=EuroQol measure, s=healthy knee, raid=stiffness, 
op=operated knee, visual=VAS. A lower WOMAC and VAS scores and higher KSS, FCTN and EQ5d scores 
indicate improvement. 
 
The difference between clinical scores of Fixed bearing and Mobile bearing groups at 3-

month, 6-month, and 1-year follow ups are reported in Tables 7-4, 7-5, and 7-6 respec-

tively. The first two columns (cols. 1 and 2) of each table report the scores of each group 

at the corresponding follow up test. The second two columns (cols. 3 and 4) of each table 

report the improvement (difference between the follow up result and baseline value) for 

each group. Significant differences (p<0.05) of each comparison are shaded in gray. 

At 3-month follow up, the VAS-pain score was 2.63 for Fixed bearing and 4.18 for mobile 

bearing groups; the difference between the groups was significant (p=0.029). The other 
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scores did not show statistical differences between the two groups. KSS-healthy which 

expresses the KSS score for the healthy knee has improved for fixed bearing group and 

degraded for mobile bearing group (9.25 vs. -5.21; p=0.0048). This explains also why 

score was not significant when mixing both groups (Table  7-3). 

At 6-month follow up, the FCTN-s score was 79.71 for Fixed bearing and 90.59 for mobile 

bearing groups; the difference between the groups was significant (p=0.038). Also, the 

improvement indicated by KSS-healthy score was 6.71 in Fixed bearing group while a 

degradation of -8.35 was observed for Mobile bearing group; the difference between the 

groups was significant (p=0.0081). The other scores did not show statistical differences 

between the two groups. 

At 1-year follow up, the FCTN-s and EQ5d_Visual scores were significantly different 

between the fixed- and mobile-bearing groups (p=0.042 and p=0.024 respectively). How-

ever, the improvement was higher for fixed bearing group. 
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Table  7-4 Group comparisons (Fixed- and Mobile-bearing) using the clinical scores. The compari-
son is made between the clinical scores at 3 months (cols. 1 and 2), and between the patient 

improvements (difference between 3 months and baseline, cols. 3 and 4). The statistically signifi-
cant differences (p<0.05) between the groups are shaded in gray 

3 Months  Difference 3M - PreOp 
Clinical Score 

Fixed Bearing 
N=27 

Mobile Bearing 
N=23  Fixed Bearing 

N=27 
Mobile Bearing 
N=23 

VAS-stiffness 2.35±2.24                    3.5±2.37  -4.08±2.34   -3.32±2.19 

VAS-pain 2.63±2.16                    4.18±2.38  -3.15±2.39     -2.13±3.6 

Womac-pain 4.79±4.04                    5.95±3.39  -6.92±3.65    -5.95±3.63 

Womac-stiffness 2.63±1.69                      2.89±1.52  -2.21±1.86 -1.79±1.78 

Womac-function 14.96±12.57                  19.79±9.77  -20.63±12.83   -18.53±12.61 

Womac-total 22.38±17.49                  28.63±14  -29.75±17.4   -26.26±16.86 

Womac%-pain 23.96±20.22                  29.74±16.95  -34.58±18.23      -29.74±18.14 

Womac%-stiffness 32.81±21.11                  36.18±19.05  -27.6±23.31      -22.37±22.27 

Womac%-function 22±18.48                       29.1±14.37  -30.33±18.86 -27.24±18.54 

Womac%-total 23.31±18.22                  29.83±14.59  -30.99±18.13     -27.36±17.57 

KSS-op 69.33±13.75                  68.26±14.58  23.38±23.61 15.74±19.76 

KSS-healthy 82.46±20.08                  76.79±19.13  9.25±16.12 -5.21±15.36 

FCTN-op 75.21±18.27                  72.11±10.18  14.17±23.53 11.05±15.05 

FCTN-healthy 81.25±14.54                  81.05±16.63  4.58±22.11 -2.89±19.95 

EQ5d-Visual 79.85±17.14            77.89±11.7       13.81±19.71        7.89±22.81 

VAS=visual analog scale, KSS=knee society score, EQ5d=EuroQol measure, s=healthy knee, raid=stiffness, 
op=operated knee, visual=VAS. A lower WOMAC and VAS scores and higher KSS, FCTN and EQ5d scores 
indicate improvement. 
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Table  7-5 Group comparisons (Fixed- and Mobile-bearing) using the clinical scores. The compari-
son is made between the clinical scores at 6 months (cols. 1 and 2), and between the patient 

improvements (difference between 6 months and baseline, cols. 3 and 4). The statistically signifi-
cant differences (p<0.05) between the groups are shaded in gray 

6 Months  Difference 6M - PreOp 
Clinical Score 

Fixed Bearing 
N=21 

Mobile Bearing 
N=19  Fixed Bearing 

N=21 
Mobile Bearing 
N=19 

VAS-stiffness 1.97±2.08                   2.85±2.04  -4.74±2.92     -3.68±2.81 

VAS-pain 2.29±2.15               2.79±2.39  -3.59±3.24       -3.35±3.74 

Womac-pain 3.94±3.83                     5.35±2.91  -7.76±4.55    -6.65±3.39 

Womac-stiffness 2.35±1.37                      3±1.37  -2.65±2 -1.71±1.96 

Womac-function 12.47±10.28                  16.29±8.57  -20.53±14.53      -21.12±12.92 

Womac-total 18.76±14.68                  24.65±12.32  -30.94±19.64     -29.47±17.55 

Womac%-pain 19.71±19.16                  26.76±14.57  -38.82±22.74     -33.24±16.95 

Womac%-stiffness 29.41±17.08                  37.5±17.12  -33.09±24.98     -21.32±24.51 

Womac%-function 18.34±15.12                  23.96±12.61  -30.19±21.38      -31.06±19 

