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Abstract

Aliasing in images is often considered as a nuisance. Artificial low frequency
patterns and jagged edges appear when an image is sampled at a too low
frequency. However, aliasing also conveys useful information about the high
frequency content of the image, which is exploited in super-resolution appli-
cations. We use a set of input images of the same scene to extract such high
frequency information and create a higher resolution aliasing-free image. Typ-
ically, there is a small shift or more complex motion between the different
images, such that they contain slightly different information about the scene.

Super-resolution image reconstruction can be formulated as a multichannel
sampling problem with unknown offsets. This results in a set of equations
that are linear in the unknown signal coefficients but nonlinear in the offsets.
This thesis concentrates on the computation of these offsets, as they are an
essential prerequisite for an accurate high resolution reconstruction. If a part
of the image spectra is free of aliasing, the planar shift and rotation parameters
can be computed using only this low frequency information. In such a case,
the images can be registered pairwise to a reference image. Such a method is
not applicable if the images are undersampled by a factor of two or larger. A
higher number of images needs to be registered jointly. Two subspace methods
are discussed for such highly aliased images. The first approach is based on
a Fourier description of the aliased signals as a sum of overlapping parts of
the spectrum. It uses a rank condition to find the correct offsets. The second
one uses a more general expansion in an arbitrary Hilbert space to compute
the signal offsets. The sampled signal is represented as a linear combination
of sampled basis functions. The offsets are computed by projecting the signal
onto varying subspaces.

Under certain conditions, in particular for bandlimited signals, the nonlinear
super-resolution equations can be written as a set of polynomial equations.
Using Buchberger’s algorithm, the solution can then be computed as a Gröbner
basis for the corresponding polynomial ideal. After a description of a standard
algorithm, adaptations are made for the use with noisy measurements.

The techniques presented in this thesis are tested in simulations and prac-
tical experiments. The experiments are performed on sets of real images taken
with a digital camera. The results show the validity of the algorithms: registra-
tion parameters are computed with subpixel precision, and aliasing is accurately
removed from the resulting high resolution image.

This thesis is produced according to the concepts of reproducible research.
All the results and examples used in this thesis are reproducible using the code
and data available online.
Keywords: registration, aliasing, super-resolution, sampling.
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Résumé

En imagerie numérique, le repliement spectral est souvent considéré comme un défaut.
Quand une image est échantillonnée à une fréquence trop basse, des basses fréquences
artificielles et des bords en escalier apparaissent. Cependant, le repliement spectral
contient de l’information utile sur le contenu à haute fréquence de l’image, qui peut
être exploité dans les applications de super-résolution. Une série d’images de la même
scène est utilisée pour extraire cette information à haute fréquence et construire une
image à résolution plus élevée, ne contenant plus de repliement spectral. Typique-
ment, les images diffèrent par un léger décalage ou un mouvement plus complexe et
présentent des informations légèrement différentes sur la scène.

La reconstruction d’images super-résolution peut être formulée comme un pro-
blème d’échantillonnage multi-canaux avec décalages inconnus. Cette formulation
fournit une série d’équations linéaires pour les coefficients inconnus du signal mais non
linéaires pour les décalages. Cette thèse se concentre sur le calcul de ces décalages, car
ils sont nécessaires pour une précise reconstruction à haute résolution. Si une partie du
spectre de l’image ne contient pas de repliement spectral, les paramètres de décalage
et de rotation planaires peuvent être obtenus en utilisant uniquement l’information à
basse fréquence. Dans un tel cas, les images peuvent être alignées deux par deux par
rapport à une image de référence. Une telle méthode n’est pas utilisable si les images
sont sous-échantillonnées par un facteur de deux ou plus. Un plus grand nombre
d’images doivent être alignées simultanément. Deux méthodes sont présentées qui
utilisent des sous-espaces pour aligner ces images fortement sous-échantillonnées. La
première méthode est fondée sur une description du signal sous-échantillonné dans
la base de Fourier comme une somme de différentes parties superposées du spectre.
Elle utilise le rang d’une matrice pour trouver les paramètres. La deuxième méthode
utilise une expansion du signal dans un espace de Hilbert pour calculer les paramètres
d’alignement. Le signal échantillonné est représenté comme une combinaison linéaire
des fonctions de base elles aussi échantillonnées. Les paramètres d’alignement sont
calculés en projetant le signal sur des sous-espaces.

Sous certaines conditions, les équations non-linéaires de super-résolution peuvent
être écrites comme une série d’équations polynomiales. La solution peut alors être
obtenue avec l’algorithme de Buchberger qui calcule une base de Gröbner pour l’idéal
polynomial correspondant à ces équations. Après la description de l’algorithme de
base, des adaptations sont proposées pour son utilisation lorsque les mesures sont
bruitées.

Les techniques présentées dans cette thèse ont été testées par simulations et expé-
riences pratiques faites sur des séries d’images prises avec un appareil photographique
numérique. Les résultats prouvent la validité des algorithmes: les paramètres d’aligne-
ment sont calculés avec une précision sous-pixélique, et l’image reconstruite à haute
résolution ne contient plus de repliement spectral.

Cette thèse est générée selon les principes de la recherche reproductible. Tous

les résultats et les exemples dans cette thèse sont reproductibles avec le code et les

données disponibles en ligne.

Mots-clés: alignement, repliement spectral, super-résolution, échantillonnage.
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Martin Vetterli for their support. They introduced me to signal and image
processing during my exchange year at EPFL, and gave me the opportunity to
do a Ph.D. in their lab. I would like to thank them for the great freedom they
gave me in choosing research topics, and for the numerous inspiring discussions
and support. I also appreciate very much the help from Dr. Luciano Sbaiz in
the increasingly mathematical topics of my thesis. My research was funded by
the National Competence Center in Research on Mobile Information and Com-
munication Systems (NCCR-MICS), a center supported by the Swiss National
Science Foundation under grant number 5005-67322.

I would also like to thank the members of my jury, Prof. Peyman Milanfar,
Prof. Emre Telatar, Prof. Pierre Vandergheynst, and Prof. Josiane Zerubia, for
being on my thesis committee, and for reading and commenting this thesis.

Next, I would like to thank Dr. Paul Hubel, and the entire image processing
team at Foveon for giving me the opportunity to do an internship in their group.
This was a very enriching experience, and I am very grateful for it.

I also thank Dr. Urs Schmid from Leica Microsystems AG, and Rudy Gut-
tosch from Foveon for the cameras they provided for my various experiments.
Dr. Sina Farsiu and Prof. Peyman Milanfar helped me a lot by giving me their
super-resolution software to experiment and compare my work with.

I am very grateful to all my LCAV colleagues for their friendship and sup-
port. And last but not least, I would like to thank my family and friends in
Belgium and at various other places around the world. I thank my parents, my
brother and my sister, for their support in everything I undertake. Finally, I
am especially thankful to Els, for her unconditional support and love.

ix



x Acknowledgments



Frequently Used Terms,
Abbreviations, and Notation

Terms and abbreviations

megapixel: one million (106) pixels

A/D: analog to digital;

CCD: charge coupled device (type of digital camera sensor);

CFA: color filter array;

CMOS: complementary metal oxide semiconductor (type of digital camera
sensor);

ISO: International Organization for Standardization;

MTF: modulation transfer function;

OECF: opto-electronic conversion function;

MSE: mean squared error;

PSF: point spread function;

SFR: spatial frequency response.

Notation and variables

vectors are bold lowercase letters (y, α, etc);
matrices are bold uppercase letters (D,F, etc);

⊗ denotes the Kronecker product;
B basis for the Hilbert space H;
d degree of a polynomial;
Dtm

L × L diagonal matrix with elements Dtm
(l, l) = zl

m;
D′

tm
N × N diagonal matrix with elements D′

tm
(l, l) = zl

m;
D′

tm
is the central N × N part of Dtm

;
f(t) continuous-time signal;
f(x) continuous-space image;
F L × N discrete Fourier transform matrix

xi



xii Frequently Used Terms, Abbreviations, and Notation

with elements F(k, l) = e−j2πkl/N ;
fl l-th row of the matrix F;
FN N × N discrete Fourier transform matrix

with elements FN (k, l) = e−j2πkl/N ;
G Gröbner basis;
H(α) frequency content of an image as a function of the angle α;
H Hilbert space to which f(t) belongs;
I polynomial ideal;
K maximum Fourier expansion coefficient

(K = (L − 1)/2, with L odd);
L number of unknown expansion coefficients αl;
M number of sets of samples;
N number of samples in each set ym;
p polynomial;
PA projection onto the space spanned by A;
Q number of error evaluations in a minimization algorithm;
r remainder in (polynomial) division;
R rotation matrix (with rotation angle θm);
S number of overlapping parts of the Fourier spectrum

(S = ⌈L/N⌉);
S(p0, p1) S-polynomial of the polynomials p0 and p1;
Si subset of the total set of polynomial equations;
t continuous time variable ;
tm offset of the m-th set of samples with respect to the first one;
t length M vector of the offsets tm between the different sets

of samples;
T set of sampling times;

u two-dimensional continuous frequency vector
(

uh uv

)T
in

cartesian coordinates or
(

ur uθ

)T
in polar coordinates;

V polynomial variety;
Vl subspace of the MN -dimensional complex vector space CMN ;

W principal N -th root of unity, ej2π/N ;
x vector of unknowns in a polynomial;

x two-dimensional coordinate vector (x =
(

xh xv

)T
);

xm two-dimensional offset vector of the m-th image with respect

to the first one (xm =
(

xm,h xm,v

)T
);

ym length N vector with the m-th set of samples;
Ym length N vector with the DFT of the m-th set of samples;
YD

t
matrix containing the modified Fourier transforms of all the

sets of samples (YD
t =

(

Y0 D′−1
t1 Y1 · · · D′−1

tM−1
YM−1

)

);

zm offset-dependent variable in a Fourier basis (zm = ej2πtm/N );
α length L vector of the expansion coefficients αl to be

reconstructed;
αl l-th expansion coefficient of f(t) in the basis B corresponding
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to ϕl(t);
θ angle (degrees);
θm rotation angle between the first image (reference) and the

m-th image;
ρ image radius, or half the image size;
σS+1(Y

D
t̂

) S + 1-th singular value of the matrix YD
t̂

;

ϕl(t) basis function for the Hilbert space H;
Φtm

basis matrix sampled with offset tm;
Φt combined basis matrix with the different offsets t;

φl
t

l-th column of the matrix Φt.

Fourier Transforms

Fourier transform (FT) The (continuous time) Fourier transform is defined
for continuous signals f(t) as

F (u) =

∫ ∞

−∞
f(t)e−j2πutdt.

Its inverse is called the inverse Fourier transform (IFT), and can be written as

f(t) =
1

2π

∫ ∞

−∞
F (u)ej2πutdu.

Fourier series (FS) The (continuous time) Fourier series is defined for peri-
odic, continuous signals f(t) with period T as

Y (k) =
1

T

∫ T

0

f(t)e−j2πkt/T , k = −∞, ...,∞.

Its inverse is called the inverse Fourier series (IFS):

f(t) =
∞
∑

k=−∞
Y (k)ej2πkt/T .

Discrete Fourier transform (DFT) The discrete Fourier transform is defined
for finite length, discrete time signals y(n) as

Y (k) =

N−1
∑

n=0

y(n)W−kn, k = 0, ..., N − 1,

with W = ej2π/N . This can also be written in matrix notation as

Y = FNy,

with FN (k, l) = W−kl. A fast implementation is given by the fast Fourier
transform (FFT) algorithm. Its inverse is called the inverse discrete Fourier
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transform (IDFT):

y(n) =
1

N

N−1
∑

k=0

Y (k)W kn,

or in matrix notation
y = F∗

NY,

where F∗
N denotes the Hermitian transpose of FN .



Chapter 1

Introduction

Over the past ten years, digital cameras have gone through a fast evolution
towards extremely compact models, containing sensors with a steadily increas-
ing number of pixels. From about 0.3 megapixels (million pixels) in 1993, the
number of pixels on the CCD or CMOS sensor in a digital camera has increased
to 39 megapixels in some of the latest professional models. This pixel count
has become the major selling argument for the different camera manufacturers.

The number of pixels in a digital image is also often referred to as the res-
olution of an image. The ever-increasing demand for more pixels, or higher
resolution, in combination with the availability of more and more computa-
tional power, has generated a large interest in super-resolution imaging. The
goal in super-resolution imaging is to take multiple ‘low’ resolution images of
the same scene, and combine them to generate a ‘higher’ resolution image. In
this way, a photographer could for example take a series of four images using
a four megapixel camera, and combine them to obtain an image as if it would
be taken with a sixteen megapixel camera. And who would not be interested
in such a feature?

In practice, such a combination of information from multiple images is
not trivial. There are two main problems that need to be solved in a super-
resolution algorithm. First, all the input images need to be correctly aligned
with each other on a common grid. Next, an accurate, sharp image has to
be reconstructed from the gathered information. If one of these two steps is
not well done, the resulting image is not good, and no gain in resolution is
obtained. In this thesis, we mainly address the first problem, more specifically
the alignment of aliased input images. An image is aliased if there are not
enough sampling points (pixels) to represent the high frequencies in the scene.
This typically results in artificial patterns or jagged edges in the image. If the
images are not too severely aliased, we will show that it is possible to use the
aliasing-free part of the images to align them one by one to a reference im-
age. If there is severe aliasing, the different images need to be aligned jointly.
In that case, the alignment is a highly nonlinear problem. Multiple solution
methods for such an alignment are proposed. The presented image alignment
methods can be applied to different application domains, such as consumer
digital cameras, satellite imaging, etc.

1



2 Chapter 1.

1.1 What is resolution?

First of all, we need to define what we understand by the term ‘resolution’. If
we take a single image, and multiply its size by four by repeating each pixel
value four times, do we gain resolution? On the other hand, let us apply a
blurring filter to an image. The resulting image still has the same size, but
does it have the same resolution?

The above examples show that there is more to resolution than just counting
the number of pixels that are present in the image. It is related to the ability
to distinguish details in the image, in other words, to its resolving power.

The International Organization for Standardization (ISO) has described a
precise method to measure the resolution of a digital camera [45]. The vi-
sual resolution can be measured as the highest frequency pattern of black and
white lines where the individual black and white lines can still be visually
distinguished in the image. It is expressed in line widths per picture height
(LW/PH). The standard also describes a method to compute the spatial fre-
quency response (SFR) of a digital camera. The spatial frequency response is
the digital imaging equivalent of the modulation transfer function (MTF) used
in analog imaging systems. It describes the variation between the maximum
and minimum values that is visible as a function of the spatial frequency (the
number of black and white lines per millimeter). It can be measured using an
image of a slanted black and white edge, and is expressed in relative spatial
frequencies (relative to the sampling frequency), line widths per picture height,
or cycles per millimeter on the image sensor. An example of an SFR and the
resolution chart that is used in the ISO standard are shown in Figure 1.1.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative spatial frequency

S
F
R

(a) (b)

Figure 1.1: Spatial frequency response (SFR). (a) Example of an SFR for a digital
camera. A relative spatial frequency of 1 corresponds to the sampling frequency,
to 1512 LW/PH, and to 55 cycles/mm on the image sensor. (b) ISO resolution
chart used to compute the SFR of a digital camera.

Thus, we can define resolution as [45]:

Definition 1.1.1 (Resolution). Optical resolution is a measure of the ability
of a camera system, or a component of a camera system, to depict picture
detail. Image resolution is a measure of the amount of detail that is visible in
an image.



1.2. Super-resolution imaging 3

1.2 Super-resolution imaging

If we want to increase the resolution of an image using super-resolution tech-
niques, we essentially want to be able to distinguish more details in the final
image. By adding images of the same scene, we try to add information to the
reproduction. Typically this information is high frequency content of the scene.

There are different ways to add such high frequency information to an image.
If we know that the image is of a certain type (faces, text, drawings, etc.),
we can use that knowledge to add frequency content. Such an approach is
called a model-based approach. For example, if we know that the images
represent printed text, we can try to recognize characters, and replace them
by sharp, high quality characters. The knowledge of the image model allows
us to compute high frequency information. In this thesis, we will investigate
abstract approaches to super-resolution. They use other information than a
precise image model, and are therefore applicable to more general types of
images. More specifically, we will compute the high frequency information
from the aliasing that is present in the images.

Super-resolution techniques use a number of low resolution input images to
generate a high resolution image. This assumes that there are some (small)
differences between the input images. Most often, these differences are caused
by small camera movements. In an ideal situation, we could assume that of
four images taken, the second to fourth image have a horizontal, vertical, and
diagonal shift of half a pixel compared to the first image. The pixels from the
first image can then be interleaved with pixels from the three other images, and
a double resolution image (in both dimensions) is obtained (see Figure 1.2).

Figure 1.2: Ideal super-resolution setup. Four images are taken with relative
shifts of half a pixel in horizontal, vertical, and diagonal directions (left). Their
pixels can then be interleaved to generate a double resolution image (right).

In general, however, the shifts between the images are not exactly half a
pixel, and can take any arbitrary value. Moreover, in most applications the
motion parameters are unknown, and need to be computed first. In the next
chapters, we will present methods to compute these motion parameters.

1.3 Application domains

Super-resolution techniques can be applied in various domains. As described
above, in consumer imaging, one could imagine a digital camera that takes a
burst of pictures instead of a single picture. From these images, which have



4 Chapter 1.

typically small relative shifts due to the shaking of the user’s hands, a high res-
olution image can be reconstructed. Similarly, in satellite or spatial imaging, a
set of satellite images could be combined to display fine details that are not dis-
tinguishable in any of the input images [3]. Super-resolution methods can also
be used to create high resolution still pictures or video from video sequences. In
surveillance cameras, additional details can be revealed by combining multiple
video frames to create a single high resolution image. The same techniques
can also be applied to improve the resolution of existing (low resolution) video
content for use in high definition television sets.

A similar approach for one-dimensional signals is used in high rate analog-
to-digital (A/D) converters. If the rate at which the analog signal has to be
sampled becomes too high, it is physically very difficult to build such converters.
Instead of a single converter at a high rate, multiple converters at a lower
rate are then used in parallel [41]. Each of the low rate converters has a
small relative offset, such that the high rate signal can be reconstructed by
combining the different low rate signals. In the ideal case, with for example
two low rate converters, the samples of the second converter are taken exactly
in the middle between the samples of the first converter. The two signals can
then be interleaved to obtain a signal at twice the rate. However, the precise
synchronization of such converters is very difficult [22]. This is exactly the
same problem as the alignment of images in super-resolution imaging, but now
for one-dimensional signals. The methods described in the following chapters
can therefore also be applied to such problems.

1.4 Aliasing

We will mainly consider aliased images as input for our super-resolution algo-
rithms. According to the sampling theorem, aliasing occurs when an image is
sampled at a frequency lower than twice the maximum signal frequency present
in the image [57, 75, 96, 124]. The high frequencies from the original signal are
converted into low frequencies in the sampled image. Such aliased frequencies
can no longer be distinguished from accurate low frequency signals.

In images, aliasing artifacts appear as artificial low frequency patterns or
staircase effects along sharp edges. Illustrations of both effects are shown in
Figure 1.3.

1.5 Thesis outline and contributions

In this thesis, we present super-resolution methods for unregistered, aliased
images. In Chapter 2, we give a more formal description of the problem we are
addressing. We first give an overview of existing sampling methods, and identify
super-resolution image reconstruction as a multichannel sampling problem with
unknown offsets. This can then be expressed as a set of equations that are
linear in the unknown signal coefficients, but nonlinear in the offsets. Our
new formulation allows the clear identification of aliasing, and forms a basis
for the reconstruction algorithms proposed in Chapters 5 and 6. Our setup is
first worked out for signals in an arbitrary Hilbert space and is then applied
to bandlimited signals in a Fourier series setup. This will be the case that is
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(a) (b)

Figure 1.3: Examples of aliasing in digital images. (a) Low frequency ringing
artifacts appear in the walls of the building, replacing the original lines of the bricks.
(b) Staircase effect in the guitar strings.

mostly used in practice. We also give a mathematical description of aliasing
for bandlimited signals, and we extend it to signals in an arbitrary Hilbert
space. Then, we give an overview of existing super-resolution methods. We
treat the frequency domain registration methods in more detail, as they are
closely related to our own methods. Finally, we discuss the uniqueness of a
solution to the super-resolution problem with unregistered sets of samples.

In Chapter 3, we present a super-resolution method for partially aliased
images. The main novelty of our method is in the image registration. We de-
scribe a new frequency domain algorithm for registration that is based on the
aliasing-free part of the spectrum: the low frequencies. We use a planar motion
model, and show that in frequency domain, planar shift and rotation in the im-
age plane can be estimated separately. For the rotation estimation, we present
a method that projects the frequency content along radial lines, and then com-
putes a one-dimensional correlation between two images. The shift between a
pair of images is then computed by fitting a plane through the phase difference
between the two images. We use a bicubic interpolation method to reconstruct
a high resolution image from the registered input images. We test our super-
resolution algorithm in a number of simulations. The registration method is
compared to other frequency and spatial domain image registration methods,
and we can show that our algorithm outperforms the other algorithms.

This method is applied to consumer digital cameras in Chapter 4. We first
measure the SFR for our two cameras (a Leica DC250 and a Sigma SD10) to
verify that they allow aliasing. Then, we reconstruct high resolution images
from sets of aliased input images using the algorithm from Chapter 3. Again,
our method is compared to some other methods.

Three super-resolution methods for totally aliased images (i.e., where there
is no aliasing-free part of the spectrum) are presented in Chapters 5 and 6. In
such a case, the images can not be registered pairwise with a reference image
anymore. The complete set of images has to be registered jointly. In Chapter 5,
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we present two methods that are based on a subspace approach derived from
the formulation in Chapter 2. The first algorithm uses the dimensionality of
the subspace to compute the correct offsets. It is a frequency domain approach,
and is therefore only applicable to bandlimited signals. Next, we present an
algorithm that uses projections onto lower-dimensional subspaces, and is ap-
plicable to signals in an arbitrary Hilbert space. These methods are tested in
simulations on one-dimensional and two-dimensional signals, and their good
behavior in noisy circumstances is shown. For the method described in Chap-
ter 6, we first reformulate the equations from Chapter 2 as a set of polynomial
equations in the unknown offsets and signal parameters. These equations can
then be solved using Buchberger’s algorithm for Gröbner bases. The basic
results from the Gröbner basis theory are summarized, and this algorithm is
applied to some examples. Because Buchberger’s algorithm can only be used
with exact equations with infinite precision, we also present an adaptation to
this algorithm for noisy and finite precision measurements. Finally, we discuss
the complexity of such methods.

Some of the mathematics in Chapters 3-6 are described on one-dimensional
signals to simplify notations and give intuitions. They can be straightforwardly
extended to two-dimensional signals.

Finally, Chapter 7 concludes this thesis and discusses some ideas for future
work. All the work that is presented in this thesis is also reproducible. An
appendix on reproducible research is given in Appendix A. We discuss the
importance of making research reproducible, and give a possible method for
doing reproducible research.



Chapter 2

Problem Setup

In this chapter, we give a mathematical formulation of super-resolution im-
age reconstruction in a sampling framework. First, we give a classification of
existing sampling methods and write one-dimensional super-resolution recon-
struction as a multichannel sampling problem with unknown offsets. Then,
we give an interpretation of aliasing and aliased sampling using projection op-
erators. This allows us to extend some of the frequency domain intuitions
about aliasing to arbitrary Hilbert spaces. Next, we give an overview of exist-
ing super-resolution methods, and situate our approach in this context. And
finally we show under which conditions there exists a unique solution to the
super-resolution problem.

2.1 Sampling methods

Let us consider a finite dimensional1 Hilbert space H, for which we have a
basis B = {ϕl(t)}l=0..L−1. That is, H = span{ϕl(t)}l=0..L−1. For simplicity,
let us consider the functions ϕl(t) defined on the interval [0, 1]. For periodic
functions, we will assume the period to be 1, such that we consider one period.
An arbitrary continuous-time signal f(t) from this space can be expressed as

f(t) =

L−1
∑

l=0

αlϕl(t), (2.1)

where αl is the l-th expansion coefficient of f(t) in the L-dimensional basis
B. Possible examples of spaces with associated bases include truncated Fourier
series, wavelets, splines, etc.

Assume now that we sample f(t) at times T , resulting in the sampled signal
y(n):

y(n) = f(T (n)). (2.2)

Sampling methods can be classified into different categories, according to the
way the sampling times T are chosen (see Figure 2.1). A recent overview of

1The extension to an infinite dimensional Hilbert space is theoretically possible, but of
little practical interest since all data (one-dimensional signals and images) and algorithms
are finite.

7
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sampling methods is given by Unser [108]. If the samples are taken uniformly,
at a constant rate N , we have uniform sampling (see Figure 2.2(a)):

T =
(

0 1
N

2
N · · · N−1

N

)

. (2.3)

The sampled signal can be written as

y(n) = f
( n

N

)

, for 0 ≤ n < N. (2.4)

This is the standard sampling setup as it is most often used, and as it is
also presented in the sampling theorem by Whittaker [124], Nyquist [75], Ko-
tel’nikov [57] and Shannon [96] (see also [65] for a discussion about the origins
of the sampling theorem).

uniform sampling

multichannel sampling
with known offsets

multichannel sampling
with unknown offsets

with known locations
non−uniform sampling

general

with unknown locations
non−uniform sampling

general

Figure 2.1: Classification of sampling methods. Sampling methods can be divided
into uniform and non-uniform methods. The non-uniform sampling methods can be
subdivided depending on whether the locations are known and whether the samples
are grouped in uniform sets with only unknown offsets. In super-resolution, we are
interested in multichannel sampling methods with unknown offsets.

 

 
f(t)
y(n)

t

(a) Uniform sampling

 

 
f(t)
y(n)

t

(b) Nonuniform sampling

 

 
f(t)
y0(n)
y1(n)

t

(c) Multichannel sampling

Figure 2.2: Illustration of the different sampling methods.

When the samples are not chosen uniformly, the sampling methods are log-
ically called non-uniform (Figure 2.2(b)). Among the non-uniform sampling
methods, a distinction needs to be made between methods where the sampling
instants T are known [3, 67, 102], and other methods where the sampling lo-
cations are unknown. If the sampling locations are unknown and completely
arbitrary, the problem cannot be solved. This can be shown using a simple
counting argument. Assume that the signal to be reconstructed has L un-
known parameters. For every additional sample, there is also an additional
unknown (its location). Therefore the number of unknowns is always larger
than the number of measurements, and this problem is unsolvable. However,
for discrete signals, where the sampling locations can only take a finite number
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of values, a combinatorial solution can be found, as described by Marziliano
and Vetterli [69].

