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Abstract

The present thesis is devoted to a detailed study of the Casimir force exerting between
two parallel metallic plates whose conducting behaviour is described on the microscopic
level. In the semi-classical regime, which corresponds to large separations and high tem-
peratures, the theoretical value of this force — which exhibits a universal character — is
subject to a controversy revolving around a factor 2.

Current theories describe the plates macroscopically or semi-macroscopically and im-
pose perfect boundary conditions to the field at their interface. In a statistical mechanical
framework, we perform a direct calculation of the average force exerting between the
fluctuating charges of a two-slab system in the semi-classical regime. In a first model,
the charges are classical. The calculation is then generalised to quantum plasmas coupled
to the radiation field, by means of path integral formalism. Relying on these accurate
models, we can pronounce on the correct value of the force. In addition, we explain its
universality as being the result of perfect screening mechanisms reflecting the effective
shielding of the charges in the conductors. We conclude that although shielded, charge
fluctuations inside the conductors cannot be neglected.

Keywords: Casimir forces, thermal quantum electrodynamics, field fluctuations, clas-
sical plasmas, quantum plasmas.

Version abrégée

Cette thèse est consacrée à une étude détaillée de la force de Casimir s’exerçant entre deux
plaques métalliques parallèles dont le comportement conducteur est modélisé sur le plan
microsopique. Dans le régime semi-classique, qui correspond à de grandes séparations
et de hautes températures, la valeur théorique de cette force — qui présente un caractère
universel — est sujette à une controverse portant sur un facteur 2.

Les théories actuelles font appel à une description macroscopique ou semi-macro-
scopique des conducteurs et imposent au champ des conditions de bord parfaites à leur
interface. Partant des principes de la mécanique statistique, nous exposons un calcul
direct de la force moyenne s’exerçant entre deux systèmes composés de charges fluctu-
antes, dans le régime semi-classique. Dans un premier modèle, les charges sont traitées
classiquement. Puis, par le biais du formalisme des intégrales de chemin, le calcul est
généralisé à des plasmas quantiques en intéraction avec le champ de radiation. Sur la
base précise de tels modèles, nous sommes en mesure de nous prononcer sur la valeur
correcte de la force. De plus, nous expliquons l’origine de son universalité comme étant
le fait de règles de somme reflétant l’écrantage effectif que subissent les charges. Nous
concluons que bien qu’écrantées, les fluctuations de charge à l’intérieur des conducteurs
parfaits doivent être prises en compte.

Mots-clefs: Forces de Casimir, électrodynamique quantique à l’équilibre thermique,
fluctuations de champ, plasmas classiques, plasmas quantiques.
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Chapter 1

Introduction

Contents

1.1 Fluctuation-induced forces . . . . . . . . . . . . . . . . . . 1

1.2 The Casimir effect . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thermal effects — the semi-classical regime . . . . . . . . . 6

1.4 Overview of the present thesis . . . . . . . . . . . . . . . . 13

1.1 Fluctuation-induced forces

The first evidence of a force between macroscopic bodies which is generated by
the fluctuations of their surrounding media is likely to be found in the maritime
domain. In the early 19th century, the frigate captain of the French royal navy P. C.
Caussé describes in his book l’Album du Marin : contenant les diverses positions
du bâtiment à la mer (Caussé, 1836) that two ships in a big swell but no wind
(“Calme avec grosse houle”; see Figure 1.1) experience a certain attractive force
when they happen to be at a close distance to each other. The rigs of the rolling
ships would eventually disastrously entangle if strong crews rowing in the sloops
would not tow the ships out of reach of one another. This force originates in the
asymmetry (due to the presence of the other vessel) of the pressure exerted on the
ships’ sides by the smaller waves produced by the rolling (Boersma, 1996).1

In an entirely different field, H. B. G. Casimir (1948) was the first to predict
the existence of an attractive force between two neutral parallel metallic plates at
a distance d apart, induced by electromagnetic field fluctuations. The presence of

1Very recently, however, Boersma’s statement has been qualified as a myth (Ball, 2006) in a
news at news@nature.com.
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Figure 1.1: Two frigates in a big swell without wind attract each other.

this force can be similarly understood as being provoked by an asymmetry of the
field radiation pressure between the inner space delimited by the plates and the
outer spaces (Milonni, Cook, & Goggin, 1988).