Womac%-total 19.55±15.29                25.67±12.83    -32.23±20.46      -30.7±18.28 

KSS-op 79.41±10.98                  74.24±11.84  33.76±26.21 23.94±18.74 

KSS-healthy 78.41±21.59                  74.24±21.31  6.71±15.61 -8.35±15.53 

FCTN-op 78.53±18.09                  87.94±11.6     17.06±22.15   28.53±17.21 

FCTN-healthy 79.71±17.72                90.59±10.88  -0.29±21.83        4.41±15.8 

EQ5d-Visual 78.09±22.63                  81.03±16.03      10.88±24.01   11.91±24.74 

VAS=visual analog scale, KSS=knee society score, EQ5d=EuroQol measure, s=healthy knee, raid=stiffness, 
op=operated knee, visual=VAS. A lower WOMAC and VAS scores and higher KSS, FCTN and EQ5d scores 
indicate improvement. 
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Table  7-6 Group comparisons (Fixed- and Mobile-bearing) using the clinical scores. The compari-
son is made between the clinical scores at 1 year (cols. 1 and 2), and between the patient improve-
ments (difference between year and baseline, cols. 3 and 4). The statistically significant differences 

(p<0.05) between the groups are shaded in gray 

1 Year  Difference 1Y – PreOp 
Clinical Score 

Fixed Bearing 
N=17 

Mobile Bearing 
N=15  Fixed Bearing 

N=17 
Mobile Bearing 
N=15 

VAS-stiffness 2.33±2.92                   3.14±2.28  -4.72±4.13      -2.41±1.77 

VAS-pain 2.56±3.21                  2.77±2.62    -4.06±3.57    -2.09±3.14 

Womac-pain 5.33±5.92                 5.18±3.71      -8.11±6.99     -6.18±4.02 

Womac-stiffness 2.67±2.29                   2.73±1.79  -2.89±3.22      -1.64±2.01 

Womac-function 20.33±18.34                 17.09±11.8    -26.11±20.28     -17.55±13.34 

Womac-total 28.33±25.86                  25±17     -37.11±29.75 -25.36±18.55 

Womac%-pain 26.67±29.58                  25.91±18.55  -40.56±34.95     -30.91±20.1 

Womac%-stiffness 33.33±28.64                 34.09±22.42    -36.11±40.24      -20.45±25.17 

Womac%-function 29.9±26.97                  25.13±17.36    -38.4±29.82      -25.8±19.61 

Womac%-total 29.52±26.94                  26.04±17.71  -38.66±30.99     -26.42±19.32 

KSS-op 76.44±16.42                  70.73±15.23    25±26.12   18.09±16.5 

KSS-healthy 76.33±19.07                  81±20.57    4.44±15.92 -3.64±14.85 

FCTN-op 78.33±16.96               90±10         25.56±23.91    25.45±14.57 

FCTN-healthy 76.11±17.28                  90±10.95     3.89±21.03    -1.36±8.97 

EQ5d-Visual 62.5±22.84                    82.73±13.67    22.78±21.95 11.82±20.77 

VAS=visual analog scale, KSS=knee society score, EQ5d=EuroQol measure, s=healthy knee, raid=stiffness, 
op=operated knee, visual=VAS. A lower WOMAC and VAS scores and higher KSS, FCTN and EQ5d scores 
indicate improvement. 
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7.3.2 Gait Parameters 
The spatio-temporal gait parameters and coordination scores measured during gait 

analysis of all patients at normal walking speed are listed in Table  7-7. Correspondingly, 

the variability (CV%) of spatio-temporal gait parameters are summarized in Table  7-8. 

Table  7-9 shows the difference of gait parameters between each follow up test and pre-

operative test for all patients. The significant differences (p<0.05) are shaded in gray. 

Many of the parameters have significantly changed (improved) after 3 months, but there 

were no significant difference between preoperative results and postoperative values at 6 

weeks. For example, the walking speed has significantly increased at 3-month, 6-month, 

and 1-year follow ups. This increase is due to both decreasing the Gait Cycle Time 

(p<0.05) and increasing Stride length (p<0.05). Besides, the range of rotations of treated 

and contralateral sides of knee, shank, and thigh, along with maximum angular veloci-

ties of knee and shank, and coordination score were all significantly increased at 3-

month, 6-month, and 1-year follow ups. 

In the same way, Table  7-10 shows the difference of variability (CV%) of gait parameters 

between follow up tests and pre-operative test for all patients. Similarly, the significant 

differences (p<0.05) are shaded in gray. Many of the variabilities have decreased after 3-

month or 6-month follow ups, but there were no significant difference between preopera-

tive variabilities and postoperative values at 6 weeks. For example, the variabilities of 

stride length, range of rotations of treated and contralateral sides of knee, shank, and 

thigh, and also maximum angular velocities of knee and shank were all significantly 

decreased at 3-month, 6-month, and 1-year follow ups. In addition, the variabilities of 

Gait Cycle Time, and Stance times (normalized to Gait Cycle Time) were significantly 

decreased at 6-month and 1-year follow ups. 
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Table  7-7 Gait parameters of all patients at baseline and different follow up tests at 6 weeks, 3 
months, 6 months and 1 year during walking at normal speed 

Gait Parameter Baseline 
N=54 

6 weeks 
N=52 

3 months 
N=50 

6 months 
N=40 

1 year 
N=32 

Gait Cycle Time  
(GCT), s 1.26±0.16 1.29±0.16 1.21±0.13 1.18±0.1 1.19±0.13 

Treated side Stance, % 60.72±3.64 61±2.49 61.03±2.05 60.81±1.91 61.26±2.37 

Contralateral side Stance, % 63.15±2.44 63.05±2.14 61.93±1.78 61.48±2.3 61.8±1.96 