2.1.1 General multichannel sampling

An important subset of the non-uniform sampling methods is formed by mul-
tichannel sampling methods. In these methods, the set of sampling instants
T can be divided into M sets of uniformly spaced samples Tm. Each of the
sets of samples Tm is uniform, but the different sets have an arbitrary offset tm
(Figure 2.2(c)). Note that tm is expressed in samples. In such a case, the m-th
set of samples can be written as

ym(n) = f (Tm) = f

(

n + tm
N

)

=

L−1
∑

l=0

αlϕl

(

n + tm
N

)

, for 0 ≤ n < N.

(2.5)

Papoulis described a solution for multichannel sampling with known sampling
locations [77]. He showed that a bandlimited signal can be perfectly recon-
structed from M sets of samples that are uniformly sampled at 1/M the Nyquist
sampling rate. This result was extended by Unser and Zerubia in their gen-
eralized sampling approach [109, 110]. The problem with multiple sets and
unknown sampling locations was solved for discrete-time signals by Marziliano
and Vetterli [69]. They developed a combinatorial method to compute the dis-
crete offsets between the different sets of samples. In this thesis, we will study
the continuous-time case: multichannel sampling with unknown, real-valued
offsets tm.

Using vector notation, (2.5) can be written more compactly as

ym = Φtm
α. (2.6)

In this equation, ym is the N × 1 vector containing the m-th uniform set of
samples, and α is the L×1 vector of expansion coefficients. The N ×L matrix
Φtm

contains the sampled basis functions that are uniformly sampled with an
offset tm.

Now, all the sets of samples ym are combined into a single vector y and sim-
ilarly the basis matrices Φtm

are combined into Φt, with t =
(

t0 t1 · · · tM−1

)

denoting the offset vector. This can be written as

y =











y0

y1

...
yM−1











=











Φt0

Φt1
...

ΦtM−1











α = Φtα. (2.7)

The matrix Φt has size MN × L. Assuming that the total number of samples
is larger than or equal to the number of expansion coefficients, or MN ≥ L,
this set of equations is in general well- or over-determined if t is known. If,
additionally,

MN ≥ L + M − 1, (2.8)
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the number of equations is also larger than or equal to the number of unknowns
(L expansion coefficients and M−1 offsets), and it should be possible to remove
the uncertainty of the unknown offsets. As we will show in the next chapters,
these additional equations allow us in general to compute the unknown off-
sets. Note that the challenging part of the problem is that it is a nonlinear
problem in the unknown offsets and expansion coefficients. In summary, the
most important variables in this reconstruction problem are listed here (see
also Figure 2.3):

• N : the number of samples in each set ym,

• ym : the length N vector of the m-th set of samples,

• L : the number of unknown expansion coefficients,

• α : the length L vector of the expansion coefficients αl to be recon-
structed,

• M : the number of sets of samples,

• t : the length M vector of the offsets tm between the different sets of
samples.

0 ... ...
0

0.5

1

1.5

2

2.5

3

3.5

4
f(t)
y0(n)
y1(n)

1
N

t1 1
N

+t1
2
N

2
N

+t1
N−1
N

N−1
N

+t1
t

(a)

L−1
2

N l

(b)

Figure 2.3: Illustration of the different variables with M = 2 and a Fourier basis.
(a) Time domain representation of the signal f(t) and its sets of samples y0(n)
(—) and y1(n) (– –). (b) Frequency domain representation of the absolute values
of the signal spectrum (—) and its aliased copies after sampling (– –).

The unknown variables are the expansion coefficients α and the offsets t. We
assume that all the other variables are known. This is evident for the sets of
samples ym, the number of samples per set N and the number of sets M , as
they form the input of the problem. We will also require that the number of
signal coefficients L, or at least an estimate for L, is available.

2.1.2 Multichannel sampling of bandlimited functions

As we will often use a Fourier basis, we specifically write out the equations
(2.1)-(2.7) for this case. First we define periodic bandlimited signals.
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Definition 2.1.1 (Bandlimited signal). A periodic signal f(t) with period
1 is bandlimited if it can be expressed in the Fourier basis with a finite number
L = 2K + 1 of coefficients αl. It can be written as a Fourier series:

f(t) =
K

∑

l=−K

αle
j2πlt, (2.9)

where αl are the Fourier coefficients.

The coefficients are indexed from −K to K (instead of 0 to L− 1), because
it is the usual way of indexing Fourier coefficients. For a real signal f(t) ∈ R,
the negative frequency coefficients are the complex conjugate of the positive
coefficients: α−k = α∗

k. We will assume here that L is odd, such that K =
(L − 1)/2.

The first set of samples can be written as

y0(n) = f
( n

N

)

=

K
∑

l=−K

αlW
ln, (2.10)

with W = ej2π/N . We can also write this in matrix notation as

y0 =











1 · · · 1 1 1 · · · 1
W−K · · · W−1 1 W · · · WK

...
...

...
...

...

W−(N−1)K · · · W−(N−1) 1 WN−1 · · · W (N−1)K



































α−K

...
α−1

α0

α1

...
αK

























=F∗α,

(2.11)
where F∗ is an N × L inverse discrete Fourier transform (IDFT) matrix. The
notation F∗ is used for the Hermitian transpose of the forward transform matrix
F. Due to the undersampling (N < L), some of the columns in F∗ are repeated.
The principal N -th root of unity is used for W (W = ej2π/N ), which means
that the n-th column is the same as the n + iN -th columns (with i any integer
such that n + iN ≤ L), for any n between 1 and N . It is important to note
here that F∗ is not part of a larger L × L Fourier matrix F∗

L, but rather an
N × N Fourier matrix F∗

N that is extended by repeating columns up to size
N × L.

Similarly, for the m-th set of samples ym(n), we obtain

ym(n) = f

(

n + tm
N

)

=

K
∑

l=−K

αle
j2πl(n+tm)

N =

K
∑

l=−K

αlW
lnzl

m, (2.12)

with zm = ej2πtm/N . In matrix notation, this can be expressed as

ym = F∗Dtm
α, (2.13)

with F∗ the N × L IDFT matrix defined above, and Dtm
an L × L diagonal

matrix with elements Dtm
(l, l) = zl

m (−K ≤ l ≤ K). If we put all the M sets
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of N samples together, we obtain the Fourier basis equivalent of (2.7):

y =











y0

y1

...
yM−1











=











F∗

F∗Dt1
...

F∗DtM−1











α. (2.14)

The DFT of a set of samples ym can be written as

Ym =
1

N
FNym =

1

N
FNF∗Dtm

α, (2.15)

where FN is a square N ×N DFT matrix, and F∗ is the N ×L matrix defined
in (2.11). The resulting vector Ym has length N and is an aliased and phase
shifted version of α. If we take for example L = 3N , we get

Ym =
1

N
FNF∗Dtm

α =
1

N
FN

(

F∗
N F∗

N F∗
N

)

Dtm
α

=
(

I I I
)

Dtm
α =

1
∑

i=−1

ziN
m D′

tm
αi,

(2.16)

where D′
tm

is the N × N central part of the L × L matrix Dtm
, and αi is the

i-th block of length N from the vector α. In general, if L is not a multiple of
N , we can still perform the same decomposition by adding zeros to α up to
the next multiple of N .

2.1.3 Examples

We will now illustrate the description given above with some small examples
for bandlimited signals, polynomial signals, and piecewise polynomial signals.
By piecewise linear or polynomial signals we understand in this thesis periodic
and continuous functions with period 1 that are piecewise linear or polynomial,
respectively, on uniform intervals.

Example 2.1.1 (Bandlimited functions). Take f(t) a bandlimited function
(see Figure 2.4(a)), and M = 2, N = 2, and L = 3. Using (2.7), we can write

y =









y0(0)
y0(1)
y1(0)
y1(1)









=









1 1 1
−1 1 −1

z−1
1 1 z1

−z−1
1 1 −z1













α−1

α0

α1



 = Φtα. (2.17)

The unknown offset in the matrix Φt is multiplied with the expansion coeffi-
cients in α and makes the problem nonlinear. As in (2.13), we can write Φt1

(the lower part of Φt) as an IDFT matrix multiplied with a diagonal matrix:

Φt1 =

(

z−1
1 1 z1

−z−1
1 1 −z1

)

=

(

1 1 1
−1 1 −1

)





z−1
1 0 0
0 1 0
0 0 z1



=F∗Dt1 .

(2.18)
�
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Figure 2.4: Examples of the general setup. (a) Bandlimited function with two
sets of two samples and unknown offset between the sets. (b) Second-degree
polynomial with two sets of two samples and unknown offset between the sets.
(c) One period of a piecewise linear function with two sets of three samples and
unknown offset between the sets.
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Example 2.1.2 (Second order polynomials). Let f(t) be a second degree
polynomial that is sampled using two sets of two samples (see Figure 2.4(b)).
We can write f(t) as f(t) = α0t

2 + α1t + α2. In this case, we have M = 2,
N = 2, and L = 3. Note that here, we do not consider a periodic signal, but
the samples are still taken in the interval [0, 1]. The rest of the setup is exactly
as described above, and (2.7) becomes

y =









y0(0)
y0(1)
y1(0)
y1(1)









=









0 0 1
0.25 0.5 1

0.25t21 0.5t1 1
(0.5 + 0.5t1)

2 0.5 + 0.5t1 1













α0

α1

α2



 = Φtα.

(2.19)
We can again see that the unknown offset t1 appears in the matrix Φt, and
is multiplied with the unknown signal coefficients in α, making the equations
nonlinear. �

Example 2.1.3 (Piecewise linear functions). Consider a continuous, pe-
riodic function with period 1 that is piecewise linear on uniform intervals
[l/L, (l + 1)/L] (with 0 ≤ l < L). This is the space H = span{ϕl,circ(t)}
for 0 ≤ l < L, with

ϕ(t) =







−L + 1 + Lt 1 − 1/L < t < 1
1 − Lt 0 ≤ t < 1/L
0 otherwise,

with t ∈ [0, 1) (2.20)

and ϕl,circ(t) the periodic extension of ϕ(t − l/L) with period 1. An example
is given in Figure 2.4(c) for L = 4. In this case, we can write the signal f(t) as

f(t) = α0ϕ0(t) + α1ϕ1(t) + α2ϕ2(t) + α3ϕ3(t). (2.21)

If we take two sets of three samples, we obtain the following equations:

















y0(0)
y0(1)
y0(2)
y1(0)
y1(1)
y1(2)

















=

















1 0 0 0
0 2/3 1/3 0
0 0 1/3 2/3

1 − t1/3 t1/3 0 0
0 2/3 − t1/3 1/3 + t1/3 0
0 0 1/3 − t1/3 2/3 + t1/3

























α0

α1

α2

α3









.

(2.22)
We assume that the second set of samples is taken in the same [l/L, (l + 1)/L]
interval as the first set (in this example 0 < t1 ≤ 1/4). Other values of t1 do
not cause any fundamental changes, they simply change the above equations
because the basis function ϕ(t) is described by different equations on the inter-
vals [1−1/L, 1], [0, 1/L] and outside of these intervals, as can be seen in (2.20).
Because of the finite support of the basis functions, the matrices Φtm

have a
banded structure. �

From the above examples, we see that the unknown offsets and signal coef-
ficients are mixed up, which makes the problem hard to solve. Once the offsets
are known, (2.7) is reduced to a set of linear equations in the unknown signal
coefficients. This can be solved straightforwardly using a least squares method.
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2.1.4 Sampling kernel

In our sampling model, we will not consider the sampling kernel, also often
known as the point spread function (PSF) in two-dimensional (imaging) sys-
tems. We will assume that the signals are sampled using Diracs. Although
this is not very realistic in practical applications, it is an approximation that
is often made to simplify the analysis. In frequency domain, it is in most cases
not very difficult to take a different sampling kernel into account. The sampling
operation can be considered as a convolution with a (generally lowpass filter-
ing) sampling kernel, followed by the actual sampling. This convolution can
be seen as a multiplication in frequency domain with the Fourier transform of
the sampling kernel. Therefore, as long as the sampling kernel does not remove
frequencies, the reconstructed function can always be divided by the sampling
kernel function again (in Fourier domain). This should cancel the effect of the
sampling kernel. Of course, this supposes that the sampling kernel is known,
space/time invariant, and not too ill-conditioned. For space-varying sampling
kernels, spatial domain super-resolution methods are better suited, such as the
methods presented by Tekalp et al. [103] or Farsiu et al. [31].

2.2 Aliasing

Aliasing is most often considered in a Fourier domain setup. A sampled signal
is aliased if the sampling frequency is lower than twice the maximum signal
frequency, or in our setup N < 2K [96]. Due to the periodicity of the sampled
spectrum, frequencies above half the sampling frequency are replicated in the
base spectrum of the sampled signal. In this way, a frequency above half the
sampling frequency is mapped onto a frequency below this limit after sampling
and the two cannot be distinguished anymore from their samples. Or, using
(2.10), the k-th Fourier coefficient of y0(n) can be written as:

Y0(k) =
1

N

N−1
∑

n=0

y0(n)W−kn =
1

N

N−1
∑

n=0

K
∑

l=−K

αlW
lnW−kn

=
1

N

K
∑

l=−K

αl

N−1
∑

n=0

W (l−k)n =
∑

i

αk+iN , with 0 ≤ k < N.

(2.23)

Similarly, we can write the Fourier coefficient vector Y0 using the notation
from (2.16) as a sum of the overlapping parts αi of the spectrum:

Y0 =
1

N
FNF∗α =

∑

i

αi. (2.24)

Note that there are no phase coefficients zm in the above equations, as we do
not consider any offsets (we consider a single set of samples, namely the base
set y0).

As already discussed in the previous section, we will consider not only
bandlimited functions, but more generally functions that belong to a finite-
dimensional Hilbert space H. In this case, the interpretation of frequency
replication is not valid anymore, and the idea of aliasing needs to be broadened



16 Chapter 2.

to this new signal space. In order to do this, we show that the sampling process
is a projection. A projection operator is defined as follows:

Definition 2.2.1 (Projection operator [64,125]). An operator P is a pro-
jection operator if it is a linear transformation that is idempotent, that is,
P 2 = P . The projection is orthogonal if, additionally, it is self-adjoint.

Now that we have defined projections, we can show that sampling can be
seen as a projection operation [108]. For this, we actually need to consider the
combination of sampling with interpolation, such that the resulting signal is
in the same space as the original signal. We will follow a different approach
here than the one given by Unser [108], as we consider sampling of a function
in an arbitrary Hilbert space with Dirac functions. In other words, we use a
Dirac sampling kernel, while Unser uses other sampling kernels, depending on
the signal space.

Theorem 2.2.1 (Sampling as a projection). Assume a signal f(t) in a pe-
riodic finite-dimensional Hilbert space H with basis {ϕl(t)}l=0..L−1 and period
1:

f(t) =
L−1
∑

l=0

αlϕl(t), (2.25)

with αl the expansion coefficient corresponding to ϕl(t). We sample f(t) uni-
formly at a rate N , resulting in the sample vector

y = Φ0α, (2.26)

where Φ0 is an N × L matrix with the sampled basis functions ϕl(n/N) as its
columns (Φ0(i, j) = ϕj(i/N)). The signal coefficients are interpolated again
using

α′ =

{

(Φ∗
0Φ0)

−1Φ∗
0y if N ≥ L

Φ∗
0(Φ0Φ

∗
0)

−1y if N < L.
(2.27)

The overall operator PΦ0
(α) described by

PΦ0 =

{

(Φ∗
0Φ0)

−1Φ∗
0Φ0 = I if N ≥ L

Φ∗
0(Φ0Φ

∗
0)

−1Φ0 if N < L,
(2.28)

is an orthogonal projection. It describes the sampling and interpolation of f(t).

Proof: The proof is quite straightforward. For N ≥ L, the operator is identity,
so it is clearly a projection of the signal onto itself. Let us therefore concentrate
on the case where N < L. The linearity of PΦ0

is obvious, as it is described
by a matrix, which in itself is a linear operator. We need to prove that PΦ0

is
idempotent, or PΦ0

(PΦ0
(α)) = PΦ0

(α). This can be shown as follows:

P2
Φ0

= Φ∗
0(Φ0Φ

∗
0)

−1Φ0Φ
∗
0(Φ0Φ

∗
0)

−1Φ0 = Φ∗
0(Φ0Φ

∗
0)

−1Φ0 = PΦ0 . (2.29)

Therefore, the sampling operator PΦ0
is a projection. To show that it is an

orthogonal projection, we also need to prove that it is self-adjoint (P∗
Φ0

= PΦ0
),

or
P∗

Φ0
=

(

Φ∗
0(Φ0Φ

∗
0)

−1Φ0

)∗
= Φ∗

0(Φ0Φ
∗
0)

−1Φ0 = PΦ0
. (2.30)
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This proves that our sampling followed by interpolation operator PΦ0 is an
orthogonal projection (for any value of N). �

If N ≥ L, the expansion coefficients α can be exactly reconstructed from the
samples y, and the projection operator PΦ0

is identity. If the measurements
y are noisy, (2.27) computes the least squares estimate of the parameters α.
It performs an orthogonal projection onto the space spanned by the column
vectors of Φ0, which is the signal space H.

If N < L, the sampled signal is aliased. We can compute a minimum norm
estimate for α:

α = Φ∗
0(Φ0Φ

∗
0)

−1y, (2.31)

which performs a projection onto the rows of Φ0. However, perfect reconstruc-
tion from a single set of samples is no longer possible. Different input signals
are projected onto the same set of samples. This interpretation of sampling
and aliasing as a projection is valid for signals in arbitrary finite-dimensional
Hilbert spaces, including the bandlimited functions from the more restricted
analysis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

 

 
f(t)
N=5
N=3
g(t)

Figure 2.5: Example of a signal f(t) with L = 5 coefficients (—) and its pro-
jections using N = 5 and N = 3 samples. Using 5 samples, the signal can be
perfectly reconstructed, while with 3 samples, it is aliased. Another signal g(t) is
reconstructed from the projection (– –).

Example 2.2.1 (Bandlimited signals). Let us illustrate this with an exam-
ple for a signal in the Fourier basis. Take a bandlimited signal with L = 5

and Fourier coefficients α =
(

−2 1 3 1 −2
)T

. If we take N = 5, we

obtain the sample vector y =
(

0.2 1.371 0.029 0.029 1.371
)T

. From
this sample vector, we can perfectly reconstruct the signal coefficients using
(2.27):

α′ =
(

−2 1 3 1 −2
)T

= α. (2.32)

However, if we take only N = 3 samples, we obtain the sample vector y =
(

0.2 0.8 0.8
)T

. The signal is aliased, and the Fourier coefficients cannot
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be perfectly reconstructed anymore:

α′ =
(

−0.5 −0.5 3 −0.5 −0.5
)T 6= α. (2.33)

The signal and its different sets of samples are shown in Figure 2.5. �

Some more examples of aliasing for different types of signals are shown in
Figure 2.6.
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Figure 2.6: Examples of aliasing for different types of signals. (a) For a bandlim-
ited signal, input signals of different frequencies map into the same low frequency
after sampling. (b) For a piecewise linear signal, different input signals map into
the same set of samples (and reconstruction) after sampling.

2.3 Super-resolution imaging

To our knowledge, the term super-resolution was introduced by Papoulis in
1968 [76, p. 453-454]. He used the term for the computation of additional
high frequency information from a single image using the bandlimitedness and
the finite extent of the image. In 1984, Tsai and Huang presented a first
super-resolution algorithm that uses multiple input images [107]. They de-
scribe a frequency domain method to increase the resolution of satellite images
from a set of input images. The registration parameters between the differ-
ent acquisitions are computed by searching the parameter values for which the
reconstructed signal is bandlimited to a certain frequency. It is shown that
for (small) deviations from these optimal values, the signal always has a larger
bandwidth. The Fourier coefficients of the high resolution image can then be
computed efficiently using an FFT-based algorithm.

Good overviews of existing super-resolution methods are given by Borman
and Stevenson [9], and Park et al. [79]. Recently, special issues on super-
resolution imaging appeared in IEEE Signal Processing Magazine (edited by
Kang and Chaudhuri [50]), and EURASIP Journal on Applied Signal Process-
ing (edited by Ng et al. [73]). Two books by Chaudhuri discussing motionless
super-resolution and various other topics in super-resolution imaging were also
published in the past few years [19, 20]. Finally, Matlab implementations with
a graphical user interface for certain super-resolution algorithms were released
by Farsiu et al. [30] and Vandewalle et al. [120].
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Most super-resolution algorithms can be decomposed into two parts : an
image registration part followed by a reconstruction part. Very high accuracy
is required in the registration (up to subpixel level) to be able to reconstruct the
high resolution image correctly. If the registration parameters are incorrectly
estimated, it is typically better to interpolate a single image to the desired size,
than to combine (incorrectly) the information from the different images (see
Figure 2.7). Once the images are registered, a robust reconstruction method
is needed to build a high resolution image from the set of irregularly spaced
samples (pixels) and undo the blur caused by the optical system. We will
mainly study the first problem, as it is an essential requirement for a high
precision reconstruction afterwards.

(a) (b)

Figure 2.7: If images are badly registered, it is better to interpolate a single
image (a), than to combine (incorrectly) the information from the different images
(b).

2.3.1 Image registration

Surveys of image registration methods are given by Brown [10], and by Zitová
and Flusser [133]. We summarize some of the most frequently used spatial
domain techniques here, before we proceed to a more detailed overview of
the frequency domain methods. One popular technique is to compute salient
features and find a mapping between corresponding features in different im-
ages [16, 17, 33]. Another approach is the use of a Taylor series approximation
of the images. The motion parameters are the unknowns in the approximation,
and they can be computed from the set of equations that can be derived from
this approximation. Because Taylor series only give a good approximation for
small offsets, these registration methods are generally applied iteratively using
a Gaussian pyramid [46,51]. Irani et al. present a multiresolution approach to
compute multiple, possibly occluding motions using an iterative method [47].
Other methods compute an optical flow field [35] and obtain therefore a motion
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vector for every pixel of the image.

Methods based on the correlation between shifted images can be performed
either in spatial or in frequency domain. Such methods are based on the
fact that the correlation between two images is maximum if they are cor-
rectly aligned. In frequency domain, a correlation can be computed efficiently
using a multiplication of the two spectra. An early method performing the
frequency domain operations is presented by Anuta [4]. A spatial correlation-
based method is presented by Zokai and Wolberg [134]. They apply a log-polar
transform to the spatial domain images to allow for large rotations and scale
changes.

The frequency domain methods are limited to global motion in a plane par-
allel to the image plane. A planar shift can be described in frequency domain
as a linear phase shift, while a rotation (in the image plane) in spatial domain
corresponds to a rotation over the same angle in frequency domain [76, p. 90-
91]. Other, more general motion models are difficult to describe in frequency
domain. However, frequency domain registration methods can be computa-
tionally very efficient, and offer a good framework to model aliasing.

If the input images are not undersampled, and their motion can be ap-
proximated by a planar shift, this shift can be computed as the linear phase
difference between the two images (Kim and Su [54], Stone et al. [100], Van-
dewalle et al. [118]). The horizontal and vertical components of the shift can
be separated using a singular value decomposition (Hoge [42]). This frequency
domain approach has the advantage that continuous values can be estimated
for the shifts. However, it suffers from another problem: phase wrapping at −π
and π. If we compute the inverse Fourier transform of the ratio between the
two frequency domain images, we obtain a Dirac at the correct shift position in
spatial domain. The peak in the inverse Fourier transform occurs at a discrete
position, and its precision is therefore limited by the resolution of the input.
Foroosh et al. [34] showed that instead of a single Dirac, the signal power in
the phase correlation corresponds to a polyphase transform of a filtered unit
impulse. They applied this idea to obtain the subpixel part of the shifts.

Planar rotation can be added to such an algorithm, and is represented in
frequency domain by a rotation over the same angle. The shift and rotation
parameters can be estimated separately, because shift only affects the phase
information, while rotation affects both phase and amplitude of the Fourier
transform. Reddy and Chatterji [87] and Marcel et al. [66] applied this in
their image registration algorithm. To estimate the rotation, they transform
the Fourier domain image into polar coordinates, such that the rotation is
transformed into a shift. Lucchese and Cortelazzo [63] present another rotation
estimation method that is based on the property that the magnitude of the
Fourier transform of an image and the mirrored version of the magnitude of
the Fourier transform of a rotated image have a pair of orthogonal zero-crossing
lines. The angle that these lines make with the axes is equal to half the rotation
angle between the two images. The shift is estimated in the same way as Marcel
et al.

If the input images are aliased, these simple relations do not hold any-
more. However, if the sampling frequency is sufficiently high, part of the spec-
trum is still free of aliasing. The registration can then be performed using
specifically this part of the spectrum [54, 100, 119]. Such a method will be
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presented in Chapter 3. A frequency domain method will be described to es-
timate planar motion (shift and rotation) using the aliasing-free part of the
spectrum. Our rotation estimation method uses radial projections to reduce
computational complexity. Another projection-based registration method us-
ing a Radon transform is presented by Robinson and Milanfar [88]. On one
hand, projection-based methods reduce the available information by projecting
the images along a certain direction, but on the other hand, this also reduces
computational complexity and increases robustness to noise [2, 15]. If the en-
tire frequency spectrum is aliased, all the images have to be registered jointly.
Several approaches to solve this problem will be presented in Chapter 5 and
6: two subspace-based methods in Chapter 5, and a method based on Gröbner
bases in Chapter 6.

2.3.2 Image reconstruction

The second part of the super-resolution methods is the reconstruction, in which
a high resolution image is reconstructed from the registered low resolution
images. As described above, a frequency domain algorithm was presented by
Tsai and Huang [107]. We will use a similar approach for the reconstruction in
Chapter 5. Kim et al. [53] extended this algorithm to include blur and noise
models. More recently several other, mostly spatial domain techniques have
been developed.