Other fluctuation-induced forces have been observed and understood before
Casimir’s prediction: the London–van der Waals force between neutral atoms or
molecules in a fluid (London, 1930). Even when atoms or molecules exhibit no
permanent dipole moment in average, the quantum-mechanical fluctuations (de-
viations to the average value) of the latter still lead to an interaction potential,
decaying as 1/r6 with the separation distance r. In fact, Casimir’s paper on the
two parallel plates follows a work of Casimir and Polder (1948) showing that re-
tardation effects (the finiteness of the speed of light) accelerates the decay of the
London–van der Waals interaction to a 1/r7 behaviour at very large distances (i.e.,
much larger than atomic transition wavelengths).

Looking for a more elementary calculation for this result, and after a sugges-
tion of Bohr,2 Casimir discovered that the modification in the zero-point electro-
magnetic energy provoked by the presence of two metallic plates in the vacuum
engenders a macroscopic force between them. Later, he could reinterpret the re-
sult about retarded van der Waals forces as being similarly due to a change of the
zero-point energy induced by the presence of the second particle (Casimir, 1949).

Van der Waals forces, besides their implication in fluids, have everyday macro-
scopic implications too, such as the one observed by Aristotle (350 B.C., Book IX,

2See, e.g., Milonni, (Milonni, 1994, Chap. 7)
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part 9), who noticed the ability of gecko-lizards to adhere to tree trunks “even with
the head downwards”. Geckos do not produce secretions; the unusually strong ad-
hesive force of their feet (they are able to hang from a ceiling with one toe only!)
has been asserted only a few years ago to be of van der Waals type, although capil-
larity effects from residual air humidity enhance its strength (Autumn et al., 2000,
2002; Huber et al., 2005). Carbon nanotubes have recently been used, with spec-
tacular results, to imitate the gecko’s elastic foot-hairs, able to intimately establish
contact with the surface so as to induce enough van der Waals type intermolecular
interactions (Yurdumakan, Raravikar, Ajayan, & Dhinojwala, 2005).

Many other fluctuation-induced effects can be found in nature. Their presence
always reveals the incessant motion of what otherwise seems still. Let us, at last,
mention — as a concrete application of their manifestation — that sound waves or
noise in air can induce such a force between parallel metal plates, an interesting
property of which is that it can be repulsive due to the limited bandwidth of the
noise’s spectrum, suggesting nonresonant means of acoustic levitation (Larraza &
Denardo, 1998).

1.2 The Casimir effect

The original idea of Casimir’s calculation is based on the fact that two metallic
plates that impose the vanishing of the electromagnetic field at their location re-
strain its allowed frequency modes ωK. In particular, these frequencies, which
correspond to the energies �ωK(n + 1

2 ) of the quantized field, are dependent on
the separation d between the plates. Even in the absence of photons (n = 0;
“vacuum”, or zero-point, zero temperature), the residual total energy of the field
1
2

∑
K,λ �ωK due to its quantum fluctuations — and usually left behind because of

its problematic infinite value — is the source of a force between the plates. Plates
closer to each other “lower” the infinity of this quantity. As forces are defined only
by differences of energy, Casimir could give to such a difference a well-defined
value:3 the attractive Casimir force between the plates, whose strength by unit
surface is

f (d) = −
π2
�c

240 d4 (1.1)

(� is Planck’s constant, c the speed of light, and the minus sign denotes attraction).
In spite of its apparently very theoretical character and its weakness (the force
between two plates of 1cm2 surface at a distance 1μm apart is of about 10−7N),
it is the strongest force between two neutral macroscopic objects at micrometer
distances, and it has been observed experimentally.

3A regularization technique is necessary, however.



4 1. Introduction

Casimir’s pioneering calculation has raised whole new branches of research in
many different fields:

• It poses the general problem of the “structure of the vacuum” in all quantum
field theories in the presence of external sources or geometrical constraints.
Understanding the properties of the vacuum leads to fundamental questions
on the structure of the space-time. It is of crucial importance, e.g., in cos-
mology, and in attempts to unify the four fundamental forces of nature.

Zero-point fluctuations of the electromagnetic field are also, for example, at
the onset of the spontaneous emission of a photon by the decay of an excited
atom.