Double Support,  
DS% 24±3.99 24.06±3.46 22.95±3.53 22.27±3.89 23.08±3.79 

Limp, % 2.58±1.96 2.31±1.15 1.86±0.8 1.65±0.82 1.71±1.12 

Treated side Stride, m 1.12±0.18 1.15±0.18 1.21±0.15 1.25±0.15 1.18±0.17 

Contralateral side Stride, m 1.12±0.18 1.15±0.18 1.21±0.15 1.25±0.15 1.18±0.17 

Speed, m/s 0.91±0.2 0.92±0.2 1.02±0.18 1.07±0.16 1.01±0.21 

Normalized Speed, /s 0.55±0.11 0.55±0.12 0.62±0.1 0.64±0.09 0.61±0.13 

Treated side Shank Peak 
Velocity, PSωT, deg/s 271.59±68.61 267.4±56.68 305.68±52.52 323.85±47.65 311.92±66.04 

Contralateral side Shank 
Peak Velocity, PSωC, deg/s 311.78±52.93 309.75±49.43 333.81±51 337.72±50.72 326.68±61.63 

Treated Knee Peak 
Velocity, PKωT, deg/s 280.53±81.37 277.36±72.59 317.18±70.13 338.63±58.38 327.84±73.66 

Contralateral Knee Peak 
Velocity, PKωC, deg/s 300.64±64.43 299.67±62.73 327.75±66.3 343.74±62.21 327.21±78.98 

Treated side Thigh 
Rotation, RαT, deg 36.83±6.19 39.44±6.16 40.29±5.3 41.88±5.7 39.38±6.58 

Contralateral side Thigh 
Rotation, RαC, deg 36.66±6.16 36.95±5.86 39.12±6.26 40.16±5.86 37.95±6.21 

Treated side Shank 
Rotation, RβT, deg 62.8±11.03 64.08±9.73 68.95±8.49 70.99±8.05 68.57±10.18 

Contralateral side Shank 
Rotation, RβC, deg 66.66±8.86 67.21±8.39 70.76±7.52 71.99±7.46 69.41±9.37 

Treated Knee Rotation,  
RγT, deg 47.78±11.79 46.12±10.64 52.25±9.04 54.61±8.78 54.22±10.09 

Contralateral Knee 
Rotation, RγC, deg 54.16±8.53 55.49±8.44 58.01±7.93 57.63±7.61 56.73±8.97 

Coordination Score 5.22±1.32 6.10±1.02 6.49±0.96 6.6±0.91 6.59±0.84 
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Table  7-8 Variability (CV%) of Spatio-temporal gait parameters of the patients at baseline and 
different follow up tests at 6 weeks, 3 months, 6 months and 1 year during walking at normal 

speed 

Gait Parameter (CV%) Baseline 
N=54 

6 weeks 
N=52 

3 months 
N=50 

6 months 
N=40 

1 year 
N=32 

Gait Cycle Time  
(GCT) 2.6±0.9 2.6±1.2 2.4±0.9 2.3±0.8 2.5±1 

Treated side Stance 2.4±1.3 2.4±2.3 1.9±1.0 1.8±0.7 1.8±0.7 

Contralateral side Stance 2.3±1.9 2.1±1.8 1.9±1.0 1.7±0.7 1.8±0.9 

Double Support (DS) 7.6±4.6 8±14 6.4±2.3 6.3±3.3 6.2±2.8 

Limp 1.50±0.97 1.33±0.56 1.20±0.49 1.09±0.5 1.17±0.64 

Treated side Stride 2.5±1.2 2.3±1.4 2.0±0.7 2±0.8 2.1±0.9 

Contralateral side Stride 2.6±1.5 2.4±1.7 2.1±0.8 2±0.8 2.1±0.9 

Speed 4.1±1.7 4.0±2.5 3.6±1.3 3.3±1 3.8±1.5 

Normalized Speed 4.1±1.7 4.0±2.5 3.6±1.3 3.3±1 3.8±1.5 

Treated side Shank Peak 
Velocity, PSωT 6.2±3.3 5.6±2.6 4.6±1.8 4.1±1.4 4.4±1.4 

Contralateral side Shank 
Peak Velocity, PSωC 5.4±2.3 5.0±3.0 4.4±1.5 4.4±1.6 4.7±2.4 

Treated Knee Peak 
Velocity, PKωT 7.3±4.1 6.6±3.7 5.5±2.5 5.1±1.9 5.6±2.6 

Contralateral Knee Peak 
Velocity, PKωC 6.7±2.9 6.0±2.6 5.3±2.1 4.8±2.2 5.9±3.1 

Treated side Thigh 
Rotation, RαT 3.5±1.4 3.0±1.4 2.7±1.0 2.6±0.9 3±1 

Contralateral side Thigh 
Rotation, RαC 3.6±1.4 3.2±1.5 3.0±1.0 2.9±0.9 3.2±1 

Treated side Shank 
Rotation, RβT 2.9±1.7 2.7±1.4 2.0±0.7 1.9±0.7 2.1±0.9 

Contralateral side Shank 
Rotation, RβC 2.4±1.2 2.2±1.2 2.0±0.9 1.9±0.8 2.1±1.1 

Treated Knee Rotation,  
RγT 5.2±3.9 4.4±2.7 3.1±1.5 3±1 2.9±1 

Contralateral Knee 
Rotation, RγC 3.7±1.8 3.2±1.5 2.7±1.0 2.8±1.3 2.8±1.2 

*Variability of Limp is indicated by “Standard Deviation” instead of “CV%” since its mean is near zero. 
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Table  7-9 Difference in gait parameters between Follow up tests and Pre-op test. The statistically 
significant differences (p<0.05) between the groups are shaded in gray 