A good overview of reconstruction methods is given by Park et al. [79]. First
of all, there are a set of nonuniform interpolation methods [24, 74, 77, 84, 102]
that reconstruct a bandlimited signal from an irregular set of samples. In
Chapter 3, we will use such a method. A triangulation is first computed from
the irregular set of samples using the Qhull algorithm [6, 70]. Next, the im-
age values are interpolated on a uniform grid using cubic interpolation and
the computed triangulation. Another category of reconstruction algorithms is
based on the POCS method, like for example the method by Patti et al. [80].
These are iterative algorithms that project the reconstruction successively onto
different convex sets representing both the known measurements and assump-
tions about the high resolution image. After a number of iterations, the re-
constructed image converges to the image at the intersection of the different
sets. Similarly, the iterative backprojection algorithms [46,51,104] use an image
formation model to estimate the low resolution images that would be created
when capturing the current high resolution reconstruction estimate. The es-
timate is then corrected with a term relative to the difference between these
estimated low resolution images and the real ones. Zomet et al. [135] improved
the results obtained with typical iterative backprojection algorithms by taking
the median of the errors in the different backprojected images. This proves to
be more robust in the presence of outliers. Farsiu et al. [31] proposed a new
and robust super-resolution algorithm that replaces the standard L2 minimiza-
tion by an L1 minimization. This results in sharper images. They also added
a regularization term to stabilize the reconstruction. They showed that this
approach performs very well in combination with the algorithm by Zomet et
al. [135]. A spatio-temporal FIR filtering approach is presented by Goldberg
et al. [39]. They also perform a 2D + time analysis of the image sequence in
frequency domain to check whether (next to the individual images) the global
sequence is aliased. An adaptive filtering approach using LMS and RLS al-
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gorithms for super-resolution video reconstruction is presented by Elad and
Feuer [27]. Finally, a maximum a posteriori (MAP) approach can also be used
for reconstruction [16, 17, 28, 94]. It allows to easily add different priors on
the reconstructed image into the model. Elad and Feuer [26] present a hy-
brid approach combining a maximum likelihood (ML) estimator with a POCS
method.

This gives only a very concise overview of the wide variety of existing super-
resolution reconstruction algorithms. For a more detailed overview, the reader
is referred to the review articles mentioned above. In the next section, we will
describe some different approaches to super-resolution, and related problems.

2.3.3 Variations on super-resolution

Next to the above methods that are based on relative motion between the im-
ages, other methods use images with different zoom to create a super-resolution
image [20,48,86]. Shekarforoush et al. [97] present a method to reconstruct not
only a super-resolution image, but also the surface albedo and height of the
scene objects using a Bayesian approach. Super-resolution methods can also be
applied to demosaicing: instead of a single image, multiple images sampled with
a Bayer CFA pattern are used to compute a single (high resolution) image with
red, green and blue values at every pixel location [29]. Recently, some bounds
to the possible increase in resolution have been computed. Lin and Su [61]
showed that under practical conditions, reconstruction-based algorithms can
improve the resolution by at most a factor 1.6. They use perturbation theory
to compute these limits. Baker and Kanade [5] perform an analysis of the point
spread function (PSF) to show limits of some super-resolution methods. They
also present a method to ‘break’ those limits using prior knowledge about the
image class. Cramer-Rao bounds for super-resolution and image registration
problems are computed by Robinson and Milanfar [89, 90].

2.4 Uniqueness of the solution

In this section, we discuss the existence and uniqueness of a solution to the
super-resolution problem with unregistered sets of samples that was described
in Section 2.1. It follows straightforwardly from this description that a solution
exists (at least in the ideal, noiseless case). The uniqueness of such a solution
is less trivial.

2.4.1 General case

Let us start with an intuitive statement for the general problem. A unique
solution exists if there is a unique mapping from each set of samples to a single
space generated by the columns of Φt (see (2.7)). In other words, the inter-
section of the spaces generated for two different offset vectors t only contains
the trivial zero vector, except for possibly some degenerate cases. This argu-
ment follows the one made by Marziliano for discrete sampling with unknown
locations [68]. More formally, we have the following lemma.

Lemma 2.4.1 (Uniqueness of the general problem). If the L-dimension-
al subspaces (in the MN -dimensional measurement space) generated by the
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columns of Φt for any pair of different offset vectors t and t′ have a low-
dimensional intersection, then a unique signal f(t) belonging to the finite-
dimensional Hilbert space H can be reconstructed from the sample vector y,
except if the sample vector y is an element of the intersection.

Proof: We prove this by contradiction. Assume that there are two different
offset vectors t and t′, and that the sample vector y is not in the intersection
between the spaces generated by the columns of Φt and Φt′ . We can then
write the sample vector y in two ways, namely:

y = Φtα = Φt′α
′. (2.34)

Because the vector y is not in the intersection of the spaces spanned by Φt and
Φt′ , this cannot be true. Our assumption was wrong, and t = t′. �

In general, the space of sample vectors that belong to the intersection is
low-dimensional and thus, the set of sample vectors for which a unique solution
exists, is dense in the Hilbert space H. We shall therefore ignore the degenerate
cases. Nevertheless, we will specifically calculate examples of such degenerate
cases for polynomial signals in Section 2.4.3.

Unfortunately, this theorem does not give any specific conditions for the
uniqueness of the solution. We will therefore analyze a few specific signal types
to gain understanding.

2.4.2 Bandlimited signals

First of all, we consider the space of bandlimited functions with the Fourier
basis. As we discussed in Section 2.1.2, the matrix Φtm

can then be written
as the product of an N × L IDFT matrix F∗ with an L × L diagonal matrix
Dtm

. For aliased signals, some of the columns in F∗ are repeated, and the
corresponding columns of Φtm

only differ by their multiplicative factor zl
m.

These columns correspond to overlapping frequencies in the sampled spectrum.

If all the sets of samples are considered together, the l-th column φl
t

of the
matrix Φt is the Hermitian transpose of a repetition of M times the same basis
vector fl, the l-th row of the L × N forward DFT matrix F, multiplied by the
different factors z−l

m :

(

φl
t

)∗
=

(

fl z−l
1 fl · · · z−l

M−1fl
)

. (2.35)

Example 2.4.1. For example, if we take M = 2, L = 5, and N = 4, there are
two overlapping frequency components (see Figure 2.8). We have

Φt =

(

Φ0

Φt1

)

=

(

F∗

F∗Dt1

)

=

























1 1 1 1 1
W 2 W 3 1 W W 2

1 W 2 1 W 2 1
W 2 W 1 W 3 W 2

z−2
1 z−1

1 1 z1 z2
1

z−2
1 W 2 z−1

1 W 3 1 z1W z2
1W

2

z−2
1 z−1

1 W 2 1 z1W
2 z2

1

z−2
1 W 2 z−1

1 W 1 z1W
3 z2

1W
2

























,

(2.36)
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with W = ej2π/4. The first and the fifth column of F∗ are equal, such that the
corresponding columns of Φt only differ by their factors z−2

1 and z2
1 from Dt1 .

�

PSfrag

α

l−2 −1 0 1 2

(a)

Y

l−4 −3 −2 −1 0 1 2 3 4

(b)

Figure 2.8: Signal spectrum before (a) and after sampling (b), for L = 5 and
N = 4. The base spectrum (—) and aliased spectrum (– –) overlap for the first
and last spectral component, corresponding to the first and fifth column in (2.36).

Because the Fourier basis row vectors fl of the L×N matrix F are orthog-
onal (note that we use W = ej2π/N in this matrix, and not ej2π/L), the vectors
φl

t are also orthogonal to each other for any set of offset values t. Only the
vectors corresponding to overlapping spectrum coefficients (like the first and
fifth column in Example 2.4.1) are not orthogonal, because they are composed
by the same Fourier vector fl but have different coefficients. Each vector de-
scribes a trajectory in CMN for varying values of t. This trajectory is defined
more precisely in the following theorem:

Theorem 2.4.1. For varying t, any vector φl
t

describes a trajectory in the
M -dimensional subspace Vl of CMN :

Vl = span {A ⊗ f∗l } with A =











1 1 · · · 1
1 −1 1
...

. . .
...

1 1 · · · −1











, (2.37)

where A is an M × M matrix, and ⊗ represents the Kronecker product. The
vectors φl+iN

t corresponding to overlapping spectrum coefficients belong to the
same space Vl, while other vectors φk

t
belong to orthogonal subspaces Vk ⊥ Vl.

Proof: The trajectory of φl
t as a function of t is in Vl iff we can write any

arbitrary φl
t

as a linear combination of the columns of A ⊗ f∗l . From (2.35)

and (2.37), we can write the vector φ
l
t as a linear combination of the columns

of A ⊗ f∗l by solving the set of linear equations











1 1 · · · 1
1 −1 1

1
. . .

...
1 1 · · · −1





















a0

a1

...
aM−1











=











1
zl
1
...

zl
M−1











. (2.38)

As this set of M equations is of full rank, it always has a unique solution, and
our vector is therefore part of Vl. Vectors corresponding to overlapping Fourier
coefficients are composed from the same Fourier basis vectors fl, and therefore
belong to the same space Vl.
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The orthogonality between two subspaces Vk and Vl for k 6= l can easily
be seen. As each of the subspaces is generated by the columns of the matrices
defined in (2.37), it is sufficient that we prove that any arbitrary column of
A⊗ f∗k is orthogonal to any column of A⊗ f∗l . Denoting the i-th column of A
as Ai, we can write the inner product between two such vectors as

〈

Ai ⊗ f∗k ,Aj ⊗ f∗l
〉

=
M−1
∑

n=0

(±1) 〈f∗k , f∗l 〉 = 0 if k 6= l. (2.39)

This is valid because 〈f∗k , f∗l 〉 = 0 from the orthogonality of the Fourier basis.
�

From this analysis, we can see that the problem can be considered in each of
the N subspaces separately by projecting y onto the different M -dimensional
subspaces. The projection of y onto the subspace Vl is called

y(l) = PVl
y. (2.40)

An illustration for two overlapping vectors in a three-dimensional space is
sketched in Figure 2.9.

Φ0

Φt

Φ
t′

y(l)

Figure 2.9: Illustration of the trajectory of the span of two columns φ
l
t (the planes

in this drawing) in a three-dimensional space Vl for different offset values (0, t and
t′). Only for the correct offsets t, the vector y(l) belongs to the space spanned by
the two columns.

Assuming that MN ≥ L + M − 1, at most M columns of Φt belong to
the same subspace Vl. If there are M vectors φl+iN

t
from Φt in a particular

subspace Vl, these vectors form a basis for Vl. As the vector y(l) is also in Vl,
it belongs to the subspace spanned by these vectors φl+iN

t for any value of t.
However, for the subspaces containing less than M vectors φl+iN

t
, the span of

these vectors does not cover the entire space Vl. Hence, the projection of y
onto Vl generally only belongs to span(φl+iN

t )0≤i<M−1 for a single offset vector
t. The offset vector t can then be uniquely determined from these subspaces,
and the signal coefficients α are thus also uniquely determined.

Using the Fourier basis, there are certain cases for which it is not sufficient
to require MN ≥ L + M − 1. The vectors in the space V0 (the columns
l = iN) do not depend on t, and therefore, no information about the offsets
can be derived from these vectors. So if only the space V0 contains less than
M vectors, it is not possible to derive the offsets from the sets of samples. This
happens when the number of overlapping parts of the frequency spectrum is
even (and therefore also the number of sets of samples M is even). In that
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case, we need MN ≥ L + M .

Example 2.4.2. Looking back at Example 2.4.1, we can see that the first and
fifth column of Φt span the subspace V2, except in the degenerate case when
t1 ∈ Z. The projection of y onto these two columns will therefore always be the
same as its projection onto V2. No information about t1 can be derived from
this subspace. However, for V−1 and V1, there is only one column of Φt in each
of these subspaces, and the projections onto that column or onto the space Vl

only coincide for the correct value of t1. The part of y in the subspace V0 does
not depend on t1 (V0 is a one-dimensional subspace), and is therefore of no
use in the computation of the offset. We need at least one subspace containing
only 1 column from Φt in order to be able to compute t1. As we do not want
this to be the zero frequency, we require that 2N ≥ L + 2, or N = 4. �

This leads to the following theorem. Its proof follows from the above argu-
ment.

Theorem 2.4.2 (Bandlimited signals). If MN ≥ L + M − 1 for M odd, or
MN ≥ L+M for M even, a bandlimited signal with L Fourier coefficients can
be uniquely reconstructed from M uniform sets of N samples with unknown
offsets.

2.4.3 Polynomials

Let us now also analyze the uniqueness for polynomials, using the same setup
as in Example 2.1.2. For second order polynomials, we can prove the following
theorem.

Theorem 2.4.3 (Second order polynomials). When an arbitrary second
order polynomial is sampled at four non-coinciding points {0, 0.5, 0.5t1, 0.5t1 +
0.5}, then this polynomial ax2+bx+c and the shift t1 can be uniquely retrieved,
except in the particular case at1 + a + 2b = 0, when an infinite number of
solutions exist.

Proof: Let us call the two sets of samples y0 and y1. The samples satisfy

(

y0

y1

)

=









y0(0)
y0(1)
y1(0)
y1(1)









=









0 0 1
0.25 0.5 1

0.25t21 0.5t1 1
0.25(1 + t1)

2 0.5(1 + t1) 1













a
b
c



 .

(2.41)
Let us assume that, next to the desired solution {a, b, c, t1}, there exists another
solution {a′, b′, c′, t′1} resulting in the same samples. We can therefore also write
(2.41) for this solution, and obtain the following set of equations:















c = c′

0.25a + 0.5b + c = 0.25a′ + 0.5b′ + c′

0.25t21a + 0.5t1b + c = 0.25t′21 a′ + 0.5t′1b
′ + c′

0.25(1 + t1)
2a + 0.5(1 + t1)b + c = 0.25(1 + t′1)

2a′ + 0.5(1 + t′1)b
′ + c′.

(2.42)
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Eliminating c and c′ from the equations, and rearranging the terms, we get















c′ = c
b′ = 0.5a + b − 0.5a′

0.5t21a − 0.5t′21 a′ + t1b − t′1b
′ = 0

0.5t21a − 0.5t′21 a′ + t1a − t′1a
′ + 0.5a− 0.5a′ + bt1 − b′t′1 + b − b′ = 0.

(2.43)
From the second equation, we can compute b′ as a function of a′ and the
terms of the first solution {a, b, c, t1}. Similarly, after simplification, a′ can be
computed from the fourth equation:

a′ =
at1
t′1

. (2.44)

We assume that t′1 6= 0, which is a reasonable assumption, because this would
mean that the two sets of samples y0 and y1 coincide, and there are only two
distinct samples. After filling in a′ and b′, the third equation can be factorized
as follows:

0.5(t1 − t′1)(at1 + a + 2b) = 0. (2.45)

From this equation, we can see that either at1 +a+2b = 0, or t1 = t′1. Because
we assumed that the two solutions {a, b, c, t1} and {a′, b′, c′, t′1} are different,
the second solution can be discarded (it involves immediately a′ = a, b′ = b,
and c′ = c).

It is therefore only when at1 + a + 2b = 0 that other solutions exist, which
are given by











a′ = at1
t′1

b′ = 0.5a + b − 0.5at1
t′1

c′ = c,

(2.46)

with t′1 a free parameter. In all the other cases, the solution {a, b, c, t1} is
unique. �

An example of multiple solutions for second order polynomials with at1 +
a + 2b = 0 is given in Figure 2.10(a). A similar theorem can be shown for
polynomials of third order.

Theorem 2.4.4 (Third order polynomials). When an arbitrary third or-
der polynomial is sampled at six non-coinciding points {0, 1/3, 2/3, t1/3, (t1 +
1)/3, (t1 + 2)/3}, then this polynomial ax3 + bx2 + cx + d and the shift t1 can
be uniquely retrieved, except in the particular case t1a + 2a + 2b = 0, when an
extra parasitic solution exists.

Proof: Let us call the two sets of samples y0 and y1. The samples satisfy

(

y0

y1

)

=

















y0(0)
y0(1)
y0(2)
y1(0)
y1(1)
y1(2)

















=

















0 0 0 1
1/27 1/9 1/3 1
8/27 4/9 2/3 1
t31/27 t21/9 t1/3 1

(1 + t1)
3/27 (1 + t1)

2/9 (1 + t1)/3 1
(2 + t1)

3/27 (2 + t1)
2/9 (2 + t1)/3 1

























a
b
c
d









.

(2.47)
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Figure 2.10: Example of parasitic solutions for second and third order polynomi-
als. (a) The second order polynomial f(x) = 5x2−3.5x+2 (—) is sampled at times
{0, 0.5} and {0.2, 0.7} (t1 = 0.4, plotted with ‘o’). From the two sets of samples,
other second degree polynomials can also be reconstructed using other offsets t1.
For example, setting t1 = 0.2, and thus shifting the second set of samples to the
left (plotted with ‘+’), we would obtain the polynomial g(x) = 10x2 − 6x + 2 (–
–). (b) The third order polynomial f(x) = x3 + 2x2 − x (—) is sampled at times
{0, 1/3, 2/3} and {−2,−5/3,−4/3} (t1 = −6, plotted with ‘o’). From the two
sets of samples, another third degree polynomial g(x) = −1.64x3+4.64x2−1.59x
(– –) can be reconstructed using t1 = 3.66 as offset. The shifted samples are
shown with ‘+’.

Let us assume that, next to the desired solution {a, b, c, d, t1}, there exists an-
other solution {a′, b′, c′, d′, t′1} resulting in the same samples. We can therefore
also write (2.47) for this solution, and obtain the following set of equations:















































d = d′

a/27 + b/9 + c/3 + d = a′/27 + b′/9 + c′/3 + d′

8a/27 + 4b/9 + 2c/3 + d = 8a′/27 + 4b′/9 + 2c′/3 + d′

t31a/27 + t21b/9 + t1c/3 + d = t′31 a′/27 + t′21 b′/9 + t′1c
′/3 + d′

(1 + t1)
3a/27 + (1 + t1)

2b/9 + (1 + t1)c/3 + d = (1 + t′1)
3a′/27

+(1 + t′1)
2b′/9 + (1 + t′1)c

′/3 + d′

(2 + t1)
3a/27 + (2 + t1)

2b/9 + (2 + t1)c/3 + d = (2 + t′1)
3a′/27

+(2 + t′1)
2b′/9 + (2 + t′1)c

′/3 + d′.

(2.48)

Eliminating d and d′ from the equations, and rearranging the terms, we get































d − d′ = 0
a − a′ + 3(b − b′) + 9(c − c′) = 0
4(a − a′) + 6(b − b′) + 9(c − c′) = 0
t31a − t′31 a′ + 3t21b − 3t′21 b′ + 9t1c − 9t′1c

′ = 0
t1a − t′1a

′ + t21a − t′21 a′ + 2(t1b − t′1b
′) = 0

2(t1a − t′1a
′) + t21a − t′21 a′ + 2(t1b − t′1b

′) = 0.

(2.49)

From the second and third equation, we can compute b′ and c′ as a function of
a′ and the terms of the first solution {a, b, c, d, t1}. Similarly, we can compute
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t′1 using the fifth and sixth equation:































d′ = d
b′ = a − a′ + b
c′ = c − 2(a − a′)/9
t31a − t′31 a′ + 3t21b − 3t′21 b′ + 9t1c − 9t′1c

′ = 0
t21a − t′21 a′ + 2t1b − 2t′1b

′ = 0
t′1 = t1a/a′.

(2.50)

The fourth and fifth equations can be factorized as follows:































d′ = d
b′ = a − a′ + b
c′ = −2(a − a′)/9 + c
(t21aa′ + t21a

2 + 3t1ba
′ + 3t1ba + 3t1a

2 + 9a′c − 2aa′)(a − a′)t1 = 0
(t1a + 2b + 2a)(a − a′)t1 = 0
t′1 = t1a/a′.

(2.51)
From these equations, we can see that either a′ = −(3t1a

2+3t1ba+t21a
2)/(t21a+

3t1b + 9c − 2a), or a′ = a. Because we assumed that the two solutions
{a, b, c, d, t1} and {a′, b′, c′, d′, t′1} are different, the second solution can be dis-
carded (it involves immediately b′ = b, c′ = c, d′ = d, and t′1 = t1).

It is therefore only when t1a+2a+2b = 0 that a second (parasitic) solution
exists, which is given by



































a′ = − 3t1a2+3t1ba+t21a2

t21a+3t1b+9c−2a

b′ = a + b +
3t1a2+3t1ba+t21a2

t21a+3t1b+9c−2a

c′ = c − 2a
9 − 6t1a2+6t1ba+2t21a2

9t21a+27t1b+81c−18a

d′ = d

t′1 = − t21a+3t1b+9c−2a
3a+3b+t1a .

(2.52)

In all the other cases, the solution {a, b, c, d, t1} is unique. �

An example of a polynomial with t1a+2a+2b = 0 and its parasitic solution
is given in Figure 2.10(b). With increasing order, the proofs by contradiction
like the proofs given above become very complex. Even for higher-order poly-
nomials, however, the solution can typically be assumed unique except for a
lower-dimensional set of degenerate cases. Proofs for such other cases can also
be obtained using the Gröbner basis computation that is discussed more in
detail in Chapter 6.

2.5 Conclusions

In this chapter, we have presented super-resolution image reconstruction in a
multichannel sampling framework. We have given a mathematical description,
both for signals in a general Hilbert space and for bandlimited signals. Next,
we have shown that sampling can be written as a projection operator, and
we have presented an interpretation of aliasing in such a setup. We have also
given an overview of existing super-resolution algorithms, with an emphasis
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on the frequency domain methods for image registration. Finally, we showed
that the solution to the super-resolution problem formulated in Section 2.1 is
generally unique if enough samples are taken. In the next chapters, we will
present different methods to compute this solution, mainly to find the correct
alignment parameters between a set of images.



Chapter 3

Registration of Partially
Aliased Signals

In this chapter, we present a method for the registration of partially aliased
images [112,117,118,119]. The registration parameters between a pair of images
are computed using the aliasing-free part of the spectrum. As we explicitly use
the Fourier transform, our method is limited to bandlimited signals described
in the Fourier basis. Although this limits the applicability of such a method,
it is a very reasonable assumption in practice. The optical system of a digital
camera typically acts as a lowpass filter, and attenuates or blocks all high
frequencies. The captured image will therefore be an essentially bandlimited
signal.

Our method computes the planar shift and rotation parameters between a
pair of images. The separability of the shift and rotation estimation is shown
in Section 3.1, and frequency domain rotation and shift estimation methods for
aliasing-free images are described in Section 3.2 and Section 3.3, respectively.
A modification of these algorithms for the registration of partially aliased im-
ages is presented in Section 3.4. A super-resolution reconstruction method is
presented in Section 3.5, and simulation results are shown in Section 3.6.

3.1 Planar motion estimation

As described in Chapter 2, Fourier based image registration methods only allow
global motion in a plane parallel to the image plane. In such a case, the motion
between two images can be described as a function of three parameters that
are all continuous variables: horizontal and vertical shifts x1,h and x1,v and a
planar rotation angle θ1.

A frequency domain approach allows us to estimate the horizontal and
vertical shift and the (planar) rotation separately. Assume we have a continuous
two-dimensional reference signal f0(x) and its shifted and rotated version f1(x):

f1(x) = f0(R(x + x1)), (3.1)

with x =

(

xh

xv

)

, x1 =

(

x1,h

x1,v

)

, R =

(

cos θ1 − sin θ1

sin θ1 cos θ1

)

.

31
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This can be expressed in Fourier domain as

F1(u) =

∫∫

x

f1(x)e−j2πu
T

xdx

=

∫∫

x

f0(R(x + x1))e
−j2πu

T
xdx

= ej2πu
T

x1

∫∫

x′

f0(Rx′)e−j2πu
T

x
′

dx′,

(3.2)

with F1(u) the two-dimensional Fourier transform of f1(x) and the coordinate
transformation x′ = x + x1. After another transformation x′′ = Rx′, the
relation between the amplitudes of the Fourier transforms can be computed as

|F1(u)| =

∣

∣

∣

∣

ej2πu
T

x1

∫∫

x′

f0(Rx′)e−j2πu
T

x
′

dx′
∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

x′

f0(Rx′)e−j2πu
T

x
′

dx′
∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

x′′

f0(x
′′)e−j2πu

T (RT
x

′′)dx′′
∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

x′′

f0(x
′′)e−j2π(Ru)T

x
′′

dx′′
∣

∣

∣

∣

= |F0(Ru)| .

(3.3)

We can see that |F1(u)| is a rotated version of |F0(u)| over the same angle θ1

as the spatial domain rotation (see Figure 3.1). |F0(u)| and |F1(u)| do not
depend on the shift values x1, because the spatial domain shifts only affect
the phase values of the Fourier transforms. Therefore we can first estimate the
rotation angle θ1 from the amplitudes of the Fourier transforms |F0(u)| and
|F1(u)|. After compensation for the rotation, the shift x1 can be computed
from the phase difference between F0(u) and F1(u).

3.2 Rotation estimation

The rotation angle between |F0(u)| and |F1(u)| can be computed as the an-
gle θ1 for which the Fourier transform of the reference image |F0(u)| and the
rotated Fourier transform of the image to be registered |F1(Ru)| have max-
imum correlation. This implies the computation of a rotation of |F1(u)| for
every evaluation of the correlation, which is computationally heavy and thus
practically difficult.

If |F0(u)| and |F1(u)| are transformed in polar coordinates, the rotation
over the angle θ1 is reduced to a (circular) shift over θ1. We can compute the
Fourier transform of the polar spectra |F0(u)| and |F1(u)|, and compute θ1 as
the phase shift between the two (as it was done by Marcel et al. [66] and Reddy
and Chatterji [87]). This requires a transformation of the spectrum to polar
coordinates. The data from the uniform uh, uv-grid need to be interpolated to
obtain a uniform ur, uθ-grid. Mainly for the low frequencies, which generally
contain most of the energy, the interpolations are based on very few function
values and thus introduce large approximation errors. An implementation of
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(a) (b)

(c) (d)

Figure 3.1: The amplitude of the Fourier transform of an image is rotated over the
same angle (θ1 = 25◦) as the spatial domain image. (a) Original image. (b) Ro-
tated image. (c) Fourier transform amplitude of the original image. (d) Fourier
transform amplitude of the rotated image.

this method is also computationally intensive.