Gait Parameter Pre-op vs. 6 weeks, 
N=52 

Pre-op vs. 3 months, 
N=50 

Pre-op vs. 6 months, 
N=40 

Pre-op vs. 1 year, 
N=32 

Gait Cycle Time  
(GCT), s 0.03±0.13 -0.06±0.1 -0.11±0.13 -0.1±0.14 

Treated side Stance, % 0.18±4.16 0.28±3.38 0.44±4.14 0.31±3.82 

Contralateral side Stance, % 0.06±2.48 -1.38±2.73 -1.89±3.26 -1.54±3.32 

Double Support,  
DS% 0.12±3.73 -1.26±3.46 -1.65±4.64 -1.45±4.37 

Limp, % -0.15±2.44 -0.71±2.07 -1.03±2.24 -1.03±2.36 

Treated side Stride, m 0.02±0.12 0.09±0.11 0.13±0.11 0.1±0.14 

Contralateral side Stride, m 0.02±0.12 0.09±0.11 0.13±0.11 0.1±0.14 

Speed, m/s -0.01±0.16 0.11±0.14 0.18±0.14 0.15±0.18 

Normalized Speed, /s 0±0.1 0.07±0.08 0.11±0.09 0.09±0.11 

Treated side Shank Peak Velocity, 
PSωT, deg/s -13.36±68.28 30.58±56.15 59.09±58.07 51.45±61.85 

Contralateral side Shank Peak 
Velocity, PSωC, deg/s -6.14±39.68 19.87±33.18 29.96±31.48 28.16±43.07 

Treated Knee Peak Velocity, PKωT, 
deg/s -13.18±78.16 29.94±66.23 63.65±58.35 56.35±77.73 

Contralateral Knee Peak Velocity, 
PKωC, deg/s -6.96±47.78 22.19±47.33 40.29±47.02 42.12±61.32 

Treated side Thigh Rotation, RαT, 
deg 2.01±5.59 3.32±5.19 5.02±5.97 2.89±6.42 

Contralateral side Thigh Rotation, 
RαC, deg 0.06±4.44 2.32±4.54 3.61±3.87 3.58±5.51 

Treated side Shank Rotation, RβT, 
deg -0.18±9.08 5.26±8.05 8.72±8.28 8.31±9.61 

Contralateral side Shank Rotation, 
RβC, deg -0.08±6.41 3.71±5.2 5.76±5.25 5.15±6.87 

Treated Knee Rotation,  
RγT, deg -3.36±11.93 3.39±10.42 7.23±10.58 8.19±11.9 

Contralateral Knee Rotation, RγC, 
deg 0.79±5.99 3.25±4.79 3.32±4.74 4.25±6.53 

Coordination Score 0.71±1.18 1.19±0.93 1.52±1.21 1.52±1.28 
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Table  7-10 Difference in gait variability between Follow up tests and Pre-Op test. The statistically 
significant differences (p<0.05) between the groups are shaded in gray 

Gait Parameter (CV%) Pre-op vs. 6 weeks, 
N=52 

Pre-op vs. 3 months, 
N=50 

Pre-op vs. 6 months, 
N=40 

Pre-op vs. 1 year, 
N=32 

Gait Cycle Time  0.0±1.4 -0.2±0.9 -0.4±1.0 -0.5±1.7 

Treated side Stance 0.1±2.8 -0.4±1.5 -0.7±1.6 -0.7±1.7 

Contralateral side Stance -0.2±0.9 -0.4±2.0 -0.7±2.1 -0.7±2.3 

Double Support 0.5±11.0 -1±4.9 -1.4±6.2 -1.7±6.0 

Limp -0.13±1.12 -0.27±0.87 -0.41±1.1 -0.46±1.15 

Treated side Stride -0.2±1.7 -0.4±1.1 -0.8±1.2 -0.6±1.0 

Contralateral side Stride -0.2±1.6 -0.5±1.3 -0.8±1.4 -0.8±1.3 

Speed -0.1±2.7 -0.4±1.7 -1.0±1.5 -0.6±2.1 

Normalized Speed -0.1±2.7 -0.4±1.7 -1.0±1.5 -0.6±2.1 

Treated side Shank Peak Velocity, 
PSωT -0.4±4 -1.6±3.1 -2.5±3.2 -2.2±3.6 

Contralateral side Shank Peak 
Velocity, PSωC -0.1±3.2 -1.0±1.9 -1.2±2.1 -0.9±2.6 

Treated Knee Peak Velocity, PKωT -0.2±4.9 -1.7±3.8 -2.6±3.8 -2.1±4.2 

Contralateral Knee Peak Velocity, 
PKωC -0.6±3.1 -1.3±2.5 -2.2±2.7 -1.0±2.0 

Treated side Thigh Rotation, RαT -0.3±2 -0.5±1.3 -0.9±1.5 -0.5±1.4 

Contralateral side Thigh Rotation, 
RαC -0.4±1.9 -0.5±1.4 -0.8±1.6 -0.5±1.4 

Treated side Shank Rotation, RβT -0.2±2.2 -0.7±1.4 -1.1±1.6 -0.8±1.4 

Contralateral side Shank Rotation, 
RβC -0.2±1.5 -0.4±0.8 -0.7±0.8 -0.4±0.8 

Treated Knee Rotation,  
RγT -0.4±4.4 -1.8±3.4 -2.5±4.1 -2.6±4.1 

Contralateral Knee Rotation, RγC -0.3±2.2 -0.9±1.7 -1.1±1.5 -0.8±1.8 
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The difference between gait parameters of fixed bearing and mobile bearing groups at 3 

months, 6 months, and 1 year follow ups are reported in Tables 7-11, 7-12, and 7-13 

respectively. The first two columns (cols. 1 and 2) of each table report the gait parameters 

of each group at the corresponding follow up test. The second two columns (cols. 3 and 4) 

of each table report the improvement (difference between the follow up result and base-

line value) for each group. Significant differences (p<0.05) of each comparison are shaded 

in gray. 

At 3 months follow up, the improvements of Treated Knee Rotation and Treated Knee 

Peak Velocity in fixed bearing group were significantly higher than the corresponding 

improvements in the mobile bearing group (p=0.022 and p=0.045 respectively; see Table 

 7-11, cols. 3 and 4). Additionally, the Treated side Stance in the fixed bearing group was 

significantly less than the values in the mobile bearing group (p=0.033). 

At 6 months follow up, there was no statistically significant difference between the gait 

parameters of the two groups (Table  7-12). However, at 1-year follow up, some parame-

ters were significantly different between the two groups (Table  7-13, cols. 1 and 2). For 

example, the Treated side Stance was 62.20% for Fixed bearing and 60.25% for Mobile 

bearing groups; the difference between the groups was significant (p=0.026). The Limp in 

fixed bearing group (2.43%) was significantly higher than the mobile bearing group 

(0.99%) (p=0.0003). The Stride length of the fixed bearing group (1.10m) was significantly 

less than the mobile bearing group (1.25m), (0.019). Also, the Speed, Contra-lateral side 

shank peak velocity, Treated side thigh rotation, Contra-lateral knee rotation, and Coor-

dination score were significantly different between the two groups (p-values=0.038, 

0.016, 0.027, 0.023, and 0.012 respectively). The results indicate that the group with 

mobile bearing TKA has gained better scores at 1 year follow up test. 
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Table  7-11 Comparison between Fixed bearing and Mobile bearing at 3 months follow up. The 
comparison is made between the gait parameters at 3 months (cols. 1 and 2), and between the 

patient improvements (difference between 3 months and baseline, cols. 3 and 4). The statistically 
significant differences (p<0.05) between the two groups are shaded in gray. 

3 Months  Difference 3M - PreOp 
Gait Parameter 

Fixed Bearing 
N=27 

Mobile Bearing 
N=23  Fixed Bearing 

N=27 
Mobile Bearing 
N=23 

Gait Cycle Time  
(GCT), s 1.22±0.15 1.19±0.13  -0.06±0.10 -0.05±0.10 

Treated side Stance, % 60.95±2.27 61.05±1.69  -0.72±1.9 1.41±4.29 

Contralateral side Stance, % 62.02±1.94 61.75±1.39  -0.94±2.86 -1.88±2.56 

Double Support,  
DS% 22.97±3.87                  22.76±2.72  -1.63±3.61       -0.83±3.31 

Limp, % 1.89±0.75                   1.91±0.88  -0.68±2.04      -0.74±2.16 

Treated side Stride, m 1.21±0.19                     1.21±0.12    0.10±0.09 0.08±0.12 

Contralateral side Stride, m 1.21±0.19                      1.21±0.12  0.1±0.09 0.07±0.12 

Speed, m/s 1.01±0.21                      1.03±0.14  0.11±0.12 0.1±0.16 

Normalized Speed, /s 0.61±0.12                      0.62±0.08  0.07±0.07 0.06±0.1 

Treated side Shank Peak 
Velocity, PSωT, deg/s 301.67±59.55                306.06±49.94  41.91±46.53 17.63±64.16 

Contralateral side Shank Peak 
Velocity, PSωC, deg/s 322.87±58.05                349.43±44.21  22.03±32.57 17.4±34.50 

Treated Knee Peak Velocity, 
PKωT, deg/s 314.82±78.07                314.21±68.16  48.28±50.23 8.99±76.71 

Contralateral Knee Peak 
Velocity, PKωC, deg/s 313.45±75.43                339.22±57.57  24.28±41.79 19.81±53.94 

Treated side Thigh Rotation, 
RαT, deg 40.15±6.45                    40.54±4.44  4.10±3.68 2.42±6.49 

Contralateral side Thigh 
Rotation, RαC, deg 39.32±7.66                    39.27±5.13  2.86±4.21 1.71±4.91 

Treated side Shank Rotation, 
RβT, deg 68.27±10.26                  68.34±6.62  7.06±7.43 3.20±8.40 

Contralateral side Shank 
Rotation, RβC, deg 69.95±9.33                   71.08±5.92    4.17±5.08 3.19±5.41 

Treated Knee Rotation,  
RγT, deg 51.43±9.79                    51.62±8.68  6.66±10.07 -0.34±9.75 

Contralateral Knee Rotation, 
RγC, deg 56.02±9.19                    59.32±6.71    3.19±4.78 3.32±4.93 

Coordination Score 6.38±1.1                        6.62±0.81  1.16±0.83 1.26±1.05 
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Table  7-12 Comparison between Fixed bearing and Mobile bearing at 6 months follow up. The 
comparison is made between the gait parameters at 6 months (cols. 1 and 2), and between the 

patient improvements (difference between 6 months and baseline, cols. 3 and 4). The statistically 
significant differences (p<0.05) between the two groups are shaded in gray. 

6 Months  Difference 6M - PreOp 
Gait Parameter 

Fixed Bearing 
N=21 

Mobile Bearing 
N=19  Fixed Bearing 

N=21 
Mobile Bearing 
N=19 

Gait Cycle Time  
(GCT), s 1.18±0.10               1.15±0.10  -0.10±0.15       -0.12±0.11 

Treated side Stance, % 60.91±2.04                  60.41±1.61  -0.44±2.42       1.43±5.38 

Contralateral side Stance, % 61.46±2.55                    61.20±1.84  -1.38±3.66     -2.46±2.73 

Double Support,  
DS% 22.35±4.23               21.57±3.02     -1.81±4.63      -1.47±4.78 

Limp, % 1.86±0.86                    1.48±0.82  -0.75±2.19     -1.33±2.32 

Treated side Stride, m 1.21±0.19                    1.27±0.11      0.12±0.10 0.14±0.13 

Contralateral side Stride, m 1.21±0.19                      1.27±0.11  0.12±0.10 0.14±0.13 