Our approach is computationally much more efficient than the two methods
described above. First of all, we compute the frequency content H as a function
of the angle θ by integrating over radial lines:

H(θ) =

∫ θ+∆θ/2

θ−∆θ/2

∫ ∞

0

|F (ur, uθ)|durduθ. (3.4)

In practice, |F (ur, uθ)| is a discrete signal. Different methods exist to relate
discrete directions to continuous directions, like for example digital lines [121].
Here, we compute the discrete function H(θ) as the average of the values on the
rectangular grid that have an angle θ−∆θ/2 < uθ < θ +∆θ/2. As we want to
compute the rotation angle with a precision of 0.1 degrees, H(θ) is computed
every 0.1 degrees. To get a similar number of signal values |F (ur, uθ)| at every
angle, the average is only evaluated on a circular disc of values for which ur < ρ
(where ρ is the image radius, or half the image size). Finally, as the values
for low frequencies are very large compared to the other values and are very
coarsely sampled as a function of the angle, we discard the values for which
ur < ǫρ, with ǫ = 0.1. Thus, H(θ) is computed as the average of the frequency
values on a discrete grid with θ − ∆θ/2 < uθ < θ + ∆θ/2 and ǫρ < ur < ρ.
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This results in a function H(θ) for both |F0(u)| and |F1(u)| (Figure 3.2).
The exact rotation angle can then be computed as the value for which their
correlation reaches a maximum. Note that only a one-dimensional correlation
has to be computed, as opposed to the two-dimensional correlation approaches
in [66] and [87].

−150 −100 −50 0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

 

 
original image
rotated image

H
(
θ
)

angle θ (degrees)

(a)

−30 −20 −10 0 10 20 30
3.8

4

4.2

4.4

4.6

4.8

5

5.2
x 10

10

rotation angle θ1 (degrees)

c
o
r
r
e
la

t
io

n

(b)

Figure 3.2: Rotation estimation. (a) Average Fourier domain amplitude as a
function of the angle H(θ) for the two images from Figure 3.1. (b) Correlation
between H0(θ) and H1(θ), with a maximum at the rotation angle of θ1 = 25◦.

Of course, the use of such a radial projection also reduces the available
information, and might introduce ambiguities in the estimation. For example,
for the Fourier transform image shown in Figure 3.3(a), the function H(θ) is a
constant, and remains the same for any applied rotation angle. It is therefore
impossible to estimate the rotation for such images using our projection-based
method, and the full, two-dimensional information is required. Our algorithm
works best if some strong directionality is present in the images, as will also be
shown in Section 3.6.

3.3 Shift estimation

A shift of the image parallel to the image plane can be expressed in Fourier
domain as a linear phase shift:

F1(u) =

∫∫

x

f1(x)e−j2πu
T

xdx =

∫∫

x

f0(x + x1)e
−j2πu

T
xdx

= ej2πu
T

x1

∫∫

x′

f0(x
′)e−j2πu

T
x

′

dx′ = ej2πu
T

x1F0(u).

(3.5)

It is well known that the shift parameters x1 can thus be computed as the slope
of the phase difference ∠(F1(u)/F0(u)) (see also [34,42,54,63,66,87,100]). To
make the solution less sensitive to noise, we fit a plane through the phase
differences using a least squares method.
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Figure 3.3: Ambiguity in rotation estimation due to projections. For certain
images, like the one with Fourier transform shown in (a), the rotation angle can
not be estimated. The frequency content as a function of the angle H(θ) is almost
constant (b). The variations that are visible in (b) are due to the discrete grid of
pixels.

3.4 Planar motion estimation for partially aliased
images

If the low resolution images are aliased, the methods described in the previous
sections do not result in precise registration anymore. Due to the aliasing, the
relations (3.2), (3.3) and (3.5) between the Fourier transforms of the images
are no longer valid. Different parts of the spectrum overlap, and the Fourier
transforms of two shifted images can now differ by more than a linear phase
shift.

Let us first analyze this on a one-dimensional periodic, bandlimited signal
f(t) with maximum frequency K and period T = 1 (see Figure 3.4(a)). Its
Fourier series coefficients are given by αk (−K ≤ k ≤ K). As described in
Chapter 2, we sample f(t) with two sets of N samples, resulting in

y0(n) = f
( n

N

)

y1(n) = f

(

n + t1
N

)

.
(3.6)

The shift between the two sets of samples is denoted t1. If N > 2K, the
sampled signals are not aliased, and their discrete Fourier transforms can be
written as (see also 2.23)

Y0(k) =
1

N

N−1
∑

n=0

y0(n)W−kn = αk

Y1(k) =
1

N

N−1
∑

n=0

y1(n)W−kn = αkzk
1 .

(3.7)
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As discussed above, the shift t1 can be directly derived from Y1/Y0. How-
ever, when the sampled signals are aliased, or N ≤ 2K, these simple relations
do not hold anymore. Instead, we have now (2.23):

Y0(k) =
1

N

N−1
∑

n=0

y0(n)W−kn =
∑

i

αk+iN

Y1(k) =
1

N

N−1
∑

n=0

y1(n)W−kn =
∑

i

αk+iNzk+iN
1 .

(3.8)

Aliasing terms modify the linear phase relation between Y0 and Y1. If N ≤ K,
all frequencies are aliased. Methods to reconstruct the signal from such samples
will be discussed in Chapter 5 and 6. In this chapter, we consider N > K,
which means that not all the frequencies are aliased (Figure 3.4(b)). For the
low frequencies k, with |k| < N − K, only a single term in the sums in (3.8)
is non-zero, and Y1(k)/Y0(k) is still linear phase. The shift can therefore be
estimated from the low, aliasing-free frequencies. A lowpass filter could also
be applied to the spatial domain signals, such that the aliased components
are removed from the sampled signals (Figure 3.4(c)). The shifts can then be
estimated using for example a correlation operation.

An extension to two dimensions is straightforward. The two sampled signals
y0(n) and y1(n) are first lowpass filtered with cutoff frequency N − K (Nh −
Kh and Nv − Kv in horizontal and vertical dimension, respectively). The
filtered images are identical up to their registration parameters, and can be
registered using the methods described in Section 3.2 and Section 3.3. As both
methods are applied in the Fourier domain, the filtering step can be avoided by
applying the registration algorithms immediately to the low frequencies. The
rotation estimation is then based on the frequencies for which ǫρ < ur < ρmax

(with ρmax = minh,v((N −K)/N)), and the horizontal and vertical shifts are
estimated from the phase differences for |k| < N − K.

High frequency components of a signal offer a higher precision for registra-
tion than low frequency components (the signal changes more rapidly). This
motivates the extra emphasis on the high frequency part of the signal in the
registration method by Reddy and Chatterji [87]. However, the high frequency
part of a signal typically has a lower signal-to-noise ratio, and in undersampled
signals, they also suffer most from aliasing. This is why we discard the high
frequency components in our registration algorithm. Similar methods for shift
estimation on aliased images were presented by Kim and Su [54] and Stone et
al. [100].

3.5 Reconstruction method

When the low resolution images are accurately registered, the samples of the
different images can be combined to reconstruct a high resolution image. In
our reconstruction algorithm, the samples of the different low resolution images
are first expressed in the coordinate frame of the reference image. Then, based
on these known samples, a Delaunay triangulation of the available data is
made using the Qhull algorithm [6, 70]. This triangulation is then used to
interpolate the image values on a uniform high resolution grid. We chose bicubic
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interpolation because of its low computational complexity and good results.
This completes our super-resolution algorithm. An overview of the complete
algorithm is given in Algorithm 3.1. In this algorithm, the parameters ǫ = 0.1
and ρmax = 0.6 are chosen based on the fact that we want to discard the lowest,
sparsely sampled frequencies, and on the model of partially aliased signals that
we used. The precision of the rotation estimation (0.1 degrees), and the extent
of the possible rotations (-30 to 30 degrees) are chosen empirically and depend
on the specific application.

Algorithm 3.1: Super-resolution imaging on partially aliased images. A high
resolution image fHR (with Fourier transform FHR) is reconstructed from a set
of M low resolution, partially aliased images fLR,m (m = 0, 1, . . . , M − 1) with
Fourier transform FLR,m.

1. Multiply the images fLR,m by a Tukey window to make them circularly sym-
metric. The windowed images are called fLR,w,m.

2. Compute the Fourier transforms FLR,w,m of all low resolution images.

3. Rotation estimation: the rotation angle between every image fLR,w,m (m =
1, . . . , M − 1) and the reference image fLR,w,0 is estimated.

(a) Compute the polar coordinates (ur, uθ) of the Fourier transform samples.

(b) For every angle θ, compute the average value Hm(θ) of the Fourier coeffi-
cients for which θ−1 < uθ < θ +1 and 0.1ρ < ur < ρmax. The angles are
expressed in degrees and Hm(θ) is evaluated every 0.1 degrees. A typical
value used for ρmax is 0.6.

(c) Find the maximum of the correlation between H0(θ) and Hm(θ) between
-30 and 30 degrees. This is the estimated rotation angle θm.

(d) Rotate image fLR,w,m by −θm to cancel the rotation.

4. Shift estimation: the horizontal and vertical shifts between every image fLR,w,m

(m = 1, . . . , M − 1) and the reference image fLR,w,0 are estimated.

(a) Compute the phase difference between image m and the reference image
as ∠(FLR,w,m/FLR,w,0).

(b) For all frequencies |k| < N − K write the linear equation describing a
plane through the computed phase difference with unknown slopes xm.

(c) Find the shift parameters xm as the least squares solution of the equa-
tions.

5. Image reconstruction: a high resolution image fHR is reconstructed from the
registered images fLR,m (m = 0, . . . , M − 1).

(a) For every image fLR,m, compute the coordinates of its pixels in the coor-
dinate frame of fLR,0 using the estimated registration parameters.

(b) From these known samples, interpolate the values on a uniform high res-
olution grid using bicubic interpolation.
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(a) Original continuous-time signal in time and frequency domain.
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(b) Sampled signal in time and frequency domain, with aliasing.
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(c) Lowpass filtered sampled signal in time and frequency domain.

Figure 3.4: In the presence of (partial) aliasing, the shift between two sampled
signals cannot be found directly. However, after lowpass filtering, the shift can be
easily determined.
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Number of Images The optimal number of low resolution images to use for
a super-resolution algorithm depends on many parameters: registration ac-
curacy, imaging model, total frequency content, etc. Intuitively, there is a
trade-off between two effects. On one hand, the more images there are, the
better the reconstruction should be. On the other hand, there is a limit to the
improvements that can be obtained: even from a very large number of very
low resolution images of a scene, it will not be possible to reconstruct a sharp,
high resolution image. Blur, noise, and inaccuracies in the signal model limit
the increase in resolving power that can be obtained. In our case, the motion
estimation algorithm is limited to subsampling by a factor less than two in both
dimensions (because our algorithm needs an aliasing-free part of the spectrum,
see also Section 3.4). Therefore, the resolution can only be really increased by
(almost) a factor of four. Any supplementary increase in number of pixels can
as well be performed by upsampling one of the signals and applying lowpass
interpolation. It does not result in an increase of resolving power, but noise can
be reduced. Figure 3.5 shows the mean squared error (MSE) of the reconstruc-
tion using our algorithm versus the number of images used. The performance
increases rapidly with the first six images, but the improvement is marginal
beyond that.

In the simulations in the next section, we will use four images as input
to the super-resolution algorithms. Assuming the low resolution images were
subsampled by almost two, this is the theoretical limit for which our algorithm
should be able to reconstruct an image of almost double resolution. In other
words, four images are a minimum to have a well-determined system when
upsampling by two.
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Figure 3.5: Mean squared error (MSE) of the reconstructed image as a function
of the number of images used in the super-resolution algorithm from Algorithm 3.1.
Six images form a good trade-off between performance and computational com-
plexity. We performed 25 simulations on the images shown in Figure 3.6(a) and
3.6(b) for each number of input images.
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3.6 Results

The super-resolution algorithm described above is tested with numerical sim-
ulations. Practical experiments will be described in Chapter 4. A simulation
gives complete control over the setup and gives exact knowledge of the regis-
tration parameters. It enables us to test the performance of the registration
and the reconstruction algorithms separately. The three images that were used
in the simulations are shown in Figure 3.6.

(a) Building (b) Castle (c) Leaves

Figure 3.6: High resolution images used in the simulations.

We compared our registration algorithm to the frequency domain algorithms
by Marcel et al. [66] and by Lucchese and Cortelazzo [63]. Because Lucchese
and Cortelazzo use the same phase correlation method as Marcel et al., the
method by Lucchese and Cortelazzo is not included in the simulations where
only shifts are used. Next, we also compared it to the spatial domain method
based on Taylor expansions by Keren et al. [51]. In the simulations using only
shifts, our registration method was also compared to the algorithm by Bergen
et al. [8], as it was implemented in the super-resolution imaging software by
Farsiu et al. [30]. This was only done for the case of horizontal and vertical
shifts, because image rotations are not (yet) implemented in this software.

We started from a high resolution image (3536×3536 pixels), which we con-
sider as equivalent to continuous space. This image was then multiplied by a
Tukey window (Figure 3.7(a)) to make it circularly symmetric and thus avoid-
ing all boundary effects. Next, three shifted and rotated copies are created from
this high resolution image. Gaussian zero-mean random variables are used for
the shift (pixels) and rotation (degrees) parameters. For the shifts, a standard
deviation of 5 is used, while the rotation angles have a standard deviation of
0.5. The different images are then lowpass filtered using an ideal lowpass filter
with cutoff frequency 0.12NHR (with NHR the sampling frequency of the high
resolution image) to achieve the setup specified in Section 3.4 (K < N < 2K).
The first of these images (not-moved reference image) will be the reconstruction
target for the super-resolution algorithm (Figure 3.7(b)). And finally, the four
images are downsampled by a factor eight. This results in four low resolution
(442 × 442 pixels), shifted and rotated images that can be used as input for
the super-resolution algorithm (Figure 3.8(a)). They are aliasing-free in the
frequency band (−0.04N , 0.04N), and are aliased in the rest of the spectrum
as discussed in Section 3.4. By construction, all shifts are multiples of 0.125,
but this information is not used in any of the registration algorithms to keep
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them generally applicable. An example of a reconstructed image is shown in
Figure 3.8(b).

The results using the different algorithms are summarized in Table 3.1. The
registration results with our algorithm are better than the frequency domain
algorithm by Marcel et al. [66] and similar to the algorithm by Lucchese and
Cortelazzo [63]. Our algorithm performs worse on the rotation estimation, but
an order of magnitude better in the shift estimation. Also, when the variance
of the rotations is increased, our algorithm has similar behavior as in Table 3.1,
while the other frequency domain algorithms degrade rapidly. The algorithm
by Keren et al. [51] performs best in the rotation estimation and similar to our
algorithm in the shift estimation.

Table 3.1: Shift and rotation estimation. Comparison of the average absolute
error (µ) and the standard deviation of the error (σ) for the shift and rotation
parameters in the different algorithms. 150 simulations were performed for each of
the images (Figure 3.6).

Parameter Our algorithm Marcel et al. Lucchese et al. Keren et al.

µ σ µ σ µ σ µ σ

shift (pixels) 0.030 0.041 0.565 0.801 0.318 0.402 0.011 0.016

rot. angle (deg) 0.139 0.216 0.378 0.462 0.081 0.110 0.024 0.033

Another simulation was also made with the same setup, but only using
horizontal and vertical shifts (no rotations). The results of this simulation
are listed in Table 3.2. Our algorithm outperformed the other methods and
computed the parameters with very high precision. The algorithm by Marcel
et al. [66] has clearly lower precision than the other algorithms. The spatial
domain algorithms by Keren et al. [51] and by Bergen et al. [8] (as implemented
by Farsiu et al. [30]) outperform the frequency domain algorithm by Marcel et
al., but have lower precision than our algorithm.

Table 3.2: Shift estimation. Comparison of the average absolute error (µ) and
the standard deviation of the error (σ) for the shift parameter in the different
algorithms. 150 simulations with only horizontal and vertical shifts (no rotations)
were performed for each of the images (Figure 3.6).

Parameter Our algorithm Marcel et al. Keren et al. Bergen et al.

µ σ µ σ µ σ µ σ

shift (pixels) 3.1e-5 2.0e-4 0.314 0.377 4.1e-3 5.9e-3 5.5e-3 7.9e-3

Finally, a simulation was done using the same setup as for Table 3.1, but
without the windowing operation from Figure 3.7(a). This means that the in-
put images are no longer periodic, an assumption that is made in any Fourier
domain approach. However, such a setup is also more realistic, as real digi-
tal images are rarely periodic. The results of these simulations are shown in
Table 3.3.



42 Chapter 3.

(a)

(b)

Figure 3.7: Simulation setup. (a) Original image multiplied by a window to make
it circularly symmetric. (b) Lowpass filtered image to satisfy the reconstruction
conditions. This image is used as reconstruction target.
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(a)

(b)

Figure 3.8: Simulation setup. (a) Low resolution image used as input to the
super-resolution algorithm. (b) Reconstructed high resolution image.
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As expected, the performance of the Fourier domain methods decreases. Our al-
gorithm performs better now than the other frequency domain methods. More
surprisingly, the performance of the spatial domain algorithm by Keren et al.
is also lower than in the windowed case. This is mainly due to the border
effects: the shifts and rotations now cause differences between the images at
their borders. It still outperforms all the other algorithms, though.

Table 3.3: Shift and rotation estimation without windowing. Comparison of the
average absolute error (µ) and the standard deviation of the error (σ) for the shift
and rotation parameters in the different algorithms. No windowing operation was
applied to make the images periodic. 150 simulations were performed for each of
the images (Figure 3.6).

Parameter Our algorithm Marcel et al. Lucchese et al. Keren et al.

µ σ µ σ µ σ µ σ

shift (pixels) 0.484 0.702 0.815 4.841 47.025 80.788 0.135 0.275

rot. angle (deg) 0.237 0.324 1.173 16.923 13.558 27.242 0.033 0.038

In order to find the same motion parameters in the registration as the
parameters that were used to create the images, we need to reverse the order
in the registration. In other words, because we first shifted the images and
then rotated them in the simulation setup, we need to undo the rotation first
and then the shifts. Otherwise, a conversion would have to be made before
comparing the two.

A very precise registration algorithm is required for any super-resolution
algorithm to work. From the comparison in the simulations, it is clear that
our frequency domain algorithm and the spatial domain algorithm by Keren et
al. [51] are accurate enough to improve resolution and remove aliasing artifacts.
The other frequency domain algorithms by Marcel et al. [66] and Lucchese and
Cortelazzo [63] perform worse.

We can also observe that a bad image registration is fatal for the recon-
struction. In such cases, it would be better to reconstruct a larger image from
only one of the low resolution images using interpolation, even though this
does not increase the resolution. The artifacts due to bad motion estimation
are visually very noticeable (see Figure 3.9 and 3.10).

Directionality Our algorithm works best on images with strong frequency con-
tent in certain directions (Figure 3.11(a) and (b)). In that case, our algorithm
outperforms all other algorithms, including the spatial domain algorithm by
Keren et al. [51] (mainly for large rotation angles). The accuracy of our rota-
tion estimation (and consequently also of the shift estimation) depends on the
presence of some strong directionality in the images. This can be observed in
Table 3.4, where the results from Table 3.1 for our algorithm are displayed per
image. If such frequency directions are not present (Figure 3.11(c) and (d)),
the registration performance decreases. The results with our rotation estima-
tion algorithm are then worse than with the algorithm by Keren et al., but
still comparable to or better than those using the other frequency domain al-
gorithms.
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(a)

(b)

Figure 3.9: If the images are badly registered, it is better to interpolate a single
image than to reconstruct from all the images together. (a) Reconstruction after
accurate registration. (b) Reconstruction after bad registration.
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Figure 3.10: If the images are badly registered, it is better to interpolate a single
image than to reconstruct from all the images together. Bicubic interpolation on
a single image.

This dependence on directionality is related to the projection along radial lines
in our rotation estimation algorithm. This highly reduces the computational
complexity of the algorithm, as only a one-dimensional correlation is required
instead of the regular two-dimensional correlations. However, because of the
projection, it is also more subject to errors if there are no strong directions in
the image.

Table 3.4: Rotation estimation works better on images with strong directionality.
Comparison of the average absolute error (µ) and the standard deviation of the
error (σ) for the shift and rotation parameters on different images. 150 simulations
were performed for each of the images (Figure 3.6).

Parameter image 3.6(a) image 3.6(b) image 3.6(c)

µ σ µ σ µ σ

shift (pixels) 0.036 0.044 0.027 0.030 0.028 0.045

rotation angle (deg) 0.045 0.031 0.070 0.038 0.304 0.363

Image Size Next to the presence of directional frequency content, the size of
the low resolution images also constrains the precision of our rotation estima-
tion algorithm. As the frequency values have to be averaged over a small angle
(typically a few degrees), the number of values to be averaged will be very
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Table 3.5: Better performance using larger images. Comparison of the average
absolute error (µ) and the standard deviation of the error (σ) for the shift and
rotation parameters for different image sizes using our algorithm. 150 simulations
were performed for each of the three images (Figure 3.6).

Input image size 221x221 pixels 442x442 pixels

µ σ µ σ

shift (pixels) 0.2022 0.6022 0.0303 0.0412

rotation angle (degrees) 0.2539 0.3211 0.1395 0.2167

limited for small images. This number of values also varies for different angles
(e.g. more values around 0 and 90 degrees, less in between), which biases the
computed functions. In Table 3.5, simulation results with our algorithm are
compared for different image sizes. This explains also why we consider a large
disc for the rotation estimation, as estimates based on the aliasing-free part
alone are not accurate enough.

3.7 Conclusions

In this chapter we described a frequency domain method for the registration
of planarly shifted and rotated images. The rotation estimation is based on a
radial projection of the Fourier transforms of the images. The rotation angle
is then found as the maximum of the (one-dimensional) correlation between
two such projections. Shifts are estimated from the (linear) phase difference
between the two Fourier transforms. This method was extended to partially
aliased images by using only the frequencies that are not aliased. A super-
resolution method based on this registration algorithm was given, and its per-
formance tested in a number of simulations. Our method outperforms most
other existing registration methods. It works best if the input images are large
enough, and have some strong directionality. This sensitivity to image size and
directionality is due to the projections in the rotation estimation.

All the algorithms described above (except the one by Bergen et al.) are
also implemented in the Matlab program with GUI available online [120].
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(a) (b)

(c) (d)

Figure 3.11: Our algorithm works best on images with strong frequency content
in certain directions ((a) and its Fourier transform (b)). If the energy is homoge-
neously spread among all possible directions (as can be seen in (c) and its Fourier
transform (d)), the performance of the motion estimation algorithm decreases due
to the projections onto a one-dimensional signal performed in our method.



Chapter 4

Application to Digital
Cameras

In this chapter we apply the super-resolution techniques described in Chapter 3
to some sets of real images taken with a digital camera. Such experiments al-
low us to test our algorithms on some real measurement data. However, as the
true motion parameters and the exact high resolution image are unknown, the
results can only be judged visually. First, we measure the spatial frequency
response of the digital cameras, to verify that frequencies above half the sam-
pling frequency are captured. Then we apply Algorithm 3.1 to the sequences of
images taken with these cameras and reconstruct an image with almost twice
the original resolution. All aliasing artifacts are removed in the resulting im-
ages. We applied these experiments both to a Leica DC250 and a Sigma SD10
digital camera.

4.1 Leica DC250 camera

We ran a first experiment with a Leica DC250 black and white digital camera.
We used a Nikon 85mm lens in this experiment that was mounted on the Leica
camera using a C mount to Nikon adapter. A picture of the camera with optical
system is shown in Figure 4.1. This camera produces images of 1280 × 1024
pixels, and is often used in microscopy.

4.1.1 Spatial frequency response

The spatial frequency response (SFR) of the camera is measured following the
ISO 12233:2000 standard on resolution measurements [45]. We measure first
the opto-electronic conversion function (OECF) of the camera to linearize the
camera response function. We use the 15 patches of the ISO 15739 noise test
chart for this (see Figure 4.3(a)), and measure for each patch the luminance
and the average camera response. This results in 15 values of the OECF. In
between, the function is linearly interpolated such that we obtain its value for
all the 256 possible gray levels. The OECF for the Leica DC250 is shown in
Figure 4.2.

49
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Figure 4.1: Leica DC250 digital camera with a Nikon 85mm optical system used
in the first experiment.
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Figure 4.2: Opto-electronic conversion function (OECF) for the Leica DC250
digital camera. Values are linearly interpolated between the 15 measured values.

Next, four images are taken of the ISO 12233:2000 resolution test chart
to measure the spatial frequency response (see Figure 4.3(b)). The spatial
frequency responses are computed for both horizontal and vertical frequencies
using the slanted black to white and white to black edges at the center of the
chart. This can be done using the SFRwin application. It computes the SFR
based on the interpolated edge point at each row or column. The results are
then averaged over the four images, and give the final SFR measurement (see
Figure 4.4(a)).

The computed spatial frequency response uses relative frequencies that are
normalized with respect to the sampling frequency. With an image height of the
resolution chart of 1017 pixels, and a pixel pitch1 of 6.7 µm, this corresponds
to 1017 line widths per picture height and 75 cycles/mm2 on the image sensor.

1The pixel pitch is defined as the distance between the centers of two adjacent pixels.
2The number of cycles/mm specifies the resolution characteristics in terms of the response

of an imaging system to a linear radiance sine wave input, as a function of the frequency of
the sine wave [45].
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(a)

(b)

Figure 4.3: (a) ISO 15739 noise test chart used to measure the camera OECF.
(b) ISO 12233 resolution test chart used to measure the camera SFR.
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Figure 4.4: (a) Horizontal (– –) and vertical (—) relative spatial frequency
response (SFR) for the Leica DC250 digital camera using a Nikon 85mm lens.
A relative spatial frequency of 1 corresponds to the sampling frequency, or 1017
line widths per picture height and 75 cycles/mm on the image sensor. (b) Vertical
relative spatial frequency response (—) and its aliased versions (– –) after sampling.

From Figure 4.4(a) we can see that the spatial frequency response is non-zero
well beyond the limit of half the sampling frequency. The resulting images will
therefore be aliased, as it is also shown in Figure 4.4(b). This figure shows the
SFR with its aliased components after sampling.

4.1.2 Super-resolution image reconstruction

As shown in Figure 4.4, the images taken with this camera setup are aliased.
This means that we can apply our super-resolution techniques to these images
and reconstruct a higher resolution image by removing the aliasing. Although
there is no aliasing-free part in the spectrum, the signal-to-aliasing ratio is
relatively high for low frequencies, and we can still apply Algorithm 3.1.