Speed, m/s 1.03±0.18                     1.11±0.13     0.15±0.12 0.20±0.15 

Normalized Speed, /s 0.63±0.10                      0.67±0.08  0.10±0.08 0.12±0.09 

Treated side Shank Peak 
Velocity, PSωT, deg/s 317.51±56.05                329.15±41.02  60.29±56.32 57.74±61.68 

Contralateral side Shank Peak 
Velocity, PSωC, deg/s 327.15±53.78                354.44±49.15      29.97±31.2 29.95±32.75 

Treated Knee Peak Velocity, 
PKωT, deg/s 335.55±61.22                341.41±59.06      68.45±59.7 58.29±58.14 

Contralateral Knee Peak 
Velocity, PKωC, deg/s 334.17±61.44                354.61±67.42    38.85±47.4    41.9±47.99 

Treated side Thigh Rotation, 
RαT, deg 40.88±7.06                    42.73±4.49  5.04±4.68 5.00±7.30 

Contralateral side Thigh 
Rotation, RαC, deg 39.59±6.76                    40.48±5.19  3.56±4.11 3.67±3.71 

Treated side Shank Rotation, 
RβT, deg 69.70±9.69                    71.26±6.51    9.22±7.87 8.17±8.92 

Contralateral side Shank 
Rotation, RβC, deg 70.85±9.37                    72.79±5.76      5.95±5.68 5.56±4.90 

Treated Knee Rotation,  
RγT, deg 53.1±9.12                      54.91±8.54  9.42±11.92 4.78±8.55 

Contralateral Knee Rotation, 
RγC, deg 56.06±9.00           58.42±6.22        3.59±5.02         3.02±4.53 

Coordination Score 6.41±0.88                6.81±0.93  1.44±1.24      1.60±1.21 
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Table  7-13 Comparison between Fixed bearing and Mobile bearing at 1 year follow up. The com-
parison is made between the gait parameters at 1 year (cols. 1 and 2), and between the patient 

improvements (difference between 1 year and baseline, cols. 3 and 4). The statistically significant 
differences (p<0.05) between the two groups are shaded in gray. 

1 Year  Difference 1Y - PreOp 
Gait Parameter 

Fixed Bearing 
N=17 

Mobile Bearing 
N=15  Fixed Bearing 

N=17 
Mobile Bearing 
N=15 

Gait Cycle Time  
(GCT), s 1.21±0.12                1.17±0.16  -0.10±0.17        -0.09±0.1 

Treated side Stance, % 62.2±2.57                     60.25±1.79    0.35±2.43 0.26±5.01 

Contralateral side Stance, % 61.99±2.18                  61.45±1.44  -1.45±4.06      -1.63±2.45 

Double Support,  
DS% 24.23±3.95                21.70±2.93  -1.07±5.21       -1.86±3.39 

Limp, % 2.43±1.22                   0.99±0.44  -0.63±2.55     -1.45±2.14 

Treated side Stride, m 1.10±0.19                      1.25±0.11  0.11±0.16 0.10±0.12 

Contralateral side Stride, m 1.10±0.19                      1.25±0.11  0.11±0.16 0.10±0.12 

Speed, m/s 0.92±0.22                      1.09±0.18  0.13±0.19 0.16±0.17 

Normalized Speed, /s 0.57±0.14                      0.65±0.11  0.09±0.12 0.09±0.10 

Treated side Shank Peak 
Velocity, PSωT, deg/s 296.34±70.47                325.86±66.06    66.36±67.69 35.48±52.66 

Contralateral side Shank Peak 
Velocity, PSωC, deg/s 299.56±66.79                355.86±49.6    23.98±44.82 32.64±42.31 

Treated Knee Peak Velocity, 
PKωT, deg/s 309.16±85.8                  343.26±59.63  76.53±80.67 34.74±70.94 

Contralateral Knee Peak 
Velocity, PKωC, deg/s 300.83±89.88                355.68±63.2  43.68±73.33 40.45±47.98 

Treated side Thigh Rotation, 
RαT, deg 36.35±7.43                   41.72±4.52     3.69±6.98   2.03±5.89 

Contralateral side Thigh 
Rotation, RαC, deg 36.07±7.43                  39.61±4.76  3.98±6.80    3.16±3.91 

Treated side Shank Rotation, 
RβT, deg 65.35±12.81                  70.95±6.74       9.99±11.18 6.51±7.58 

Contralateral side Shank 
Rotation, RβC, deg 65.69±12.03            72.76±4.82       5.28±9.1        5.01±3.51 

Treated Knee Rotation,  
RγT, deg 51.73±11.20            55.96±8.69         12.24±13.94       3.84±7.51 

Contralateral Knee Rotation, 
RγC, deg 52.78±11.29            60.46±4.01       4.13±8.23         4.37±4.36 

Coordination Score 6.18±0.83                      6.94±0.69  1.60±1.64 1.44±0.79 
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7.4 Discussion and Conclusion 
In this study, the gait analysis system was used for patients who underwent TKA. The 

gait parameters were obtained in dynamic use of the knee, when walking freely in a 

corridor. 

The results indicated that gait functions in all of the patients are improved considerably 

after surgery. The patients had the ability to increase their speed by increasing stride 

length and cadence. Significant increases in range of rotations of treated and contralat-

eral sides of knee, shank, and thigh, along with maximum angular velocities of knee and 

shank were seen. Moreover, the patients were able to achieve significant increases in 

coordination score. On the other hand, many of the variabilities of gait parameters have 

decreased after surgery. For example, the variabilities of stride length, range of rotations 

of treated and contralateral sides of knee, shank, and thigh, maximum angular velocities 

of knee and shank, Gait Cycle Time, and Stance times were all significantly decreased 

after 3 (or 6) months. As a result, functional improvement was associated with an in-

crease in walking performance (higher speed, higher range of rotations), an increase of 

walking regularity (lower gait variability) and a better multi-joint coordination. In addi-

tion, the Peak Velocities and Rotations of both knees (treated and contralateral) had the 

same value and variability after 1 year (Tables 7-7 and 7-8). This implies that the pa-

tients could walk more symmetrically. 

Comparing the results of Fixed- and Mobile-bearing TKA, the improvements of Treated 

knee rotation, Treated knee Peak Velocity, and Treated side stance were significantly 

different between the two groups at 3 months follow up. The results indicated that the 

Fixed bearing TKA performed better than Mobile bearing TKA in the early period (3 

months). However, after 6 months, the Mobile bearing performed as well as the Fixed 

bearing TKA, and the tendency grows in benefit of mobile bearing after 1 year. Neverthe-

less, the study is still going on and these results should be confirmed when all patients 

will be at least at one year of follow-up. 

The clinical scores (excluding KSS-healthy and FCTN-healthy scores which are related to 

Contralateral knee) that could detect changes between fixed bearing and mobile bearing 

groups were VAS-Pain at 3 months, and EQ5d-Visual at 1 year. 

In summary, we propose the following pertinent parameters (as well as their variabilities) 

for outcome evaluation: Gait Cycle Time, Stride length, Speed, Treated and Contralateral 

Knee Peak Velocities and Rotations, and Coordination Score. 

We provided objective criteria, using ambulatory gait analysis, for assessing functional 

recovery following TKA procedure. These results cannot be obtained through other 
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clinical evaluations, and complement the clinical scores by a useful objective dynamic 

evaluation.
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Chapter 8  Conclusions and Future Research 

8.1 Contributions of Dissertation 
The primary objective of this thesis was to design and validate a new gait analysis system 

that can be used for clinical applications. Through an orthopedic application (TKA) the 

emphasis was put on kinematic parameters affected by locomotion disorders in order to 

provide an objective outcome evaluation based on these parameters. The main results 

and contributions of this thesis can be summarized as follows: 

1. Ambulatory recording system: A specific sensor based motion recorder system 

was designed. The system is a portable ambulatory device with the following de-

sign criteria: lightweight, easily mountable, and can be used for long term moni-

toring without hindrance to natural activities. The human movements are 

captured with five kinematic sensors using accelerometers and gyroscopes. A 

minimal sensor configuration was proposed with one sensor module mounted on 

each segment (thighs, shanks, and sacrum). Each sensor module included 2 or-

thogonal accelerometers and a gyroscope. 

2. A new method to accurate measurement of uniaxial joint angles based on a com-

bination of accelerometers and gyroscopes was proposed. In the proposed tech-

nique, joint angles were found without the need for integration, so absolute angles 

could be obtained which were free from any source of drift. Moreover, the algo-

rithm is able to provide joint angles in real-time. The method was validated by 

measuring knee flexion-extension angles of eight subjects, walking at three differ-

ent speeds, and comparing the results with a reference motion measurement sys-

tem. The results were very close to those of the reference system presenting very 

small errors (rms=1.3, mean=0.2, SD=1.1 deg) and excellent correlation coefficient 

(0.997). The results of this study has been published in a journal article 

(Dejnabadi et al. 2005a) and has been presented in two conferences (Dejnabadi et 

al. 2002; Dejnabadi et al. 2004). 

3. A new method of estimating lower limbs orientations was proposed. The method 

considered human locomotion and biomechanical constraints, and provided a so-

lution to fusing the data of gyroscopes and accelerometers that yielded stable and 
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drift-free estimates of segment orientation. The method was validated by measur-

ing lower limb motions (Shank and Thigh orientations in sagittal plane) of eight 

subjects, walking at three different speeds, and comparing the results with a ref-

erence motion measurement system. The results were very close to those of the 

reference system presenting very small errors (Shank: rms=1.0, Thigh: rms=1.6 

deg) and excellent correlation coefficients (Shank: r=0.999, Thigh: r=0.998). The 

results of this study is published in a journal article (Dejnabadi et al. 2006) and 

has been presented in two conferences (Dejnabadi et al. 2005c, d). 

4. A gait analysis tool using the ambulatory system was developed. Outputs from the 

software included spatio-temporal parameters of gait, kinematic diagrams, and 

visualization of patients’ gait at various conditions. The spatio-temporal parame-

ters provide a tool for objective outcome measures to quantify the expected gait 

improvement of patients. The kinematic diagrams provide additional information 

for representing a segment or joint movement and its variability in continuous 

format. The graphs help clinician qualitatively assess time evolution of lower limb 

movements, variability at different phases of gait, symmetry, and ranges of rota-

tions. Finally, the visualization tool, which were developed in collaboration with 

Computer Vision Laboratory of EPFL (CVLab), provide additional tool to see the 

time evolution of lower limb movements. It gives the physician visually appealing 

and easy to interpret information about how the patient performs several activi-

ties such as walking at different speeds or climbing ramps and stairs. In addition, 

it allows evaluating the progression of a patient at different follow up tests by su-

perposing several skeletons. The results of spatio-temporal gait analysis was pub-

lished in Gait & Posture (Aminian et al. 2004c) and Clinical Rehabilitation 

(Lindemann et al. 2006), where a comparison with questionnaire-based evaluation 

is also provided. The results related to visualization is published in IEEE journal 

(Dejnabadi et al. 2006) and presented in two conferences (Casanova et al. 2004; 

Dejnabadi et al. 2005d). 