For the actual experiment, we fixed the camera firmly on a stable tripod
that allows only horizontal and vertical shifts and planar rotations parallel to
the image plane. Using this setup, we took four shifted and rotated images of
a planar scene (Figure 4.5). The planar scene is a resolution test chart in a
plane parallel to the image plane of the camera. Algorithm 3.1 can then be
applied to these four images, and an image with almost double resolution is
reconstructed (see Figure 4.6). The aliasing is accurately removed in this high
resolution image and the original patterns are visible again. The computed
registration parameters are given in Table 4.1, together with the parameters
found using the algorithms by Marcel et al. [66], Lucchese and Cortelazzo [63],
and Keren et al. [51]. These are the same algorithms as the ones used for
comparison in Chapter 3. As the actual motion parameters are unknown, we
can only compare the results after reconstruction of the high resolution image
(see Figure 4.7 and 4.8). For the reconstruction of the high resolution images,
we used the bicubic interpolation method described in Chapter 3. The results
shown in Figure 4.6 - 4.8 are very good for both Algorithm 3.1 and the algorithm
by Keren et al. From the results obtained with the algorithms by Marcel et
al. and by Lucchese and Cortelazzo, we can see that at least one of the images
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Table 4.1: Registration parameters for the four Leica images of a resolution chart
using Algorithm 3.1 and the algorithms by Marcel et al., Lucchese and Cortelazzo,
and Keren et al.

image pairs Algorithm 3.1 Marcel et al.

xm,h xm,v θm xm,h xm,v θm

image 2 - image 1 9.24 -3.84 0.9 11.2 -4.2 1.06

image 3 - image 1 9.74 -2.21 1.2 12.4 0.2 1.39

image 4 - image 1 10.32 -5.00 1.2 12.4 -5.0 1.39

Lucchese et al. Keren et al.

xm,h xm,v θm xm,h xm,v θm

image 2 - image 1 9.00 -0.50 1.21 9.27 -3.86 0.92

image 3 - image 1 10.00 2.00 1.68 9.86 -2.29 1.14

image 4 - image 1 11.25 -0.75 1.63 10.37 -5.06 1.17

was badly aligned. These results are clearly worse than our reconstruction and
perform no improvement over the lower resolution input images.

In this experiment, the maximum signal frequency is unknown. As shown
in Figure 4.4, the entire spectrum is aliased, so no aliasing-free part can be
determined. We fixed the part of the spectrum from which shifts are estimated
to the central 5% of the frequencies, as this is also the part with the highest
signal-to-aliasing ratio. For the rotation estimation, a disc with ρ = 0.6 is
used in order to get sufficient precision. This is also approximately the area in
which the aliased component of the sampled spectrum is smaller than the base
component. The low performance of the algorithm by Marcel et al. and the
shift estimation part of the algorithm by Lucchese and Cortelazzo (which is the
same as the shift estimation by Marcel et al.) can be partially explained by
their memory requirements. Due to the size of the input images, the required
additional upsampling and interpolation in these methods uses too much mem-
ory to be performed on a regular computer. The upsampling is therefore only
performed at a lower rate, and the shifts are consequently also computed at
lower precision.
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(a)

(b)

Figure 4.5: One of the four images taken with the Leica DC250 camera as input
to Algorithm 3.1 (a), with a detail that clearly shows the aliasing in the image (b).
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Figure 4.6: High resolution image reconstructed from four Leica DC250 input
images using Algorithm 3.1. Zoomed images of the central part are shown to
display the differences better.

Figure 4.7: Results of super-resolution reconstruction using the registration algo-
rithm by Marcel et al. on the Leica DC250 images of the resolution chart. Zoomed
images of the central part are displayed to show the differences better.
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(a)

(b)

Figure 4.8: Results of other super-resolution algorithms on the Leica DC250
images of the resolution chart. Zoomed images of the central part are displayed to
show the differences better. (a) Registration algorithm by Lucchese and Cortelazzo.
(b) Registration algorithm by Keren et al.
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4.2 Sigma SD10 camera

In a second experiment, we used a Sigma SD10 digital camera (see Figure 4.9).
This camera uses a Foveon X3 sensor, which has three photodetectors (for red,
green, and blue) at every pixel location. We used a Sigma 18-50 mm lens with
this camera. The images captured are 2268 × 1512 pixels.

Figure 4.9: Sigma SD10 digital camera with a Sigma 18-50 mm lens used in the
second experiment.

4.2.1 Spatial frequency response

First, we measured the camera’s spatial frequency response using the same
methodology as described in the previous section. Its OECF and SFR are
shown in Figure 4.10(a) and 4.10(b), respectively. With a pixel pitch of 9.12 µm
and an image height of 1512 pixels, the sampling frequency corresponds to 1512
line widths per picture height, or 55 cycles per millimeter on the image sensor.
We can again see that the modulation is non-zero above half the sampling
frequency, indicating that aliasing artifacts can occur in images taken with this
camera.

4.2.2 Super-resolution image reconstruction

Four pictures were taken with this camera in an outdoor environment. During
the image capture, the camera was held manually in approximately the same
position. This causes small shifts of the order of ten pixels and rotations of a
fraction of a degree between the images. Although these movements are not
guaranteed to be parallel to the image plane, we can make this approximation,
as the movements are small and the objects are at a large distance. There
was no motion in the scene between the different images. A uniform motion
would pose no problems, and is equivalent to a camera motion. However, if
there would be non-uniform motion of different objects in different directions,
our method would fail because it fits a single set of motion parameters to the
whole image. One of these input images is shown in Figure 4.11, with a detail
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Figure 4.10: (a) Opto-electronic conversion function (OECF) for the Sigma SD10
digital camera. The function is linearly interpolated between the 15 measurements.
(b) Horizontal (– –) and vertical (—) relative spatial frequency response (SFR) for
the Sigma SD10 digital camera using a Sigma 18-50 mm optical system that was
set to focus at 35 mm. A relative spatial frequency of 1 corresponds to the sampling
frequency, or 1512 line widths per picture height and 55 cycles/mm on the image
sensor.

where aliasing is visible in Figure 4.13. Aliasing artifacts can be seen in the
high frequency horizontal ventilation grids.

We apply Algorithm 3.1 to these four images, and obtain a double resolu-
tion image without any aliasing artifacts (Figure 4.12(a) and 4.14). As in the
previous experiment, this result is compared to the results obtained with the
algorithms by Marcel et al. [66], Lucchese and Cortelazzo [63], and Keren et
al. [51] (see Figure 4.12 and 4.15 - 4.17). The registration parameters for the
different algorithms are given in Table 4.2. Because the images are even larger
than those used in the first experiment, no more interpolation could be per-
formed in the algorithms by Marcel et al. and the shift estimation by Lucchese
and Cortelazzo. The parameters are estimated up to integer precision only.
Like in the first experiment, the algorithms by Marcel et al. and by Lucchese
and Cortelazzo do not give satisfactory results. The results obtained with Al-
gorithm 3.1 and the algorithm by Keren et al. are comparable, and accurately
remove the aliasing.

4.3 Conclusions

In two practical experiments, we have shown the good performance of the
algorithm presented in Chapter 3. In both experiments, we used a sequence of
four images taken with a digital camera to reconstruct an image with almost
double resolution. We showed that the aliasing present in the input images was
accurately removed using Algorithm 3.1.
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Figure 4.11: One of the four images taken with the Sigma SD10 camera as input
to Algorithm 3.1. A detail is shown in Figure 4.13.

Table 4.2: Registration parameters for the four Sigma images of an outdoor scene
using Algorithm 3.1 and the algorithms by Marcel et al., Lucchese and Cortelazzo,
and Keren et al.

image pairs Algorithm 3.1 Marcel et al.

xm,h xm,v θm xm,h xm,v θm

image 2 - image 1 -12.75 -10.34 -0.1 -17 -10 0

image 3 - image 1 14.65 12.96 0 22 13 0

image 4 - image 1 -12.08 1.54 -0.1 -18 2 0

Lucchese et al. Keren et al.

xm,h xm,v θm xm,h xm,v θm

image 2 - image 1 -15 -4 -0.53 -12.51 -10.43 -0.01

image 3 - image 1 11 36 1.66 15.22 13.08 0.01

image 4 - image 1 -14 -6 -0.63 -12.76 1.74 -0.09
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(a) (b)

(c) (d)

Figure 4.12: Results of the different super-resolution algorithms on the Sigma
SD10 images of the outdoor scene. Details of the central part of the images are
displayed in Figure 4.14 - 4.17 to show the differences better. (a) Algorithm 3.1.
(b) Registration algorithm by Marcel et al. (c) Registration algorithm by Lucchese
and Cortelazzo. (d) Registration algorithm by Keren et al.
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Figure 4.13: Detail of Figure 4.11 where aliasing is well visible.

Figure 4.14: Detail of Figure 4.12(a). Algorithm 3.1.
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Figure 4.15: Detail of Figure 4.12(b). Algorithm by Marcel et al.

Figure 4.16: Detail of Figure 4.12(c). Algorithm by Lucchese and Cortelazzo.
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Figure 4.17: Detail of Figure 4.12(d). Algorithm by Keren et al.
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Chapter 5

Registration of Totally
Aliased Signals using
Subspace Methods

If the entire spectrum of the sampled signals is aliased, or N < K, a pairwise
registration of the signals is not possible anymore. All the signals need to be
registered jointly, before a high resolution reconstruction can be made. We need
to solve directly the set of nonlinear equations that is described in Chapter 2.
In this chapter, we will use a subspace analysis of this setup to reconstruct the
high resolution signal [114]. We will first consider one-dimensional signals that
have an unknown shift. This approach is then generalized to two-dimensional
signals (images), where we still only consider (planar) shifts for the motion.

Section 5.1 presents a method using matrix rank to compute the registration
parameters [113]. It is based on an analysis of the Fourier series description
of the signals, and is therefore only applicable to bandlimited signals. An
approach for signals in an arbitrary Hilbert space is then described in Sec-
tion 5.2 [116]. It uses projections onto a lower-dimensional Hilbert space to
compute the shifts. Some practical issues about these two subspace-based
methods are discussed in Section 5.3. The complexity of the different methods
is given in Section 5.4, and simulation results are shown in Section 5.5.

5.1 Solution using matrix rank

In this section, we describe a first solution method that uses specific proper-
ties of the Fourier transform. It is therefore only applicable to bandlimited
functions.

5.1.1 Method

As shown in (2.15), the discrete Fourier transform Ym of the m-th set of
samples can be written as

Ym =
1

N
FNF∗Dtm

α, (5.1)

65
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with FN a square N × N DFT matrix, F∗ an N × L IDFT matrix, and Dtm

an L × L diagonal matrix with elements Dtm
(l, l) = zl

m (−K ≤ l ≤ K). If we
extend α to a length that is a multiple of N , we can split the Fourier coefficient
vector α in blocks αi of length N , and obtain (see also (2.16)):

Ym = D′
tm

⌈(S−1)/2⌉
∑

i=⌈−(S−1)/2⌉
ziN

m αi, (5.2)

where D′
tm

is the N ×N central part of the L×L matrix Dtm
. The vectors αi

represent the overlapping parts of the Fourier spectrum due to undersampling,
and there are S = ⌈L/N⌉ such parts. This means that for any set of samples,

D′−1
tm

Ym is a linear combination of the S parts of the Fourier spectrum αi:

D′−1
tm

Ym =

⌈(S−1)/2⌉
∑

i=⌈−(S−1)/2⌉
ziN

m αi. (5.3)

In other words, each vector D′−1
tm

Ym belongs to the S-dimensional subspace
span({αi}i=⌈−(S−1)/2⌉..⌈(S−1)/2⌉). If we have more than S sets of samples (M >
S), and N ≥ S, the rank of the matrix containing all the sets of samples should
therefore be S:

rank
(

YD
t

)

= S with YD
t =

(

Y0 D′−1
t1 Y1 · · · D′−1

tM−1
YM−1

)

.

(5.4)

Example 5.1.1. Let us illustrate this for a small example. Assume we
have a bandlimited signal with L = 5 unknown Fourier coefficients α =
(α−2 α−1 α0 α1 α2)

T
. We sample this signal with three sets of four

samples y0, y1, and y2 (M = 3, N = 4). There are S = ⌈L/N⌉ = 2 overlap-
ping parts of the spectrum, and the Fourier transforms of the sampled signals
can be written as

Y0 =









α−2 + α2

α−1

α0

α1









=









α−2

α−1

α0

α1









+









α2

0
0
0









= α0 + α1,

Y1 =









z−2
1 α−2 + z2

1α2

z−1
1 α−1

α0

z1α1









=









z−2
1 α−2

z−1
1 α−1

α0

z1α1









+z4
1









z−2
1 α2

0
0
0









=D′
t1α0+z4

1D
′
t1α1

Y2 =









z−2
2 α−2 + z2

2α2

z−1
2 α−1

α0

z2α1









=









z−2
2 α−2

z−1
2 α−1

α0

z2α1









+z4
2









z−2
2 α2

0
0
0









=D′
t2α0+z4

2D
′
t2α1.

(5.5)

We can then multiply each of these Fourier transform vectors with their cor-
responding inverse diagonal matrix D′−1

tm
, and combine them into the matrix
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YD
t as

YD
t

=









α−2 + α2 α−2 + z4
1α2 α−2 + z4

2α2

α−1 α−1 α−1

α0 α0 α0

α1 α1 α1









=
(

α0 + α1 α0 + z4
1α1 α0 + z4

2α1

)

,

(5.6)

which is of rank 2, as all columns are linear combinations of the same coefficient
vectors α0 and α1. �

In general, if the estimated offsets t̂ do not have the correct values,
rank(YD

t̂
) > S. For most offset values t̂, the matrix YD

t̂
will be of full rank

M (and M > S). The correct values of the offsets t can then be found as the
values for which the matrix rank becomes S. A schematic description of the
complete reconstruction algorithm built on this method is given in Figure 5.1.

construct YD
t̂

using

an initial guess t̂ for t
rank

(

YD
t̂

)

= S ? solve
y = Φ

t̂
α

yes

no

update t̂ and YD
t̂

Figure 5.1: Signal reconstruction algorithm using the matrix rank method from

Section 5.1. The estimate for the offsets t̂ and the corresponding sample matrix YD
t̂

are updated iteratively. Once the estimate is good enough, the signal parameters
α are reconstructed.

5.1.2 Discussion

As there are S overlapping parts in the sampled Fourier spectrum, we need at
least M = S + 1 = ⌈L/N⌉ + 1 sets of samples to find the offsets using this

method. If more sets of samples are available, we still have rank
(

YD
t̂

)

= S,

and this adds some robustness to both the offset estimation and the signal
reconstruction. However, each new set of samples also adds a new unknown
offset, thereby increasing the complexity of the estimation.

Remark that the operation performed by multiplying a sample vector Ym

with a matrix D′−1
tm

does not change its norm ‖Ym‖2
2. It merely performs a

rotation to align the sample vector into the S-dimensional subspace.
The computation of the rank of a matrix has a rather ‘binary’ outcome:

either it is S, or it has an integer value larger than S. Hence, if the measure-
ments are noisy, this test is very likely to fail even for the correct values of
t. It is therefore much better to evaluate the S + 1-th singular value of the
matrix YD

t̂
, or the determinant of the square matrix YD

t̂

∗
YD

t̂
. This can also

give an indication about the quality of the current approximation. While the
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determinant requires less computations, it is also numerically less stable than a
singular value decomposition. The S + 1-th singular value could be computed
using the inverse power method described by Strang [101]. This is an iterative
method to approximate the smallest singular value of a matrix. It requires the
solution of a linear M ×M system of equations in each iteration. The number
of iterations needed will generally be very small, because the S + 1-th singular
value is typically much smaller than the first S singular values.

The objective function based on (5.4) can thus be written as

min
t̂

σS+1

(

YD
t̂

)

, (5.7)

where the operation σS+1(Y
D
t̂

) stands for computing the S+1-th singular value

of the matrix YD
t̂

.

Example 5.1.2 (Bandlimited functions). Let us consider a bandlimited
function with L = 81 unknown Fourier coefficients. It is sampled with two sets
of 91 samples, with offsets t =

(

0 54.6
)

. The objective function from (5.7)
is shown as a function of t1 in Figure 5.2(a). Similarly, we sample the same
function with M = 3 sets of N = 41 samples and offsets t =

(

0 8.2 24.6
)

.
The objective function is shown in Figure 5.2(b) as a function of the offsets t1
and t2. Smaller values are represented by darker graylevels. �
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Figure 5.2: Examples of the objective function in (5.7). Next to the global
minimum, it also contains many local minima. (a) Two sets of 91 samples, with 81
unknown coefficients. The exact offset is t1 = 54.6. (b) Three sets of 41 samples,
with 81 unknown coefficients. The exact offsets are t1 = 8.2 and t2 = 24.6. Small
values are represented by dark pixels.

In the above examples, the objective function (5.7) is very ‘flat’, except for
a small region around the optimal offset values. At an arbitrary value away
from the correct solution, it is therefore not possible to predict what would be
a better approximation. Standard minimization algorithms such as gradient
descent will generally not converge to the right solution for such functions.
However, from the example with three sets of samples, we can see that the
objective function is not completely arbitrary. Horizontal, vertical and diagonal
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lines appear. They correspond to relative alignments of two out of the three
sets of samples. It is therefore interesting to use this information in the search
for the minimum. Such a heuristic algorithm will be described in Section 5.3.

5.2 Solution using projections

In this section, we describe a method that is applicable to any kind of signals
in a finite-dimensional Hilbert space defined in Section 2.1. It uses projections
onto a subspace basis to find the relative offsets. This method shows some
similarities to the separable nonlinear least squares methods [40, 92], which
consider a nonlinear least squares problem where the unknowns can be split
in two sets of variables. One of the sets is then eliminated first (typically the
linear variables), and a nonlinear minimization over a smaller set of variables
is performed.

5.2.1 Method

From equation (2.7), we can see that y belongs to span(Φt). However, this is
only true if the matrix Φt is constructed using the correct values for the offset
vector t (except for degenerate cases). For another (incorrect) set of offset
values t̂, (2.7) no longer holds and the sample vector y is not in span(Φ

t̂
)

anymore. Using Lemma 2.4.1, one can test the correctness of the offset vector
by verifying if the projection ŷ of the sample vector y onto span(Φ

t̂
) gives the

sample vector y again. Or mathematically:

{

ŷ = PΦt̂
y = Φ

t̂
(Φ∗

t̂
Φ

t̂
)−1Φ∗

t̂
y = y, for t̂ = t

ŷ = PΦt̂
y 6= y, for t̂ 6= t.

(5.8)

Therefore, this can be used to build an optimization problem for finding the
correct offsets t. We search for the value of t̂ such that the following function
is minimized:

min
t̂

‖y − ŷ‖2. (5.9)

Using this method to find the offsets between the sets of samples ym, we
can derive an algorithm to reconstruct the signal f(t) from its combined sets
of samples y. A block diagram of such an algorithm is given in Figure 5.3.

create initial
guess for t̂

project y
onto span{Φ

t̂
}

‖y − ŷ‖2

< threshold ?
solve

y = Φ
t̂
α

yes

no

update t̂

Figure 5.3: Signal reconstruction algorithm using the projection method from

Section 5.2. The estimate for the offsets t̂ is updated iteratively. Once the estimate
is considered good enough, the signal parameters α are reconstructed.
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5.2.2 Discussion

Let us study some examples of the objective function ‖y− ŷ‖2 (see (5.9)) as a
function of the offset values t̂.

Example 5.2.1 (Bandlimited functions). A bandlimited function with 81
unknown Fourier coefficients is sampled with two sets of 91 samples. The offset
vector that we used is t =

(

0 54.6
)

. The objective function ‖y − ŷ‖2 from
(5.9) is shown as a function of the offset t1 in Figure 5.4(a). It is 0 at the
correct offset value (t1 = 54.6), and is larger at other values of t̂1. Next to this
global minimum, the function also has many local minima.

Similarly, we also take three sets of 41 samples from a bandlimited function
with again 81 Fourier coefficients. The offset vector for this example is t =
(

0 8.2 24.6
)

. Figure 5.4(b) shows the objective function as a function
of the offsets t1 and t2. Smaller values are represented by darker graylevels.
Again, the minimum can clearly be seen, and is at the intersection of the dark
horizontal, vertical and diagonal lines corresponding to pairwise alignments
between the sets of samples. However, the objective function also has many
local minima. �
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Figure 5.4: Examples of the objective function in (5.9) where H is the Fourier
space. Next to the global minimum, it also contains many local minima. (a) Two
sets of 91 samples, with 81 unknown coefficients. The exact offset is t1 = 54.6.
(b) Three sets of 41 samples, with 81 unknown coefficients. The exact offsets are
t1 = 8.2 and t2 = 24.6. Small values are represented by dark pixels.

Example 5.2.2 (piecewise linear functions). A similar example is repeated
for piecewise linear functions, as described in Example 2.1.3. The same setup as
in Example 5.2.1 is used, with first M = 2, N = 91 and L = 81 (Figure 5.5(a)),
and next M = 3, N = 41, and L = 81 (Figure 5.5(b)). The results are similar
to those obtained in the bandlimited case. They also have many local minima,
and are zero only for the correct offsets t̂ = t. �

From these examples, it is clearly visible that (5.9) is not easy to minimize
(just like in Section 5.1). Next to the global minimum, the objective function
has many local minima. We cannot use a standard algorithm like gradient
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Figure 5.5: Examples of the objective function in (5.9) on a piecewise linear
function. Next to the global minimum, it also contains many local minima. (a) Two
sets of 91 samples, with 81 unknown coefficients. The exact offset is t1 = 54.6.
(b) Three sets of 41 samples, with 81 unknown coefficients. The exact offsets are
t1 = 8.2 and t2 = 24.6. Small values are represented by dark pixels.

descent for minimization. However, as can also be seen from Figure 5.4(b) and
Figure 5.5(b), the objective function shows the same structure of horizontal,
vertical and diagonal lines as in Figure 5.2(b).

Let us now consider specifically bandlimited functions, with the Fourier
basis, to give some further interpretation of the above results. As it was dis-
cussed in Section 2.4, the MN -dimensional sample space can be divided into
N orthogonal subspaces of dimension M . It is therefore possible to split the
function from (5.9) into independent terms according to these M -dimensional
subspaces:

‖y − ŷ‖2 =

N−1
∑

n=0

‖y(n) − ŷ(n)‖2. (5.10)

In this equation, y(n) is the projection of y onto the subspace Vn spanned by
the n-th vector for different values of t̂, and ŷ(n) is the projection of y onto the
vectors φn+iN

t̂
that belong to this space. An example of such a decomposition

is given in Figure 5.6.

As we also described in Section 2.4, for the frequencies n that have M over-
lapping spectrum coefficients, the spaces Vn and span(φn+iN

t̂
) are the same,

regardless of the value of t̂. For these frequencies, ‖y(n) − ŷ(n)‖2 = 0, and they
do not contribute to the objective function in (5.10). The other terms each
contribute a periodic term to the global objective function. The minimum of
(5.10) can therefore be found by minimizing the different components individ-
ually (see Figure 5.6). For each of the components, we can now minimize over
an M -dimensional subspace instead of the original MN -dimensional space.
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Figure 5.6: Example of the decomposition of the objective function into its
different components belonging to orthogonal M -dimensional subspaces.

5.3 Practical Issues

5.3.1 Images and higher-dimensional signals

The above approaches were described for one-dimensional functions. However,
all the methods can be extended to higher-dimensional functions. Nothing in
the descriptions is limited to a one-dimensional signal, so the algorithms can
be directly applied to images.

Assume we have a periodic, bandlimited image

f (x) =

K
∑

k1,k2=−K

αkej2πk
T

x with k =

(

k1

k2

)

, x =

(

x1

x2

)

. (5.11)

It is sampled with M images at horizontal and vertical frequencies N1 and N2:

ym(n) = f

(

n1

N1
+ tm,1,

n2

N2
+ tm,2

)

=

K
∑

k1,k2=−K

αke
j2π

“

k1

“

n1
N1

+tm,1

”

+k2

“

n2
N2

+tm,2

””

.

=

K
∑

k1,k2=−K

αkej2π(k1tm,1+k2tm,2)e
j2π

“

k1
n1
N1

+k2
n2
N2

”

.

(5.12)
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The discrete Fourier transform (DFT) of such an image can be expressed as

Y m(l) =

N−1
∑

n1,n2=0

ym(n)e
−j2π

“

l1
n1
N1

+l2
n2
N2

”

=
N−1
∑

n1,n2=0

K
∑

k1,k2=−K

αkej2π(k1tm,1+k2tm,2)e
j2π

“

k1
n1
N1

+k2
n2
N2

”

e
−j2π

“

l1
n1
N1

+l2
n2
N2

”

=

K
∑

k1,k2=−K

αkej2π(k1tm,1+k2tm,2)
N−1
∑

n1,n2=0

e
j2π

“

(k1−l1)
n1
N1

+(k2−l2)
n2
N2

”

=
∑

i1,i2

αl1+i1N1,l2+i2N2e
j2π((l1+i1N1)tm,1+(l2+i2N2)tm,2).

(5.13)

In other words, Y m(l) is a weighted sum of the overlapping Fourier coefficients
at frequency l. Combining all the DFT coefficients Y m(l) into a vector Ym,
we can write (see also (2.16)):

Ym =
∑

i1,i2

ej2π(i1N1tm,1+i2N2tm,2)D′
tm

αi1,i2 , (5.14)

with now Ym(l1 + N1l2) = Y m(l1, l2), D′
tm

(l1 + Nl2, l1 + Nl2) =

ej2π(l1tm,1+l2tm,2), and αi1,i2(k1, k2) = α(k1 + i1N1, k2 + i2N2). The analy-
sis from Section 5.1 is therefore still valid for 2D signals.

Similarly, we can combine all the samples of an image into a vector ym

(with ym(n1 + N1n2) = ym(n1, n2)):

ym = Φtm
α, (5.15)

with Φtm
an N1N2 × L1L2 sampled basis matrix with elements Φtm

(n1 +
N1n2, l1 + L1l2) = ej2π(n1l1/N1+n2l2/N2). We can then repeat the analysis from
Section 5.2 using this equation instead of (2.15).

Of course, the complexity increases fast with the dimensionality. While a
minimum of ⌈L/N⌉ + 1 sets of samples are required for a 1D signal using the
rank-based method, and ⌈(L − 1)/(N − 1)⌉ sets of samples for the projection-
based method, we need at least ⌈L/N⌉2 + 1 two-dimensional images for the
rank-based method, and ⌈(L2 − 2)/(N2 − 2)⌉ images for the projection-based
method. As signals can be shifted along each of their dimensions, the number
of offsets (which is also the dimensionality of the search space) also increases
rapidly. Examples of the above methods on images are shown in Section 5.5.

5.3.2 Minimization

The main difficulty with the methods described in Sections 5.1 and 5.2 is to
find the global minimum of the objective functions. A good approximation of
the offsets t is required for an approach like gradient descent to converge to the
global minimum. Such an approximation could be obtained by evaluating the
error functions from (5.7) or (5.9) on a uniform (dense) grid of possible values
t̂. The global minimum can then be found with high probability close to the
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smallest value obtained on this uniform grid. However, this is a computationally
very intensive method. It only makes sense if the number of sets of samples M
- and therefore also the number of offsets - is small, or when a first estimate
of the offsets is available. Although this may sound like moving the problem
to obtaining such a first estimate, it is a reasonable assumption. For example
in super-resolution imaging, the shifts between the images are generally very
small. Therefore, our search could be restricted to a small area around the
origin (for example 10 × 10 pixels). Similarly, a first estimate could also be
obtained from another registration method that does not use the aliasing. Such
a method is described in the next subsection. Other approaches are heuristic
methods that rely on the lines that can be seen in Figure 5.2(b), 5.4(b) and
5.5(b). They will also be described in the next subsection. Simulation results
using these methods will be shown in Section 5.5.

During the minimization, it would be interesting to know whether the global
minimum has been found, or whether the current optimum is a local minimum.
Such an indication can be obtained by evaluating the objective functions (5.7)
or (5.9) for the current value of t̂. Even for noisy measurements, there is a large
difference between the average values of these functions and their value at the
global minimum. This can therefore be used to check whether the algorithm
has converged, and whether the result is reliable.

5.3.3 Heuristic approaches

The high computational complexity of the algorithms from Sections 5.1 and 5.2
is mainly due to the coupling between the offsets, i.e. the need to search the dif-
ferent offsets between the signals jointly. The joint minimum is not necessarily
located at the intersection of the minima from individual optimizations.

Algorithm 5.3.1 (Hierarchical approach). If the sets of samples are im-
ages, we know that their coefficients are not arbitrary Gaussian random vari-
ables. In general, the amplitude of the Fourier transform of a natural image
decays like 1/f [105]. We can therefore assume that a good estimate for the
offsets can be obtained from the low frequencies of the sampled sets. For these
frequencies, the aliased coefficients are much smaller than the base spectrum
coefficients, and can be neglected in a first estimate. We used the method from
Chapter 3 for this. Once we have such an initial estimate, we can use the
methods from Section 5.1 or 5.2 using a gradient descent algorithm to obtain
a more precise estimate for the motion parameters, taking the aliasing into
account. �

Algorithm 5.3.2 (Search for lines in the objective function). From
the horizontal, vertical and diagonal lines that are often visible in figures like
Figure 5.2(b), 5.4(b) and 5.5(b), it can be seen that an independent pairwise
alignment often works. Such lines correspond to pairwise registrations of the
first and second, first and third, and second and third signals, respectively. A
heuristic algorithm has therefore been developed to search for these pairwise
alignments without evaluating the complete M -dimensional grid. A horizontal
line for example is searched by evaluating the objective function on five different
vertical lines, and searching the minimum of the average values. The estimated
offset can then be found at the intersection of the different lines. Even if, in
a setup like the one shown in Figure 5.4(b), only one line can easily be found,
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this still results in a considerable reduction of the complexity. As it can also be
seen from the results in Section 5.5, this method performs very well in a setup
with low noise values, but degrades rapidly when more noise is added. �

Algorithm 5.3.3 (Keeping the P best pairwise alignments). Another
heuristic approach based on this independence, is to search a fixed number
P of local minima for the pairwise registration between the first set of sam-
ples and each of the other sets. When performing such a pairwise registra-
tion between the first and the m-th set of samples, all the other offset val-
ues are kept constant. For each pair, a vector of P possible offset values
(

t̂m1 t̂m2 · · · t̂mP

)

is obtained. Next, the best combination t̂ of these
pairwise local minima is searched among all possible combinations. The global
minimum can then be searched in the neighbourhood of this value of t̂. Keeping
only a single minimum for each of the pairwise alignments (P = 1) is generally
not sufficient, due to the different approximations made by pairwise registra-
tion. However, by trying all the combinations of the best P = 5 pairwise
alignments, the algorithm typically converges to the correct result. �

5.4 Complexity

In this section, we discuss the computational complexity of the different meth-
ods presented in this chapter. For each of the methods described above, the
complexity of computing the offsets t can be written as the number of times
the objective function has to be evaluated multiplied with the number of op-
erations required to evaluate the objective function. In this analysis, we will
assume that the variables N and L grow at the same rate, and M grows at
a lower rate. The number of operations required for the reconstruction is the
same for all the algorithms.

Let us start by analyzing the complexity of the error function evaluation
both for the matrix rank method (Section 5.1) and the projection method
(Section 5.2). In the matrix rank method, the smallest singular value of the
matrix YD

t̂
has to be computed for every error evaluation. The construction of

YD
t̂

for a specific set of offsets t̂ requires O((M −1)N) operations. To compute

the smallest singular value, we use the inverse power method on YD
t̂

∗
YD

t̂
[101].

This matrix multiplication involves O(M2N) operations, and the inverse power
method itself requires O(M3 + aM2) operations, where a is the number of
iterations required for the method to converge. As we assume that the difference
with the second smallest singular value is large, convergence will be fast. So
the total number of operations becomes

Crank = O((M − 1)N + M2N + M3 + aM2) = O(M3 + M2N). (5.16)

For the projection method, we need to compute the projection of the sample
vector y onto the space spanned by the columns of Φ

t̂
. This can be done

using (5.8). In the general case, for an arbitrary basis, such a projection has
complexity

Cproj = O(MNL2 + L3). (5.17)

However, if enough storage space is available, these projection matrices can be
precomputed, because they do not depend on the actual signal. In that case,
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the complexity is reduced to

C′
proj = O(M2N2). (5.18)

For specific types of bases, the complexity can be strongly reduced.

Example 5.4.1 (Fourier basis). For the Fourier basis, the blocks Φt̂m
of the

matrix Φ
t̂

can be divided into an N ×L IDFT inverse Fourier transform block
F∗, multiplied by an L × L diagonal offset matrix Dtm

: Φt̂m
= F∗Dtm

(see
also (2.14)). Using this decomposition, we can simplify the projection formula

ŷ = PΦt̂
y = Φ

t̂
(Φ∗

t̂
Φ

t̂
)−1Φ∗

t̂
y. (5.19)

The multiplication Φ∗
t̂
y can be decomposed into M multiplications D∗

t̂m
Fy,

where Fy is the Fourier transform of y. This Fourier transform can be com-
puted in advance, because it is independent of the offsets t. Only the multipli-
cations with the diagonal matrices Dt̂m

remain, which require ML operations.
The matrix Φ∗

t̂
Φ

t̂
has nonzero elements only on the main diagonal and on the

iN -th diagonals, due to the orthogonality of the Fourier vectors. Its inverse,
(Φ∗

t̂
Φ

t̂
)−1, can therefore be computed efficiently in O(L3/N2) = O(S2L) oper-

ations. Finally, the multiplication with the first matrix Φ
t̂

can be decomposed
into M multiplications with diagonal matrices, and M inverse DFTs. As the
error can as well be computed in the Fourier domain (using Parseval’s the-
orem), we only need to multiply with the diagonal matrices, which requires
again ML operations. The overall complexity can then be approximated as

Cproj,F = O(ML + S2L + ML) = O(S2L), (5.20)

where S is the maximum number of overlapping spectral components, which is
typically of the same order as M . �

For the standard algorithm described in Section 5.3.2, the error function
needs to be evaluated first on a uniform grid. Assuming that no estimate of
the offsets is available, this requires NM−1 error evaluations. Next, a standard
minimization algorithm is applied near the minimum value that was obtained
from the first part. Let us call the number of error evaluations in this part
Q (typical values for the examples given above are around Q = 30). This is
negligible compared to the number of evaluations on the uniform grid, and
the total number of evaluations with this standard algorithm can therefore be
approximated as

O(NM−1 + Q) = O(NM−1). (5.21)

For the hierarchical method from Algorithm 5.3.1, we need only Q evaluations.
Of course, the complexity Cinit for computing the initial estimate needs to be
added to this.

With the heuristic line search of Algorithm 5.3.2, the number of function
evaluations is difficult to predict, as multiple functions are executed consecu-
tively to find the minimum along horizontal, vertical, or diagonal lines. When
the value of the error function is below a certain threshold, the algorithm is
stopped. The maximum number of evaluations is

O(21N + (27 + 7M−1 + N)Q) = O((7M−1 + N)Q). (5.22)
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Algorithm 5.3.3, using pairwise alignments, requires

O((M − 1)N + 5M−1 + Q) = O(MN + 5M−1) (5.23)

error function evaluations. The complexity of the different algorithms is sum-
marized in Table 5.1.

Table 5.1: Computational complexity for the different methods on 1D signals.
The evaluation on a uniform grid from Section 5.3.2 is compared to the hierarchi-
cal method (Algorithm 5.3.1), the line search method (Algorithm 5.3.2), and the
pairwise alignment method (Algorithm 5.3.3). The total complexity is obtained
by multiplying the number of function evaluations with the complexity of a single
function evaluation. A worst case scenario was used for Alg. 5.3.2. The cost to
obtain the initial estimate in Alg. 5.3.1 is denoted as Cinit.

matrix rank method projection method
M3+M2N MNL2+L3

uniform grid NM−1(M3+M2N) NM−1(MNL2+L3)
NM−1 eval.
hier. method (M3+M2N)Q+Cinit (MNL2+L3)Q+Cinit

Q eval. + Cinit

line search (7M−1+N)(M3+M2N)Q (7M−1+N)(MNL2+L3)Q
(7M−1+N)Q eval.
pairw. al. (MN +5M−1)(M3+M2N) (MN +5M−1)(MNL2+L3)
MN +5M−1 eval.

proj. method (Fourier)
S2L

uniform grid NM−1S2L
NM−1 eval.
hier. method S2LQ+Cinit

Q eval. + Cinit

line search (7M−1+N)S2LQ
(7M−1+N)Q eval.
pairw. al. (MN +5M−1)S2L
MN +5M−1 eval.

For the reconstruction, the set of linear equations from (2.7) has to be
solved. The complexity of this operation is O(MNL2 + L3).

5.5 Results

The above algorithms are tested in a number of simulations and compared to
the algorithm from Chapter 3 and the algorithm by Pham et al. [83]. The algo-
rithm by Pham et al. is an iterative Taylor-based spatial domain algorithm. We
used the implementation from [111]. The simulations are performed on one-
dimensional random bandlimited signals. To be able to compare both methods
directly, we use a Fourier basis. The Fourier coefficients of the signals are gener-
ated as a white Gaussian random process. Hence, the resulting (time domain)
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signals also form white Gaussian random processes. A number of simulations
are performed with different random offset values, and different amounts of
additive white Gaussian noise. The performance of the different algorithms
on 1D signals is compared in Figures 5.7, 5.8 and 5.9. Figures 5.7(a) and (b)
show the mean absolute error in the shift estimates and the success rate as a
function of the SNR, respectively. The success rate of the methods is defined
as the relative number of simulations in which the error on the registration is
smaller than 10−3, which we consider a sufficient precision for accurate signal
reconstruction. All the results were averaged over 250 simulations. Parameter
values of M = 3, L = 81, and N = 41 were used in all the simulations. An
offset value of 1 corresponds to a shift over the sampling period 1/N . We can
see that the method using matrix rank from Section 5.1 performs slightly better
than the method using projections described in Section 5.2. The heuristic line
search method (Algorithm 5.3.2) performs clearly worse than the two meth-
ods that sample a uniform grid first and then perform a minimization around
the minimum value. It works well for high SNR values, but breaks down for
SNRs around 35 dB. It can also be clearly seen that both the rank-based and
the projection based algorithm perform much better on totally aliased signals
than the methods that do not use aliasing, such as the method from Chapter 3
and [83].

The absolute error in the shift estimates and the success rate are plotted
as a function of the number of samples per set N in Figure 5.8. In these sim-
ulations, parameters M = 3 and L = 81 were used, and for N , values from
25 to 45 were taken. No noise was added for these simulations. Again, the
results were averaged over 250 simulations. The performance of the different
algorithms increases with increasing number of samples. This is what we ex-
pected, as an increasing number of samples per set gives increasing amounts of
information for the same number of unknowns. For the matrix rank algorithm
from Section 5.1, the minimum number of samples per set that are required
in this setup is N = 41, while for the projection algorithm from Section 5.2,
N = 28 samples per set are needed. This explains the better performance of
the projection algorithm for 28 ≤ N < 41. With more than 41 samples per set,
both algorithms perform very well. When N < 28 samples are available per
set, all algorithms have low accuracy.

The simulations shown in Figure 5.7 were repeated on random one-dimen-
sional signals with a 1/f frequency behavior, also known as pink noise [60,127].
This is a model that is often used for natural images [105]. The results are
shown in Figure 5.9. We can see that in such a case, the influence of the
aliasing is decreased, and the methods from Chapter 3 and [83] perform much
better than in the previous simulation. The method by Pham et al. [83] even
has a better average performance than our methods described in this chapter.
However, from Figure 5.9(b), we can see that our algorithm still computed
the offsets up to a precision of 10−3 in a larger proportion of the cases. The
heuristic line search algorithm now performs worse for all SNR values.

Our algorithms are also applied to 2D signals (images). In this case, the
signals were undersampled by only two, because of the high complexity (see
the discussion in Section 5.3). The results can be seen in Figure 5.10.
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Figure 5.7: Results of the different algorithms as a function of the signal-to-noise
ratio (SNR). The matrix rank algorithm from Section 5.1 performs slightly better
than the projection algorithm from Section 5.2. The heuristic line search method
(Algorithm 5.3.2) only performs well for high SNRs. Both the matrix rank and
the projection algorithms perform clearly better than the algorithms that do not
use the aliasing for registration (methods from Chapter 3 and [83]). Parameter
values of M = 3, L = 81, and N = 41 were used. (a) Offset estimation error as a
function of the SNR of the sampled signals. An offset error of 1 corresponds to a
shift over one sampling period. (b) Success rate in percentage of the registration
and reconstruction as a function of the SNR.
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Figure 5.8: Results of the different algorithms as a function of the number of
samples N . Parameter values M = 3 and L = 81 were used in all simulations,
and for N , values from 25 to 45 were used. No noise was added in this setup. The
algorithm from Section 5.2 performs better than the algorithm from Section 5.1
if the number of samples per set N is low. The heuristic line search method
(Algorithm 5.3.2) performs worse than the other algorithms. (a) Offset estimation
error as a function of the number of samples per set N . An offset error of 1
corresponds to a shift over one sampling period. (b) Success rate in percentage of
the registration and reconstruction as a function of the number of samples per set
N .
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Figure 5.9: Results of the different algorithms as a function of the signal-to-noise
ratio (SNR) on pink noise. The matrix rank algorithm from Section 5.1 performs
slightly better than the projection algorithm from Section 5.2. The algorithm
from Chapter 3 still performs worse than the algorithms for totally aliased signals
presented here. The algorithm from [83] has a lower average absolute error than
the other algorithms, but its success rate is smaller than the algorithms presented
in this chapter. The heuristic line search method (Algorithm 5.3.2) has always
a lower performance than the other algorithms. Parameter values of M = 3,
L = 81, and N = 41 were used. (a) Offset estimation error as a function of the
SNR of the sampled signals. (b) Success rate in percentage of the registration and
reconstruction as a function of the SNR.
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A double resolution image is accurately reconstructed (up to Matlab precision)
from a set of low resolution images, both using the rank-based algorithm from
Section 5.1 (Figures 5.10(a) and 5.10(b)) and the projection-based algorithm
from Section 5.2 (Figures 5.10(c) and 5.10(d)).

In all the simulations, we use periodic signals. This is not the case in most
real applications, but we can generally assume that the shift between the sets of
samples is small. The differences between the signals due to their aperiodicity
are therefore small, and can be neglected.

(a) (b)

(c) (d)

Figure 5.10: Simulation results of the different algorithms on images (noiseless).
(a) One of the five 32 × 32 images used as input for Algorithm 5.3.3, with the
rank-based method from Section 5.1. (b) Reconstructed 63 × 63 image from the
images in (a). (c) One of the five 16×16 images used as input for Algorithm 5.3.1,
with the projection-based method from Section 5.2. (d) Reconstructed 31 × 31
image from the images in (c).
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5.6 Conclusions

In this chapter, we presented two subspace methods to reconstruct a high
resolution signal from multiple sets of totally aliased samples. In the first
method, the rank of a modified sample matrix is checked. The second method
uses projections onto subspaces to compute the offsets between the different
sets of samples. The first method is only applicable to bandlimited signals,
while the second is applicable to any type of signals in a finite-dimensional
Hilbert space. Both methods can be used for the reconstruction of one or two-
dimensional signals from multiple sets of aliased samples. The main limitation
of these methods is their computational complexity. They are therefore mainly
applicable in domains that do not require real-time reconstruction.
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Chapter 6

Registration of Totally
Aliased Signals using Gröbner
Bases

In this chapter, we show that, in many cases, the multichannel sampling prob-
lem with unknown offsets can be written as a set of polynomial equations in
both the unknown signal coefficients and the offsets. The solution can then
be computed using Gröbner bases [93, 115]. In any practical setting, the sam-
ples are corrupted by noise, and then there is no algebraic solution. Thus, the
next step is to address this noisy version of the problem, and to show how a
good approximation can be obtained from multiple Gröbner bases for subsets of
samples. Due to the memory requirements of Gröbner basis algorithms, these
methods will only be applied to one-dimensional signals.

Gröbner basis theory is a very powerful tool from algebraic geometry. The
theory was originally introduced by Buchberger in 1965 [11], and can be found
in some very good text books, like for example the book by Cox et al. [21], as
well as in many free (Macaulay2, Singular) and commercial (Magma, Maple,
Mathematica) software packages. Gröbner bases have also found their way into
many applications in signal processing and system theory [12,13]. Examples can
be found in filter bank design [18,32,49,78], multichannel deconvolution [132],
or motion estimation [43]. In this last paper, Holt et al. use algebraic geometry
to determine the number of solutions and uniqueness for certain problems in
three-dimensional motion estimation. They analyze the 3D motion of a rigid
link moving in a plane where one endpoint is known, and the extraction of 3D
motion from 2D optical flow information. We will consider here shifts of one-
dimensional signals, which can be extended to global planar shifts of images in
the image plane.

This chapter is structured as follows. The multichannel sampling problem
with unknown offsets is formulated mathematically as a set of polynomial equa-
tions in Section 6.1. Section 6.2 gives an overview of Gröbner basis theory, and
more particularly the main ideas that we will use for our reconstruction prob-
lem. Gröbner bases are then applied to the multichannel sampling problem
in Section 6.3. Section 6.4 presents a solution for noisy measurements. The
complexity of such an algorithm is discussed in Section 6.5, and some opti-

85
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mizations are presented that take advantage of the particular structure of the
polynomials. Finally, Section 6.6 concludes this chapter.

6.1 Multichannel sampling as a set of polynomial
equations

Using the setup from Chapter 2, we can write the sample vector as in (2.7):

y = Φtα. (6.1)

We illustrate this again with an example for second order polynomials like in
Example 2.1.2. Now we fill in the signal parameters for a specific signal.

Example 6.1.1 (Second degree polynomials). Consider the space H de-
fined as the span of the functions ϕl(t) = tl, l = 0, . . . , L − 1, with L = 3.
Assume that we take two sets of two samples, i.e. M = 2, N = 2. If we con-
sider the signal parameters α = ( 64 −24 −4 )T and offsets t = ( 0 1/4 ),
the two sets of samples are y0 = ( −4 0 )T and y1 = ( −6 6 )T . The signal
and its samples are shown in Figure 6.1. In this case, (6.1) becomes









0 0 1
1
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1
2 1

1
4 t21

1
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(1
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


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







. (6.2)

We can clearly see that the unknown offset t1 appears together in the equations
with the unknown signal coefficients α0, α1 and α2. �
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Figure 6.1: Second degree polynomial signal used in Example 6.1.1. The signal

f(t) = 64t2 − 24t − 4 is sampled with two sets of two samples y0 = (−4 0 )T

and y1 = (−6 6 )T with offset t1 = 1/4.

In the above example, we obtain a set of nonlinear polynomial equations.
The equations are linear in the unknown signal coefficients α. Thanks to the
specific choice of a polynomial basis {ϕl(t) = tl}, the equations are polynomials
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in the offsets t. Note that for an arbitrary basis {ϕl(t)}, this is not valid. How-
ever, for certain bases, we can rewrite the equations (6.1) as a set of polynomial
equations using a change of variables. This is possible when the basis is a set
of functions ϕl(t) = h(t)l, with h(t) an invertible function.

Probably the most important and practically useful example of such a basis
is when h(t) = ej2πt, that is, the Fourier series. In fact, consider the case of a
complex signal of the form

f(t) =

K
∑

l=−K

αlϕl(t), (6.3)

with ϕl(t) = ej2πlt. The samples are given by

ym(n) = f

(

n + tm
N

)

=
K

∑

l=−K

αlW
nle

j2πltm
N for 0 ≤ n < N, (6.4)

with W = ej2π/N . By setting zm = ej2πtm/N , we obtain

ym(n) = f

(

n + tm
N

)

=

K
∑

l=−K

αlW
nlzl

m. (6.5)

We multiply (6.5) with zK
m to eliminate negative exponents:

zK
mym(n) = zK

mf

(

n + tm
N

)

=

K
∑

l=−K

αlW
nlzl+K

m . (6.6)

For each sample, this can be rewritten as a polynomial constraint

pnN+m =

K
∑

l=−K

αlW
nlzl+K

m − zK
mym(n) = 0. (6.7)

In this equation, the unknowns are the signal parameters αl and the offset-
dependent variables zm. As in Example 6.1.1, the equations are linear in the
signal parameters and polynomial in the offset variables zm. We will now
introduce Gröbner bases and Buchberger’s algorithm, which provide an elegant
method to solve such a set of polynomial equations.

6.2 Gröbner bases

We present here the main results related to our multichannel sampling problem
and we refer to Cox et al. [21] and Buchberger [12, 13] for a complete presen-
tation of algebraic geometry and Gröbner bases. This section is intended as a
quick introduction and overview of key results that are necessary to our solution
method. It can be skipped by readers familiar with Gröbner bases.
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6.2.1 Affine varieties and ideals

We consider polynomials in the n complex variables, x0, . . . , xn−1. A polyno-
mial p can then be written compactly as

p =
∑

d

adx
d, ad ∈ C, (6.8)

where the sum is over a finite number of n-tuples d = (d0, . . . , dn−1) and xd is

a compact notation for xd0
0 . . . x

dn−1

n−1 . Each term of the sum in (6.8) is called a
monomial. In the following, we will denote C[x0, . . . , xn−1] the set of (complex)
polynomials in the variables x0, . . . , xn−1.

The basic objects of algebraic geometry are affine varieties:

Definition 6.2.1 (Affine Variety). Consider the polynomials p0, . . . , ps−1 in
the n variables x0, . . . , xn−1 ∈ C. Then we set,

V (p0, . . . , ps−1) = {(c0, . . . , cn−1) ∈ C
n : pi(c0, . . . , cn−1) = 0, ∀ 0 ≤ i < s}.

(6.9)
We call V (p0, . . . , ps−1) the affine variety defined by p0, . . . , ps−1. The elements
of an affine variety are the points for which the polynomials p0, . . . , ps−1 are
all zero.

The determination of the affine variety is trivial in the linear case, since the
polynomial pi has the simple form

pi(x0, . . . , xn−1) = ai0x0 + . . . + ai(n−1)xn−1 + bi i = 0, . . . , s − 1 (6.10)

and the points of the variety V (p0, . . . , ps−1) are those that satisfy the system

Ax + b = 0, (6.11)

with {A}i,j = aij and b = (b0, . . . , bs−1)
T . The solution can be easily com-

puted by using Gaussian elimination. Recall that Gaussian elimination con-
sists in computing linear combinations of the rows of (6.11) in order to remove
progressively the variables. The method is based on a certain ordering of the
variables. For example, with the ordering x0, x1, . . . , xn−1, we obtain a system

Ãx + b̃ = 0. (6.12)

The i-th row of Ã has the form

(

0 . . . 0 ãiji
ãiji+1 . . . ãi(n−1)

)

. (6.13)

The leading zeros in each row correspond to the positions of the variables that
have been eliminated from the previous equations. Therefore, we have (possibly
with an initial reordering of the equations)

j1 < j2 < . . . < jl < n, (6.14)

and the rows l + 1 to s are all zero. That is, at least one of the variables
is eliminated at each step (and possibly more than one). Note that, after
the l-th equation, all the variables are eliminated. If b̃l = . . . = b̃s−1 = 0,
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rank(Ã | b̃) = rank(Ã) = l and the system admits a solution. The solution of
the system is obtained by back substitution.

The procedure of Gaussian elimination can be extended to the case of poly-
nomial equations. This extension is known as Buchberger’s algorithm and the
set of equations obtained after elimination is called a Gröbner basis. In order
to give an overview of the algorithm, we recall the theoretical background and
show the analogy with Gaussian elimination. We refer to the bibliography for
the details and formal proofs.

As in the linear case, we need to define an ordering of the terms of (6.8),
i.e. the monomials of x0, . . . , xn−1. Since the variables may appear with dif-
ferent exponents, there are different ways to order monomials according to the
variables and the exponents. A common choice is lexicographic (lex) ordering.

Definition 6.2.2 (Lexicographic ordering). Let d = (d0, . . . , dn−1) and
d′ = (d′0, . . . , d

′
n−1) be two n-tuples representing positive integer exponents

of the monomials xd, xd
′

. We say that d >lex d′ if, in the vector difference
d− d′ ∈ Zn, the left-most nonzero entry is positive. We will write xd >lex xd

′

if d >lex d′.

Note that, next to the type of ordering, we also need to define the order
between the different variables. In the following, we will assume that the terms
of each polynomial are ordered in descending order according to lex ordering,
and with x0 > x1 > . . . > xn−1. We define the multidegree of a polynomial p,
multideg(p) as the largest exponent of the monomials of p according to the lex
ordering. We call leading term, LT(p) the term of p with the largest exponent.
The total degree of a polynomial is defined as the maximum sum of the exponent
vectors d of its terms.