5. A new method for quantitative analysis of inter-joint coordination during gait was 

proposed. We provided a general model to capture the whole dynamics of the 

lower limbs movement and showed the kinematic synergies at various walking 

speeds. We indicated how an integration of different analysis tools such as Har-

monic Analysis, Principal Components Analysis, and Artificial Neural Network 

helped overcome high-dimensionality, temporal dependence, and nonlinear rela-

tionships of the gait patterns. The trained model was fed with only 2 control pa-

rameters (cadence and stride length) at each gait cycle, and predicted the 
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corresponding gait waveforms. Considering the differences between predicted and 

actual gait waveforms, we defined a coordination score at various walking speeds 

which ranged between 0 and 10. The scores determined the overall coordination 

as well as contribution of each joint to the total coordination. In the first phase, 

we applied the model on 8 patients with knee arthroplasty at different follow ups 

as well as 8 healthy subjects, walking at 3 different speeds. The results showed 

that treatments and rehabilitation programs improve the gait coordination in in-

dividuals with knee arthroplasty. For instance, considering the patients’ scores at 

normal speeds, the mean value of scores at baseline was 4.4, which significantly 

increased to 5.7 (p=0.008) and 6.6 (p=0.008) at 6 weeks and 6 months follow up 

tests respectively. The results of this study has been submitted to an IEEE jour-

nal (Dejnabadi et al. Submitted). 

6. A clinical protocol was conducted in which gait analysis and knee scoring system 

results of 54 patients were evaluated. We conducted a randomized controlled 

study to assess total knee arthroplasty outcome between patients with fixed bear-

ing and mobile bearing tibial plates of implants. Preoperative results were com-

pared with postoperative (6 weeks, 3 months, 6 months, and 1 year) results. 

Various statistical analyses were done to compare the outcomes of the two groups 

at different follow up tests. The results indicated that fixed bearing TKA performed 

better than mobile bearing TKA in the early period (3 months). However, after 6 

months the mobile bearing performed as well as the Fixed bearing TKA. In gen-

eral, the results indicated that gait function in all of the patients can be improved 

considerably after surgery. In summary, we proposed the following pertinent pa-

rameters (as well as their variabilities) for outcome evaluation: Gait Cycle Time, 

Stride length, Speed, Treated and Contralateral Knee Peak Velocities and Rota-

tions, and Coordination Score. We provided objective criteria, using ambulatory 

gait analysis, for assessing functional recovery following TKA procedure. These re-

sults cannot be obtained through other clinical evaluations, and complement the 

clinical scores by a useful objective dynamic evaluation. The results of is pre-

sented in several conferences (Dejnabadi et al. 2005d; Jolles et al. 2006; Jolles et 

al. 2004; Jolles et al. 2005a, b), and an article is under submission. 

8.2 Perspectives and Future Research 
This thesis can be extended to the following directions: 
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8.2.1 Movement analysis and visualization 
The method of finding uniaxial joint angles, presented in chapter 3, is real time and can 

also be used for other joints. So a whole skeleton visualization is possible which is 

applicable in virtual reality. 

Moreover, a potential improvement of the model would be to extend the principle in 3D by 

employing 3D accelerometers and 3D gyroscopes on each segment. The technique of 

finding uniaxial joint angles, presented in chapter 3, was based on estimating the accel-

eration of the joint Center of Rotation (COR) by placing a pair of virtual sensors on the 

adjacent segments at the COR. The model and the equations can be modified to shift the 

3D sensors to the COR and find 3D angles using orientations of the 3D virtual acceler-

ometers on the COR. 

Furthermore, the kinematic sensors can be merged with other techniques such as video 

data in order to improve the performance of both systems and extend to 3D as well. In 

our earlier studies, we were working on recovering motion in the frontal plane by combin-

ing the information provided by kinematic sensors with image-data from inexpensive and 

commercially available synchronized cameras (Casanova et al. 2004). This extended 

approach should let us incorporate full 3-D motion into gait analysis and will be the 

subject of future work. 

8.2.2 Gait analysis 
The gait analysis program, explained in chapter 5, can be used for assessment of other 

gait pathologies. Future extension of the algorithm should focus to autoatically detect 

different types of walking  and activities of a patient at various conditions and focus on 

long-term outcomes.  

We conducted a clinical protocol in which the patients were asked to perform 15 trials at 

different conditions such as walking at different speeds, climbing and descending stairs, 

walking on ramp, and sit-stand-sit movements. However, in chapter 7 we only analyzed 

and reported the results of walking at normal speed (trial 1). Future works should exam-

ine the outcomes of patients at other conditions. Accordingly, new models should be 

developed to define quantitative scores for stair climbing and descending, and sit-stand-

sit movements. 

8.2.3 Orthopedics and rehabilitation 
The method of finding knee joint angle, presented in chapter 3, assumed the joint Center 

of Rotation (COR) as a fixed position point. However, the COR changes slightly depending 
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on the knee angle. An improvement of the model would be to consider the instant (dy-

namic) COR of knee joint during flexion-extension. 

In chapter 7 we applied classical statistical methods to find significant parameters that 

discriminate the two groups of patients with fixed bearing and mobile bearing TKA. 

However, advanced statistical methods could better model the datasets and show pa-

tients’ improvements. For example, considering age, gender and weight in a multivariate 

model would be helpful. Additionally, it is necessary to build a normative database by 

including a large group of healthy people in the clinical protocol. Then compare each 

patient with its (interpolated) matched age, gender and weight healthy subject. This 

comparison would give the information that how much a patient could be expected to (or 

has the potential to) improve, and then normalize his/her scores to this maximally 

expected improvement.  

In the clinical protocol, predefined and controlled activities of patients were assessed. 

Future works should examine the gait and other activities of patients during freely daily 

activities in long term. In general, the proposed clinical protocol can be used for other 

orthopedic and rehabilitation programs related to lower extremity treatments. 

8.2.4 Neuroscience 
We applied the method of coordination analysis, presented in chapter 6, on patients with 

knee arthroplasty. However, the method can be used for coordination assessment of 

other gait disorders, especially neurological disorders such as Parkinson’s disease. 
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