Example 6.2.1. Let us consider a polynomial

p = 2x3
0x

2
1 + 5x0x

3
1x

3
2 + 3x4

1x2. (6.15)

Using lex ordering, and x0 > x1 > x2, we have x3
0x

2
1 > x0x

3
1x

3
2 > x4

1x2,
and (6.15) is ordered in descending lexicographic order. Its multidegree is
multideg(p) = (3, 2, 0), and the leading term LT(p) = 2x3

0x
2
1. The total degree

is 1 + 3 + 3 = 7. �

In the procedure of Gaussian elimination, the equations of the system cor-
respond to a set of vectors generating a subspace. The aim of elimination is to
determine a new basis for such a subspace with the structure given by (6.12).
In the case of polynomials, the equations can be combined using polynomial
coefficients. The set of all polynomials that can be constructed from an original
set has the algebraic structure of an ideal of the ring of polynomials.

Definition 6.2.3 (Ideal). A subset I ⊂ C[x0, . . . , xn−1] is an ideal if it satis-
fies:

1. 0 ∈ I.

2. If p, q ∈ I, then p + q ∈ I.

3. If p ∈ I and a ∈ C[x0, . . . , xn−1], then ap ∈ I.
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If p0, . . . , ps−1 are polynomials, then we set

I = 〈p0, . . . , ps−1〉 =

{

s−1
∑

i=0

aipi : ai ∈ C[x0, . . . , xn−1]

}

. (6.16)

We call I the ideal generated by p0, . . . , ps−1.

6.2.2 The Ideal Membership Problem

A key problem in algebra is to determine whether a given element p of a ring
belongs to a given ideal I or not. In terms of polynomials, the problem is equiv-
alent to testing if a given polynomial p can be written as a linear combination
of the polynomial generators of I, p0, . . . , ps−1, using polynomial coefficients
a0, . . . , as−1. Such a problem is known as the Ideal Membership Problem.

If we think of an ideal generated by a single polynomial in one variable,
the problem has a simple solution. In fact, we can apply the algorithm of
polynomial division and write p as

p = a0p0 + r. (6.17)

The quotient a0 and the remainder r are uniquely determined under the con-
dition that deg(r) < deg(p0). In this case, the ideal membership problem has
a simple solution: if r = 0, p belongs to 〈p0〉, otherwise not.

In the case of multiple polynomials in multiple variables, we can extend the
algorithm of polynomial division. The goal is to write p as

p = a0p0 + . . . + as−1ps−1 + r. (6.18)

The division algorithm consists in considering the monomials of p in decreasing
order. For each monomial, if the leading term of one of the pi’s is a divisor,
then the corresponding quotient ai is updated together with the remaining
monomials of p. Otherwise, the monomial is moved to the remainder r. The
following theorem can be proven for polynomial division [21, § 2.3, Theorem
3].

Theorem 6.2.1. Fix a monomial order and let P = (p0, . . . , ps−1) be an or-
dered s-tuple of polynomials in x0, . . . , xn−1. Then every polynomial p can be
written as in (6.18), where either r = 0 or r is a linear combination of mono-
mials, none of which is divisible by any of LT(p0), . . . , LT(ps−1). Furthermore,
we have

multideg(p) ≥ multideg(aipi) i = 0, . . . , s − 1. (6.19)

A crucial point of the algorithm is that the result of the division depends
on the order that we consider for the divisors p0, . . . , ps−1.

Example 6.2.2. Let p0 = x0x1 + 1, p1 = x2
1 − 1 be two polynomials in x0, x1

and assume we use the lex order with x0 > x1. If we divide p = x0x
2
1 − x0 by

P = (p0, p1) the result is

x0x
2
1 − x0 = x1 · (x0x1 + 1) + 0 · (x2

1 − 1) + (−x0 − x1). (6.20)
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With P = (p1, p0), however, we have

x0x
2
1 − x0 = x0 · (x2

1 − 1) + 0 · (x0x1 + 1) + 0. (6.21)

�

Therefore, the result of division is not unique. Moreover, the remainder of
division may be nonzero, even if p ∈ 〈p0, p1〉. In the following, we will denote
pP the remainder r of the division of p by the s-tuple of polynomials P .

There are some cases where the s-tuple of polynomials has a particular
structure that allows to solve the ambiguity. A set with such a property is
called a Gröbner basis.

Definition 6.2.4 (Gröbner basis). Let G = {g0, . . . , gu−1} be a basis for the
ideal I. If for all p ∈ I the remainder of the division pG = 0 then G is called a
Gröbner basis for I.

Gröbner bases have several interesting properties, including a generalization
of the structure of the system (6.12). However, the most surprising result is
given by the following theorem [21, § 2.5, Theorem 4]:

Theorem 6.2.2 (Hilbert Basis Theorem). Every ideal I of the ring of poly-
nomials of n variables has a finite generating set. That is, I = 〈g0, . . . , gu−1〉 for
some g0, . . . , gu−1 ∈ I. In particular, it is always possible to choose g0, . . . , gu−1

so that they form a Gröbner basis.

6.2.3 Buchberger’s algorithm

The key step of Gaussian elimination was to combine two rows of the matrix
(i.e. two equations) in order to cancel the entry corresponding to the variable
of highest order. This concept is extended to polynomials by introducing S-
polynomials.

Definition 6.2.5 (S-polynomial). Let p0, p1 be two non-zero polynomi-
als in x0, . . . , xn−1. If multideg(p0) = d and multideg(p1) = d′, then let
d′′ = (d′′0 , . . . , d′′n−1), where d′′i = max(di, d

′
i). The S-polynomial of p0 and

p1 is defined as the linear combination

S(p0, p1) =
xd

′′

LT(p0)
p0 −

xd
′′

LT(p1)
p1. (6.22)

Using S-polynomials, we can easily verify if a basis G is a Gröbner basis.
In fact, we have the following theorem [21, § 2.6, Theorem 6]:

Theorem 6.2.3. Let I be a polynomial ideal. Then a basis G = {g0, . . . , gu−1}
is a Gröbner basis for I if and only if, for all pairs i 6= j, the remainder on
division of S(gi, gj) by G (listed in some order) is zero.

There is a main difference between the linear and the polynomial case when
we combine equations. In the linear case, if we combine p0 and p1 we obtain
an equation of the form

h = ap0 + bp1, a, b ∈ C (6.23)
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and this equation can be used to replace p0 or p1, i.e.

〈p0, p1〉 = 〈p0, h〉 = 〈h, p1〉. (6.24)

In the polynomial case, equations are combined using polynomial coefficients,
i.e. the terms a and b are polynomials in the variables x0, . . . , xn−1. Since the
set of polynomials has the structure of a ring, it is not always possible to find
an inverse of the coefficients. This means that, for example, it is not always
possible to compute p1 from p0 and h. For this reason, to construct a Gröbner
basis, one has to increase initially the number of elements of the basis. Such an
extension ends when the conditions given by Theorem 6.2.3 are satisfied. This
algorithm is due to Buchberger and is given in the following algorithm [21, §
2.7, Theorem 2].

Algorithm 6.1: Buchberger’s algorithm for the computation of a Gröbner basis.

Let I = 〈p0, . . . , ps−1〉 6= 0 be a polynomial ideal. Then a Gröbner basis for I
can be constructed in a finite number of steps by the following algorithm:

Input: P = (p0, . . . , ps−1)
Output: a Gröbner basis G = (g0, . . . , gu−1) for I, with P ⊆ G
G := P
Repeat

G′ := G
For each pair (p, q), p 6= q in G′ do

S := S(p, q)
G′

If S 6= 0 then G := G ∪ S
until G = G′.

Algorithm 6.1 is not a very practical way to compute a Gröbner basis.
Several improvements are possible. Moreover, Gröbner bases computed in this
way are often bigger than necessary. For this reason, unneeded generators are
eliminated by using Theorem 6.2.3 or similar tests.

6.2.4 Solution of polynomial equations

We can now show that a Gröbner basis corresponding to a system of polyno-
mial equations and built using lex ordering simplifies the system and allows
to compute the solution by back substitution. Remember that we defined the
ideal I as the set of all polynomials that can be derived from the initial set
using polynomial coefficients. We can also define the elimination ideal Ik as
the set of all polynomials that can be deduced from the original system and
contain only the variables xk, . . . , xn−1,

Ik = I ∩ C[xk, . . . , xn−1]. (6.25)

If we can find a basis for each one of the sets Ik, k = 1, . . . , n − 1, we can
determine the solutions of the original system using back substitution. In fact,
we clearly have that for any k ≥ 1, Ik+1 ⊆ Ik. Therefore, if we have a solution
of the system of equations associated to Ik+1, we can extend it to the system
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associated to Ik by computing the values of the variable xk. This can be done
by computing the zeros of a polynomial in the variable xk. An important
property of Gröbner bases is that they solve easily the problem of determining
the ideals Ik, k = 1, . . . , n − 1. Namely, the Gröbner bases of all the ideals Ik,
k = 1, . . . , n − 1 can be determined from the Gröbner basis of I. The result is
given by the elimination theorem [21, § 3.1, Theorem 2]:

Theorem 6.2.4 (Elimination Theorem). Let I ⊂ [x0, . . . , xn−1] be an ideal
and let G be a Gröbner basis of I with respect to lex order where x0 > x1 >
. . . > xn−1. Then, for every 1 ≤ k < n, the set

Gk = G ∩ C[xk, . . . , xn−1] (6.26)

is a Gröbner basis of the k-th elimination ideal Ik.

Using this theorem, we can compute the different variables from a Gröbner
basis using back substitution. To summarize, we can solve a set of polynomial
equations in multiple variables as follows. First, we compute a Gröbner basis
for the ideal corresponding to the set of equations using Buchberger’s algo-
rithm. The solution can then be obtained from this Gröbner basis using back
substitution.

6.3 Multichannel Sampling using Gröbner Bases

We can now use Gröbner bases and Buchberger’s algorithm to solve the equa-
tions from (6.1). After a possible change of variables to write the equations in
polynomial form, we can directly apply Buchberger’s algorithm. This results
in a Gröbner basis for the ideal defined by the set of equations. The signal
parameters can then be easily extracted from this Gröbner basis using the
elimination theorem. This is summarized in Algorithm 6.2. We will illustrate
this algorithm with two examples for polynomial signals and signals described
by Fourier series.

Algorithm 6.2: Algorithm for multichannel sampling with unknown offsets using
Gröbner bases.

1. Write out the equations from (6.1) describing the samples as a function
of the signal coefficients.

2. If necessary, perform a change of variables to convert the equations into
a set of polynomial equations.

3. Compute a Gröbner basis for the set of polynomial equations using Buch-
berger’s algorithm.

4. Use back substitution to compute the offsets and signal parameters from
the Gröbner basis.

5. If necessary, eliminate solutions that are not valid (e.g. offset values not
on the unit circle in the Fourier case).
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Example 6.3.1 (Polynomial signals). First, we reconsider the equations
obtained in Example 6.1.1. That is, we consider a second degree polynomial
signal with two sets of two samples (L = 3, M = 2, and N = 2, see also
Figure 6.1). We can represent the set of solutions of (6.2) as the points of the
affine variety defined by the set of polynomials:

p0 = α2 + 4,
p1 = 1

4α0 + 1
2α1 + α2,

p2 = 1
4α0t

2
1 + 1

2α1t1 + α2 + 6,
p3 = 1

4α0t
2
1 + 1

2α0t1 + 1
4α0 + 1

2α1t1 + 1
2α1 + α2 − 6,

(6.27)

in the variables α0, α1, α2 and t1. We fix the ordering of variables as α0 >
α1 > α2 > t1 and we use lex ordering for monomials.

At the first step of Buchberger’s algorithm, we find that

S(p0, p1) = 4α0 − 2α1α2 − 4α2
2 = (−2α1 − 4α2)p0 + 16p1,

S(p0, p2) = α0t
2
1 − 1

2α1α2t1 − α2
2 − 6α2

= (− 1
2α1t1− α2− 4t21−2)p0 + 4t21p1 − 2α1t

2
1 + 2α1t1 + 16t21 + 8,

(6.28)
S(p0, p3) = − 1

2α0α2t1 − 1
4α0α2 + α0t

2
1 − 1

2α1α2t1 − 1
2α1α2 − α2

2 + 6α2

= (− 1
2α0t1 − 1

4α0 − 1
2α1t1 − 1

2α1 − α2 − 4t21 − 8t1 + 6)p0

+(4t21 + 8t1 + 4)p1 − 2α1t
2
1 − 2α1t1 + 16t21 + 32t1 − 24,

S(p1, p2) = 1
8α1t

2
1 − 1

8α1t1 + 1
4α2t

2
1 − 1

4α2 − 3
2

= (1
4 t21 − 1

4 )p0 + 1
8α1t

2
1 − 1

8α1t1 − t21 − 1
2 ,

S(p1, p3) = − 1
8α0t1 − 1

16α0 + 1
8α1t

2
1 − 1

8α1t1 − 1
8α1 + 1

4α2t
2
1 − 1

4α2 + 3
2

= (1
4 t21+ 1

2 t1)p0 + (− 1
2 t1− 1

4 )p1 + 1
8α1t

2
1 + 1

8α1t1 − t21 − 2t1 + 3
2 ,

S(p2, p3) = − 1
2α0t1 − 1

4α0 − 1
2α1 + 12 = (2t1 + 1)p0 + (−2t1 − 1)p1

+α1t1 − 8t1 + 8.
(6.29)

Therefore, we add the remainders that are non-zero to the basis:

p4 = S(p0, p2)
G

= −2α1t
2
1 + 2α1t1 + 16t21 + 8,

p5 = S(p0, p3)
G

= −2α1t
2
1 − 2α1t1 + 16t21 + 32t1 − 24,

p6 = S(p2, p3)
G

= α1t1 − 8t1 + 8.

(6.30)

The remainders of S(p1, p2) and S(p1, p3) are not added, because they are the
same as polynomials p4 and p5, respectively. Following the same procedure, in
the second iteration, we find that only S(p2, p6) and S(p4, p6) give a distinct,
non-zero remainder. We add the polynomials

p7 = S(p2, p6)
G

= −2α1 − 48,

p8 = S(p4, p6)
G

= 32t1 − 8
(6.31)

to the basis. In the following iteration all remainders are zero and by The-
orem 6.2.3 we conclude that p0, . . . , p8 is a Gröbner basis. Applying again
Theorem 6.2.3 we can try to reduce the elements of the basis. In this case,
we have that p2, p3, p4, p5, p6 can be removed and the final basis is given
by {p0, p1, p7, p8}. In order to apply the elimination theorem, we rename the
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elements of the basis as:

g0 = 1
4α0 + 1

2α1 + α2,
g1 = −2α1 − 48,
g2 = α2 + 4,
g3 = 32t1 − 8.

(6.32)

The elimination ideals are I1 = 〈g1, g2, g3〉, I2 = 〈g2, g3〉, and I3 = 〈g3〉. The
solution of the problem can be obtained by computing the points of the affine
variety associated to I3 and extending it by back substitution to I2, I1 and I.
We easily find that the unique solution is given by t1 = 1

4 , α2 = −4, α1 = −24,
and α0 = 64. �

The procedure described in the above example can be applied to any mul-
tichannel sampling problem in the polynomial space H. For any value of the
variables L, M , and N , the equations in (6.1) form a set of polynomial equations
and we can therefore compute the parameter values by calculating a Gröbner
basis for the corresponding ideal. Similarly, the same algorithm can be applied
to Fourier series, using the change of variables given in Section 6.1. This is a
very interesting case from a practical point of view, as signals and images are
often bandlimited or can be considered to be so.

Example 6.3.2 (Fourier series). Assume K = 2 (and therefore L = 5), i.e.
the input signal is represented by the parameter vector α = (α−2, . . . , α2),
where each entry is a complex value. For this example, we assume

α = ( 3 2 − j 1 2 + j 3 )T .

We suppose that M = 2 sets of N = 4 samples are taken from the input
signal, with the displacements t = ( 0 1/2 ). In this case, the two sets of
measurements are

y0 = ( 11 −7 3 −3 )T ,

y1 = ( 1 +
√

2 1 − 3
√

2 1 −
√

2 1 + 3
√

2 )T .
(6.33)

The signal and its samples are shown in Figure 6.2. Applying (6.7), we obtain
8 polynomials that represent the constraints imposed by the measurements:

p0 = α2 + α1 + α0 + α−1 + α−2 − 11,
p1 = −α2 + jα1 + α0 − jα−1 − α−2 + 7,
p2 = α2 − α1 + α0 − α−1 + α−2 − 3,
p3 = −α2 − jα1 + α0 + jα−1 − α−2 + 3,

p4 = α2z
4
1 + α1z

3
1 + α0z

2
1 + α−1z1 + α−2 − (1 +

√
2)z2

1 ,

p5 = −α2z
4
1 + jα1z

3
1 + α0z

2
1 − jα−1z1 − α−2 − (1 − 3

√
2)z2

1 ,

p6 = α2z
4
1 − α1z

3
1 + α0z

2
1 − α−1z1 + α−2 − (1 −

√
2)z2

1 ,

p7 = −α2z
4
1 − jα1z

3
1 + α0z

2
1 + jα−1z1 − α−2 − (1 + 3

√
2)z2

1 ,

(6.34)

where the complex variable z1 = ej2πt1/4 represents the displacement. Again,
by using Buchberger’s algorithm, we obtain a Gröbner basis. Assuming the
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Figure 6.2: Fourier series signal used in Example 6.3.2. The signal with Fourier

series coefficients x = ( 3 2− j 1 2+ j 3 )T is sampled with two sets of four
samples y0 = ( 11 −7 3 −3 )T and y1 = ( 1+

√
2 1−3

√
2 1−

√
2 1+3

√
2 )T

with offset t1 = 1/2.

ordering α2 > α1 > . . . > α−2 > z1, we obtain

g0 = 2α2 − 3j
√

2z1 + 3
√

2z1 − 12,
g1 = α1 − 2 − j,
g2 = α0 − 1,
g3 = α−1 − 2 + j,

g4 = 2α−2 + 3j
√

2z1 − 3
√

2z1,

g5 = 2z2
1 −

√
2(1 + j)z1 = 2z1(z1 −

√
2

2 (1 + j)).

(6.35)

In the last polynomial of the basis, g5, all variables but z1 are eliminated.
Therefore we can compute the solutions for the displacement variable, z1 =
0 and z1 = ejπ/4, from g5. Clearly, z1 = 0 is discarded since it does not
belong to the unit circle, while the second solution corresponds to the correct
displacement t1 = 1/2. By back substitution, one can compute the signal
parameters. �

To sum up, in the above examples we have MN polynomial equations with
maximum total degree L. The equations are linear in the signal coefficients αl,
and polynomial of order at most L−1 in the offsets tm. The computed Gröbner
basis is linear in Example 6.3.1, and contains a second degree polynomial in
Example 6.3.2. This is much lower than the theoretical double exponential
bound that will be discussed in Section 6.5.

6.4 Multichannel Sampling under Noisy Conditions

The computation of a Gröbner basis is typically performed with infinite pre-
cision. A Gröbner basis is defined as a set of polynomials that generates the
same variety as the original set of polynomial equations. The solution that
is computed using Gröbner bases is therefore an exact solution to the set of
polynomial equations.
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Moreover, concepts such as projections or distance do not have any meaning
over the ring of polynomials. As we are now working with polynomials, the
distance between two such polynomials does not have any meaning. It is not
possible to compute a ‘least squares solution’ to a set of equations with Gröbner
bases. Hence, if the measurements are noisy, or known with limited precision,
Buchberger’s algorithm would generally conclude that there is no solution. As
there are usually more equations than unknowns (see Example 6.3.2), the errors
on the sample values make the equations from (6.1) incoherent. There has
already been a lot of research on the stability of Gröbner basis computation,
and various solutions have been proposed [98, 99, 106].

We propose to solve this problem by dividing the complete set of polynomial
equations into multiple (overlapping) critical subsets. By critical we mean that
there is a finite, non empty set of solutions (typically when the number of
equations is equal to the number of unknowns). We could use all the critical
subsets that can be derived from the original set of equations, or select only a
limited number of them to limit the computational time. We can now compute
a Gröbner basis for each subset, and obtain a set of parameter values using back
substitution. The final solution can then be defined as a (weighted) average
of the different solutions from the subsets. This method is summarized in
Algorithm 6.3. Let us now analyze an example.

Algorithm 6.3: Algorithm for multichannel sampling from noisy samples.

1. Write out the equations from (6.1) describing the samples as a function
of the signal coefficients.

2. If necessary, perform a change of variables to convert the equations into
a set of polynomial equations.

3. Divide these equations into at most
(

MN
L+M−1

)

critical subsets of equations
Si.

4. Compute a Gröbner basis for each set Si. Use back substitution to obtain
the offsets and the signal parameters.

5. Eliminate solutions that are not valid (e.g. offset values not on the unit
circle in the Fourier case).

6. Compute the weighted average of the offsets corresponding to the remain-
ing solutions (typically one per set Si).

7. Fill in the offsets in the equations from (6.1) and solve the set of linear
equations for the unknown signal parameters.

Example 6.4.1 (Fourier series with noisy measurements). Consider a
signal that is represented by its L = 5 Fourier series coefficients, given by

α =
(

5 − j −3j −6 3j 5 + j
)T

. (6.36)

The signal is sampled with two sets of four samples (M = 2, N = 4), with an
offset vector t =

(

0 24/11
)

=
(

0 2.1818
)

. In a noiseless case, this would
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result in the following two sets of samples:

y0 =
(

4 −22 4 −10
)T

,

y1 =
(

3.0217 −7.5743 −0.3591 −19.0882
)T

.
(6.37)

The second set of samples is given numerically, because the exact expressions
are quite complicated. Now we add white Gaussian noise to these samples with
mean zero and standard deviation 1, resulting in the noisy sample values

y0 =
(

3.4845 −21.2468 3.6672 −9.5310
)T

,

y1 =
(

2.0917 −7.4480 0.7300 −19.3078
)T

,
(6.38)

for one particular realization (see also Figure 6.3). We obtain a similar set
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Figure 6.3: Fourier series signal used in Example 6.4.1. The signal with Fourier

series coefficients x = ( 5 − j − 3j − 6 3j 5 + j )T is sampled with two
sets of four noisy samples y0 = ( 3.4845 − 21.2468 3.6672 − 9.5310 )T and
y1 = ( 2.0917 − 7.4480 0.7300 − 19.3078 )T with offset t1 = 24/11. Its
reconstruction both in Example 6.4.1 (– –) and Example 6.5.1 (– · –) are shown.

of polynomials as in (6.34), with just different sample values. As we have 8
equations in 6 unknowns (5 signal parameters and an offset), we compute a
Gröbner basis for all

(

8
6

)

= 28 subsets Si of 6 polynomials from the total set.
One of them is given here:

g0 = α2 − (11.5043 + 8.2663j)z1 − (8.5363 + 13.2582j)z2
1 − 9.4824,

g1 = 0.04567− 2.9289j + α1,
g2 = 5.9065 + α0,
g3 = 0.04567 + 2.9289j + α−1,
g4 = α−2 + (11.5043 + 8.2663j)z1 + (8.5363 + 13.2582j)z2

1,
g5 = z3

1 + (1.1192 + 1.0848j)z2
1 + (0.0312 + 0.9995j)z1.

(6.39)
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We can then compute all the possible solutions for each of the Gröbner bases.
We eliminate the invalid ones: those that do not correspond to valid offsets
(values of z1 that are not on the unit circle), as well as those that give a large
error when evaluated on the two remaining equations. Typically, only a single
solution remains for every Gröbner basis. From the remaining solutions, we
compute the offsets t1, and compute their average value:

t1,avg = 2.0660. (6.40)

This way of proceeding has the advantage that we keep a valid offset value. If
we would just average the computed values for z1, the result is typically not
on the unit circle anymore, and does not represent a valid offset. Note that we
performed a simple averaging operation here. A weighted average that takes
the sensitivity of the results to the different sample values into account would
probably improve the results further. We replace this average offset value in
the original equations, and compute the least squares solution of this set of
linear equations in the unknown signal parameters α:

α̂ =













4.7412− 4.5812j
−0.0388− 2.9566j

−5.9450
−0.0388 + 2.9566j
4.7412 + 4.5812j













. (6.41)

The relative error is computed as the norm of the difference between the true
coefficient vector α and the estimated coefficient vector α̂ divided by the norm
of the coefficient vector: ‖α−α̂‖/‖α‖. For this simulation, we obtain a relative
error of 0.493. This error can be compared to the error that would be obtained
from the noisy samples with the exact offset t1, which is 0.080. Averaged over
250 such simulations with random signal coefficients and offsets, the estimated
relative error is 0.340, compared to 0.095 in the ideal case using the exact offsets
with the noisy samples. �

6.5 Complexity and optimizations

The main disadvantage of Gröbner bases for the multichannel sampling problem
is the computational complexity of Buchberger’s algorithm. As explained in
Section 6.2, the set of polynomials pi has to be expanded in the first part of
the algorithm by adding the non-zero remainders of S-polynomials. Unlike
in Gaussian elimination, we cannot simply replace a polynomial by a linear
combination of that polynomial with another one. The linear combination has
to be added to the existing set of polynomials. This expansion can become
very large, and is one of the reasons for the high memory requirements of
Buchberger’s algorithm. The maximum total degree of the polynomials in a
reduced Gröbner basis can be shown to be

E = 2

(

D2

2
+ D

)2S−1

, (6.42)
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where D is the maximal total degree of the polynomials pi, and S is the number
of variables [23, 71]. In our setup, the maximal total degree D = L, and we
would therefore typically obtain

E = 2

(

L2

2
+ L

)2L+M−2

. (6.43)

Fortunately, this double exponential function describes a worst-case scenario,
while in practice the complexity is often much lower. In the examples from the
previous sections, the degree was always much lower, with only linear terms
remaining in Example 6.3.1, and a second degree polynomial in Example 6.3.2.
The above upper bounds for those cases would be about 107 and 1040, respec-
tively.

Another reason for the high complexity of Buchberger’s algorithm is given
by the fact that the algorithm performs computations with infinite precision.
If for example the input coefficients are (small) integers, quite complicated
rational numbers are used in the computation of a Gröbner basis. Using Maple
to solve a polynomial problem like the one in Example 6.1.1, with a 6-th degree
polynomial, and 3 sets of 3 samples, the algorithm already requires more than
1 GB of memory. In the back substitution step of our solution method, we
need to compute the zeros of a polynomial. The complexity of this operation
will depend on the order of the specific polynomial that is obtained. Although
theoretically, this order can only be bounded by (6.43), in practice, it is often
much lower (as can also be seen from the examples). The roots of a polynomial
with degree E can be computed using an algorithm with complexity

(

E(log E)2| log ǫ| + E2(log E)2
)

(6.44)

where ǫ is the precision of the computed roots [52].

Various optimizations of Buchberger’s algorithm exist. For example, cer-
tain S-polynomials can already be excluded before examining them. Often,
other orderings than the lexicographic ordering also result in lower complexity.
Algorithms exist to convert a Gröbner basis using one ordering into a Gröbner
basis for another ordering. It can therefore be computationally more efficient
to compute a Gröbner basis first using another ordering, and convert it then
into lexicographic ordering. Lexicographic ordering is required to apply the
elimination theorem, which offers a simple way to compute the coefficients us-
ing back substitution. Various implementations of Gröbner basis algorithms
including different optimizations exist (Gb [32], Macaulay2, Maple, Mathe-
matica, Magma, Singular). We used Mathematica for our simulations. Even
though this is probably not the optimal implementation [32], it allows us to
implement and clearly show all the important concepts and ideas from this
chapter.

It is important to note that the multichannel sampling problem has a par-
ticular structure. From (6.1), which describes the problem for any kind of basis,
and from the different examples in previous sections, we can see that the equa-
tions are linear in the signal parameters. They only have higher polynomial
orders in the offset parameters t. Typically, there are many (L) signal param-
eters, while only a small number (M) of different sets of samples is used. The
(linear) signal parameters can be eliminated from the set of equations using
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Gaussian elimination on the first L equations. This can be performed in O(L3)
operations, and for our particular structure of the problem and with two sets of
samples (M = 2), it does not increase the degree of the polynomial coefficients
in t. This can be seen from the examples in the previous sections. With a
Fourier basis, each term in a signal parameter αi has the same power of the
offset variable z1, and a varying complex coefficient (or has no offset variable
at all, for the first set of N equations). The signal parameters can therefore be
eliminated by multiplying equations with complex numbers and adding them
together. We never need to multiply any of the equations from the second set
by the offset variable z1, and therefore do not increase its degree. For poly-
nomial signals, we can perform a similar elimination. By ordering the signal
parameters as αL−1, αL−2, . . ., α0, we can eliminate each of the parameters
without needing to multiply equations by the offset variable t1. If more than
M = 2 sets are considered, the different offset variables have to be multiplied
in the Gaussian elimination, and the results are more complex.

After this Gaussian elimination step, the computed values for the signal
parameters (as a function of t) can be replaced in the MN − L remaining
equations. We obtain a (much smaller) set of MN − L polynomial equations
in the unknown offsets t. It is now sufficient to compute a Gröbner basis for
this smaller set in much fewer unknowns (M ≪ L). With noisy samples, we
can now compute Gröbner bases for the

(

MN−L
M−1

)

subsets of M − 1 equations

instead of the
(

MN
L+M−1

)

sets of L + M − 1 equations previously. Typically
this results in much fewer subsets of smaller size. However, the precision with
which the parameters are computed is also (slightly) lower. Compared to all
the possible subsets of L + M − 1 equations in Algorithm 6.3, now only the
subsets containing the first L equations and all possible combinations of M −1
equations from the remaining set are considered. The maximum total degree
of a Gröbner basis for such a subset is reduced to

2

(

L2

2
+ L

)2M−2

, (6.45)

where the number of sets of samples M is much smaller than the number of
coefficients L. As the first L equations are linear in the signal parameters
and have lower degrees than (6.45) in the offsets, this bound also replaces the
previous bound (6.43) for the general Gröbner basis computation. For Exam-
ples 6.3.1 and 6.3.2, these bounds are 15 and 35, respectively. While this is still
far beyond the actual degrees of the Gröbner bases, it is already a much closer
bound than the one given in (6.43). Once this (smaller) Gröbner basis is com-
puted, the offset values can be obtained using back substitution and a method
to compute the zeros of a polynomial. We compute the signal parameters by
substituting the offset values in the first L equations. Note however, that with
most Gröbner basis algorithms, this procedure is also followed (implicitly), as
the signal parameters are eliminated first. The algorithm with explicit Gaus-
sian elimination of the signal parameters is given in Algorithm 6.4. We will
now illustrate this method for the setup used in Example 6.4.1.

Example 6.5.1 (Fourier series using Gaussian elimination). We use the
same signal and sample values as in Example 6.4.1. Instead of calculating a
Gröbner basis for the 28 subsets of 6 equations, we now eliminate the signal
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Algorithm 6.4: Algorithm for multichannel sampling from noisy samples using
Gaussian elimination for the linear part.

1. Write out the equations from (6.1) describing the samples as a function
of the signal coefficients.

2. If necessary, perform a change of variables to convert the equations into
a set of polynomial equations. These are linear in the signal coefficients
α, and higher order polynomials in the offsets t.

3. Apply Gaussian elimination on the first L equations to compute the signal
coefficients α as a function of the offsets t.

4. Replace these values of α in the remaining MN −L equations and multi-
ply each equation by its common denominator to obtain a set of MN −L
polynomial equations in the offsets t.

5. Divide these equations into at most
(

MN−L
M−1

)

critical subsets of equations
Si.

6. Compute a Gröbner basis for each set Si.

7. Calculate the possible offset values using back substitution and by com-
puting the zeros of polynomial equations.

8. Eliminate offset values that do not give a valid solution (e.g. values not
on the unit circle in the Fourier case).

9. Compute the weighted average of the offsets corresponding to the remain-
ing solutions (typically one per set Si).

10. Replace this value in the equations obtained for the signal parameters α.

parameters first from the first L = 5 polynomials using Gaussian elimination.
This gives us the signal parameters as a function of the offset:

α−2 = 9.4824 +
9.4824−(0.0457+2.9289j)z1−7.9982z2

1−(0.0457−2.9289j)z3
1

−1+z4
1

,

α−1 = −0.0457− 2.9289j,
α0 = −5.90654,
α1 = −0.0457 + 2.9289j,

α2 =
−9.48237+(0.0457+2.9289j)z1+7.9982z2

1+(0.0457−2.9289j)z3
1

−1+z4
1

,

(6.46)

where we assume that z4
1 6= 1. We can then replace these values in the remain-

ing three equations, and multiply them by their common denominators. This
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results in three polynomial equations in the unknown offset z1:

(2.9746 + 2.8833j)z1 + 6.4568z2
1 + (2.9746 − 2.8833j)z3

1

−(2.9746 + 2.8833j)z5
1 − 6.4568z6

1 − (2.9746− 2.8833j)z7
1 = 0,

(−0.0913− 5.8579j)z1 − 1.3617z2
1 − (0.0913− 5.8579j)z3

1

+(0.0913 + 5.8579j)z5
1 + 1.3617z6

1 + (0.0913− 5.8579j)z7
1 = 0,

(−2.8833 + 2.9746j)z1 − 5.4031z2
1 − (2.8833 + 2.9746j)z3

1

+(2.8833− 2.9746j)z5
1 + 5.4031z6

1 + (2.8833 + 2.9746j)z7
1 = 0.

(6.47)

As there is only a single unknown offset, the three possible critical subsets of
equations that can be formed are the three separate equations. We do not need
to compute a Gröbner basis for these subsets and can therefore directly compute
the zeros for each of the polynomials separately. After elimination of the zeros
that are not valid solutions (additional zeros were added by multiplying with
the common denominators, the zeros have to be on the unit circle, etc.), we
have the following zeros remaining for the three polynomials:

z
(1)
1 = −0.9957− 0.0924j,

z
(2)
1 = −0.9949− 0.1007j,

z
(3)
1 = −0.9982− 0.0594j.

(6.48)

From these values, we can compute the offsets t
(1)
1 = 2.0589, t

(2)
1 = 2.0642, and

t
(3)
1 = 2.0378. We take the average of these solutions (t1,avg = 2.0537), and

replace the corresponding value of z1 in the signal parameter equations (6.46).
We obtain the coefficient vector

α̂ =













4.7412− 5.7629j
−0.0457− 2.9289j

−5.9065
−0.0457 + 2.9289j
4.7412 + 5.7629j













. (6.49)

The relative error for our estimation, ‖α − α̂‖/‖α‖, is 0.655. This error can
be compared to the error that would be obtained by applying a least squares
estimation on the noisy samples with the exact offset t1, which is 0.080. Aver-
aged over 250 simulations with random coefficients and offsets, the estimated
error norm is 0.800, compared to 0.095 with the exact offsets. We can see that
our estimation has a larger error than in Example 6.4.1, but the computational
complexity is also highly reduced. Instead of 28 Gröbner bases for sets of 8
equations, only 3 sets of a single equation remained, which could be directly
solved. �

The above simulations show that these Gröbner basis methods are not very
robust to noise. At the same time, it is important to note however that the off-
sets between the sets of samples are unknown. This allows much more variation
for possible solutions than when all the sample positions are known.

Remark also that the computation of a Gröbner basis does not depend on
the specific values of the samples, except in some degenerate cases. Once the
size of the problem (L, M , N) is fixed, we could therefore compute the generic
Gröbner basis for this setup. The first six steps from Algorithm 6.4 can then be
precomputed. The online computations are reduced to steps 7-10: computing
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the zeros of a polynomial and replacing the solution(s) in the set of equations
for the signal parameters. The zeros of a polynomial can be computed with
the complexity given in (6.44). The other operations are negligible compared
to this. Buchberger’s algorithm is not needed anymore in the actual solution
of the specific problem, which can be computed very efficiently.

6.6 Conclusions

In this chapter, we have presented a method to reconstruct a signal from mul-
tiple sets of unregistered, aliased samples using Gröbner bases. First, we have
shown how multichannel sampling with unknown offsets can be written as a set
of polynomial equations. This was shown both for a polynomial signal and for a
signal described by its Fourier series. Next, we applied Buchberger’s algorithm
to compute a Gröbner basis for the ideal corresponding to this set of equations.
From a Gröbner basis, we can easily derive the unknown signal parameters. We
presented an adaptation to our algorithm in the case of noisy measurements.
Gröbner bases are then computed for critical subsets of the offset polynomials.
Finally, some complexity issues were discussed, and a more efficient method
was presented that computes the linear signal parameters first, such that a
Gröbner basis has to be computed only for a much smaller set of equations
in the unknown offsets. Even after this optimization, such methods have high
memory requirements. Therefore, we only applied them to one-dimensional
signals in our simulations.
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Conclusions

7.1 Thesis summary

We have presented super-resolution methods for unregistered aliased images. In
such algorithms, an accurate registration is a necessary prerequisite for a good
high resolution image reconstruction. We have formulated the reconstruction
from multiple unregistered sets of samples (images) as a multichannel sampling
problem with unknown offsets. This results in a set of nonlinear equations in
the unknown signal coefficients and the offsets. Using this formulation, we have
shown that the solution is generally unique if the total number of sample values
is larger than or equal to the total number of unknowns (signal parameters and
offsets).

Table 7.1 gives a summary and comparison of the applications, advantages
and disadvantages of the different methods presented in this thesis. If the
images are aliased, but the sampling frequency is above the maximum signal
frequency present in the images, the low frequency part of the images is free
of aliasing. It is then possible to register each of the images pairwise to the
first image using only these low frequencies. A registration method to com-
pute the planar shift and rotation between two images has been developed.
Using a frequency domain method, shift and rotation parameters can be esti-
mated separately. First, the rotation parameters are estimated from a radial
projection of the absolute values of the Fourier transform image. A simple
one-dimensional correlation can be performed to compute the rotation angle
from the projections for two images. Shifts can then be estimated from the
linear phase difference between the rotation corrected images. After registra-
tion, a high resolution image is reconstructed using Delaunay triangulation
and a bicubic interpolation method. The performance of this method is shown
and compared to other image registration methods in both simulations and
practical experiments on real images.

Pairwise alignment of the images is not possible anymore if the sampling
frequency is lower than the maximum signal frequency. All the images have
to be aligned jointly using the information present in the aliased frequencies.
Using the multichannel sampling description, several methods for this registra-
tion are designed. The motion model in this case is limited to horizontal and
vertical shifts in a plane parallel to the image plane.
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Table 7.1: Comparison of the different methods presented in this thesis.

partially aliased rank-based projection-based Gröbner basis

(Chapter 3) (Section 5.1) (Section 5.2) (Chapter 6)

subsampling < 2 any any any

signal model Fourier Fourier Hilbert space polynomial/Fourier

motion shift & rotation shift shift 1D shift

complexity low high high very high

applications real images small images small images 1D signals
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The first method uses the Fourier domain description of a signal as a sum of
the different aliased components of the spectrum. An objective function is
obtained in which the smallest nonzero singular value of a matrix has to be
computed. In the second method, the samples are written as a linear combina-
tion of sampled basis functions. In other words, the sample vector should be in
the subspace spanned by the sampled basis functions. The objective function
therefore computes the difference between the sample vector and its projection
onto the basis function subspace. This subspace varies as a function of the
offsets. This method can be applied more generally to any type of signals in
a finite-dimensional Hilbert space. The objective functions obtained in both
methods are very flat functions with many local minima. This makes their min-
imization a non-trivial operation, for which different heuristics are presented.
Both methods are tested in simulations on one and two-dimensional signals,
and show good results.

In many practical cases, like for example with bandlimited signals, the mul-
tichannel sampling problem can be written as a set of polynomial equations.
These equations are linear in the signal coefficients, and higher order polyno-
mials in the offsets. An elegant solution for such a set of equations can be
computed using Buchberger’s algorithm, which is the equivalent of Gaussian
elimination for a set of polynomial equations. This results in a Gröbner basis
for the polynomial ideal. The solutions can then be easily derived from this
Gröbner basis using back substitution. A version for noisy measurements, and
therefore only approximate equations, is obtained by computing Gröbner bases
for a number of critical subsets of the total set of equations. The offsets can
then be obtained as a weighted average of the results for the different subsets,
and the signal parameters can be computed using back substitution. Due to
the high computational complexity of algorithms to compute Gröbner bases,
this method is only applied to (small) one-dimensional signals.

All the journal papers written during this PhD research, as well as this thesis
itself is entirely reproducible. All the results and figures can be reproduced
using the Matlab/Mathematica code that is available online. We argue that
it is very important for scientific research to be performed in a reproducible
manner. This gives an easy way of checking results, and gives everyone access
to existing algorithms and results.

7.2 Future research

The limiting factor in the super-resolution methods for totally aliased images
is their computational complexity. As all the images need to be registered
jointly, they are inherently more complex than the methods that allow pairwise
registration. However, the presented methods are also computationally inten-
sive due to the complex minimization function and their large matrix sizes.
Other minimization procedures should therefore be examined, like for example
coupled simulated annealing [130], or more efficient line search algorithms to
minimize the objective functions. Similarly, both the decomposition in orthog-
onal subspaces presented for the projection-based method, and a decomposition
of an image in smaller blocks could reduce the sizes of the matrices. As the
main part of these algorithms consists of evaluating the objective function for a
large number of offset values, they can be also solved using parallel computing
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methods (such as the coupled simulated annealing method presented above).
Next to standard digital cameras, it would also be interesting to apply

our algorithms to other types of capturing devices. For example in aerial or
satellite imaging, the motion between images can often be considered to be
planar [3, 97]. Super-resolution would be very interesting in satellite imaging,
as it is typically impossible to replace a sensor by a higher resolution sensor,
while it is relatively easy to capture multiple images in multiple passes over a
region. Super-resolution methods could also be used to measure small objects
with higher precision than what can be obtained using a single image. This
can be applied to microscopy applications [131] and visual inspection methods.

Super-resolution imaging methods could also be combined with other tech-
niques to improve the image quality further. As most images taken with a
digital camera are mosaiced, we could perform our super-resolution algorithms
prior to the demosaicing phase (which might introduce interpolation artifacts),
or in combination with a demosaicing algorithm [29]. Similarly, we could com-
bine super-resolution and high dynamic range imaging methods to increase
both resolution and dynamic range from a set of images taken with different
exposure times [72].

Finally, if images are captured from different points of view, they can be
used to reconstruct the plenoptic function [1], a seven-dimensional function
representing all the images taken from any arbitrary point of view. It would be
interesting to look into the sampling and interpolation of the plenoptic function
using the intuition from super-resolution imaging.



Appendix A

Reproducible Research

In this appendix, we present the main ideas of reproducible research, and we
discuss its importance. The motivation for reproducible research can be well
described using a quote from Buckheit and Donoho [14]:

An article about computational science in a scientific publication is
not the scholarship itself, it is merely advertising of the scholar-
ship. The actual scholarship is the complete software development
environment and the complete set of instructions which generated
the figures.

A reproducible publication is defined as a publication where all the re-
sults (figures, tables, etc.) can be reproduced using the data and code that is
provided with the publication. The code should come with sufficient documen-
tation and some simple commands such that a reader can easily reproduce the
results.

This may all sound very trivial, and in discussions with colleagues, there is a
general agreement that this is how research should be performed [7]. Wikipedia
also states that “reproducibility is one of the main principles of the scientific
method, and refers to the ability of a test or experiment to be accurately re-
produced, or replicated” [128]. However, in practice, only few examples are
available today. Vinod has performed a study in a prestigious econometrics
journal, which showed that 70 % of the articles were not reproducible [122].
Such studies do not exist for signal processing, but we believe that the re-
sults would be similar. Making articles reproducible indeed requires a certain
investment in time. However, we think that it is worth the investment.

Unfortunately, much of today’s research could still be described as “single
person, single image, at a single moment”. This means that often, due to time
pressure, the results can only be made by a single person at a specific moment
in time, and are tested on a single image. We illustrate this with some examples
that are very familiar to most of us. Some examples did really happen, while
others are fictional, but close to reality.

Single person Most often, papers are written with a strict deadline. There is
typically no time (or interest?) to document code carefully. As a consequence,
only the author of the code (and the paper) knows how to run the code, which
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parameters to apply to get a good result, etc. Once this person leaves the
lab, this knowledge is gone, and even if a copy of the code is still available,
no one really knows how to use it. Or similarly, as not all the details of
the implementation can be described in the corresponding paper due to space
limitations, a colleague at another institution is not able to implement the
algorithm himself and test the results.

Single image Many image processing papers show the results of the described
algorithms only on a single image, typically the “Lena” image. While one can
argue that it is good for comparison to use a standard set of images, results
on a single image are not very convincing. Does the algorithm work well only
on this image? Is the selected image a good choice to compare such and such
features?

Single moment In many cases, the situation is even much worse than the first
example. When a figure has to be redrawn for a thesis, or for a revision of the
paper, even the author himself can not find back the parameters that produced
such a nice result. The tedious work of tuning parameters then starts again,
or, when the deadline is too close, the idea is abandoned, and the same figure
is reused.

Some further motivations for reproducible research are given in Section A.1,
and an overview of reproducible research initiatives in different fields is given
in Section A.2. The procedure we follow to make our research reproducible is
described in Section A.3, and some results are discussed in Section A.4. All
the research presented in this thesis is reproducible and follows this procedure.

A.1 Motivation

Our motivation to make research reproducible is twofold. First of all, we want
to make our research more accessible to other people. With a reproducible pa-
per, it is possible for a reader to analyze the program code, make changes, and
experiment himself with the code, without having to do the entire implemen-
tation. It also allows colleagues to take this work up later and start from the
state of the art, or to compare their methods with existing methods. Second,
this also helps ourselves by greatly simplifying the work when we need to take
something up again after a few months/years, for a revision of a paper or when
writing a thesis.

As a side effect, this also allows a more thorough review of publications.
Reviewers or journal editors could check that the figures and other results
shown in the paper are obtained using the included code. They could even
check the code to see that the implementations correspond to what is described
in the paper. This would avoid most problems with unintended errors or even
falsified results. A lot of media attention was recently drawn to the verification
of research results published in several journals [126,129]. The Journal of Cell
Biology started in 2002 to conduct tests on the images in their publications to
verify if they are manipulated [81, 91, 123]. They say that about 25% of the
papers have some problems with the images, with 1% being really fraudulent. If
a standardized method of making research reproducible is available, publishers
could reproduce all the results in a publication to easily verify their correctness.
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A.2 Related work

We got most of our ideas about reproducible research from Jon Claerbout and
his colleagues at the Stanford Exploration Project [95]. They initiated (to our
knowledge) the discussion about reproducible research, and apply this to their
geophysics research since 1991. They have developed makefiles to build, destroy
and clean all their results. Using such a makefile, one can easily recompute
all the figures with the command make build. A disadvantage is that such
makefiles only work under Unix/linux. Claerbout makes a distinction between
easily reproducible results, which are reproducible in less than ten minutes,
conditionally reproducible results, requiring more than ten minutes or some
specific data or software, and non-reproducible results, which are typically
hand-drawn illustrations or scanned figures.

Reproducible research is applied to wavelets by Dave Donoho and his col-
leagues at the Stanford statistics department [14]. They developed a Matlab
library of routines for wavelet analysis, wavelet packets, cosine packets and
matching pursuit. Using this library, it is possible to reproduce the results
from several of their publications.

It is interesting to see how a similar concept was presented by Donald Knuth
as literate programming [55, 62] in 1984. Instead of starting from the research
results and publications, and adding software to it to make things reproducible,
he presented literate programming as a way of improving significantly the doc-
umentation of programs:

Instead of imagining that our main task is to instruct a computer
what to do, let us concentrate rather on explaining to human beings
what we want a computer to do.

Knuth developed the WEB system for literate programming. A piece of soft-
ware is then a WEB document containing both LATEX and Pascal code. From
such a document, both a LATEX file and a Pascal program can be generated,
which can be compiled separately.

This WEB system has later been adapted to different other languages than
Pascal. It seems to have drawn most attention in combination with the sta-
tistical software R, for which a special package Sweave was developed [37, 59].
Instead of inserting a figure in a Sweave article, the author simply inserts the
R code necessary to produce the figure. The figure itself is then automatically
created and inserted in the LATEX document when the Sweave document is pro-
cessed. An example of the use of R and Sweave in bioinformatics is given by
Gentleman [36].

Images are typically rather easy to obtain, and therefore it does not pose a
big problem to make them freely available online. However, with other datasets
such as results from large medical studies or sensor network measurements, this
is less trivial, and other modalities might be needed. Peng et al. discuss some
other types of making such datasets available in epidemiologic research [82].

Although reproducible research is not widely used yet, its ideas have ap-
peared in different domains, mainly centered around statistics. It is ap-
plied to neurophysiological data analysis by Pouzat [85], to econometrics by
Koenker [56] and Vinod [122] and to epidemiology by Peng et al. [82]. This
list of application domains is by no means exhaustive, but gives a good indica-
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tion of the wide range of fields where reproducible research is applied and/or
discussed.

A.3 Practical method

In practice, all our software is developed in Matlab or Mathematica. Although
software packages such as Matlab and Mathematica are not freely available, and
thus restrict the reproducibility of the results, we consider them as quite stan-
dard packages to which most researchers have access. Matlab/Mathematica
files were created such that all the figures and tables can be reproduced by
running the figure x or table y files. Of course, all the data necessary to re-
produce the results are also added. In most cases the data themselves are not
reproducible, so those should be added as complete and well documented as
possible. Next to the documentation per function in each file, a Readme file
and a Contents.m file are also added. These files give an overview of all the files
and their behavior. The code is distributed under the GNU Public License [38].

A web page is created containing the title, authors, abstract and a PDF
version of the publication. Next, the code and data are added in a compressed
archive. They are typically put in two separate files, as the data can become
quite large. The computer configurations on which the code was tested are also
added for reference, and an e-mail address is given for comments and remarks.
Finally, some optional information can be given: full resolution images, refer-
ence list, etc. A list of these items is given in Table A.1. The reproducible
papers published at LCAV are available online at http://lcavwww.epfl.ch/
reproducible research.

Table A.1: Required items for a reproducible publication.

1. Title of the publication

2. Authors

3. Abstract

4. PDF version

5. Full reference to latest publication status

6. Zipped archive with code and data

a) Matlab/Mathematica/... code

b) Data necessary to reproduce the results

c) Readme file (and Contents.m file for Matlab code)

d) GPL file with the GNU Public License

7. List of tested configurations or system requirements

8. E-mail address for comments and remarks

9. Optional information:

a) Full resolution figures if certain details might be lost when printing

b) List of references (if possible with url pointing to the paper online)

c) . . .

http://lcavwww.epfl.ch/reproducible_research
http://lcavwww.epfl.ch/reproducible_research
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A.4 Results

It is very difficult to quantify the advantage of making papers reproducible. The
merit of having publications available online has been studied by Lawrence [58].
He showed that papers that are available online are cited about three times
more often than papers that are not online. We believe that a similar argument
holds for reproducible papers as compared to non-reproducible papers. This is
difficult to study, as the number of reproducible papers available online is still
quite small.

However, we can already say qualitatively that reproducible research has
certainly been worth the effort for us. First of all, it has largely simplified
work for ourselves in picking up previous work again. Readers downloading
our software have also sent us very grateful e-mails. Moreover, these comments
have already allowed us to remove some errors in the Matlab implementation
of one of the methods. The online availability of our code has also facilitated
some interesting collaborations.

Note that we are only talking about making journal publications repro-
ducible. We consider that for conference publications, this is not worth the
effort. Conference papers typically describe research that is still ongoing, and
in that sense it might be premature to develop software environments for those.
Also, conference papers often have sharper deadlines than journal papers, mak-
ing it more difficult to add some time for nicely putting the code together.

A.5 Conclusions and future work

All the journal publications written during this PhD thesis work [114,119], as
well as this thesis are reproducible, and follow the guidelines described above.
Making publications reproducible requires some effort, but we believe the ben-
efits largely compensate the effort.

In future work, it would be interesting to study if we can use open source
alternatives such as Octave [25] or Scilab [44] instead of (expensive) commercial
programs like Matlab. Also, as Buckheit and Donoho describe, in an ideal
world one could click on figures or tables to connect to the source code and the
computational environment that produced the results [14]. A reader could then
modify the source code to see what happens with different input parameters,
and the figure would be displayed for comparison. We will study how close we
can get to such an ideal world using existing applications like LATEX, literate
programming, hyperlinks, etc.
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