• In quantum chromodynamics, the Casimir effect has been proposed as a
confining mechanism for quarks and gluons, known as the “bag model” of
hadrons.

• Attempts to explain sonoluminescence (intense light pulses arising from
collapsing bubbles in alternatively compressed fluids) by means of this ef-
fect have given rise to the dynamical Casimir theory, in which effects with
moving boundaries or constraints are investigated. An accelerated mirror,
for example, should emit light as a consequence of it reflecting the vacuum
fluctuations it encounters.

• In critical phenomena, forces between boundaries or layers can be generated
at critical points, where the range of the interactions becomes long. These
forces present similitudes with the Casimir force. In particular, they exhibit
a universal character.

• Still in its very formulation — concerned more specifically by the forces
due to the fluctuations of the electromagnetic field between conductors and
dielectric bodies, or between atomic entities — a number of questions have
been investigated, like the influence of geometry, of finite conductivity, of
imperfect boundaries and their roughness. Some remain poorly understood,
or even controversial, especially the influence of finite temperature. This
last topic will be the main concern of the present work.

• On the technological level, the Casimir force can cause small elements in
nanoscale structures and microelectromechanical systems to stick together.
These devices are indeed fabricated at the micron and submicron scale. But
the force can also be used to control the mechanical motion of such devices
(Chan, Aksyuk, Kleiman, Bishop, & Capasso, 2001).
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The literature on the Casimir effect is huge, and expanding every few days. It
is impossible to be exhaustive in mentioning even general references. Among
widespread text books and reviews are those of Milonni (1994), Duplantier and
Rivasseau (2003), Levin and Micha (1993), Mostepanenko and Trunov (1997),
Milton (2001), Plunien, Müller, and Greiner (1986), Elizade and Romeo (1991),
Mahanty and Ninham (1976), etc. For more recent accounts on developments
and controversies, see, e.g., (Bordag, Mohideen, & Mostepanenko, 2001), and
(Milton, 2004).

The scope of this effect’s implications is equally hard to delimit and novel
ideas may arise in the future. As an illustration, it has been asked very recently
whether it might be a way of explaining the preservation of Cooper pairs in high-
temperature superconductors (Kempf, 2006).4

Experiments

As soon as one comes to probing the Casimir force in experiments, the ideal case
considered by Casimir has to be enhanced so as to include the other effects men-
tioned above.

Attempts to measure the force date back to the middle 1950s, but several tech-
nical problems prevented net conclusions to be drawn. The principal difficulties in
the experiment of, e.g., Sparnaay (1958) consisted in the cleaning and flattening
of the surfaces, as well as in estimating the surface potentials of the capacitor’s
plates. The parallelism of the plates was controlled by “judging by eye” (!) the
shaft of light of two 6W lamps placed in the plane of the interface (for two perpen-
dicular directions to look at). They assessed the difference between the maximum
and minimum separation to be at most 0.4 ± 0.1μm, for an average separation
d = 5μm. Clearly, such a technique — in spite of its pleasant and appealing
simplicity — is not really transposable at shorter distances and for more precise
measurements. Most experiments are nowadays performed on systems made of
a sphere in front of a metallic plate to overcome this serious difficulty. The Der-
jaguin approximation (Derjaguin, 1934) (also called “proximity force theorem”)
is used to modify the result (1.1) to this geometry [see, e.g., (Bordag, 2006) or
Refs. therein for first corrections; see also (Milton, 2004, Sec. 3.5)].

The advent of new technologies allowed to improve substantially experimental
setups about a decade ago. First conclusive demonstrations of the Casimir force
(to a few percents) have been performed by Lamoreaux (1997), and Mohideen and
Roy (1998). They have been followed by many others, see, e.g., (Milton, 2004,
Sec. 3.6) for a short review. The only measurement reported on after Sparnaay in

4The idea is that the parallel Cu-O layers of such materials, isolating at temperatures higher
than the critical value and superconducting below, would induce the formation of Cooper pairs so
as to become superconducting and as such retrieve the Casimir energy.
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the experimentally difficult (but theoretically simpler) two parallel plates geome-
try is that of Bressi, Carugno, Onofrio, and Ruoso (2002), who obtained a 15%
precision level.

Yet, finite conductivity, and finite temperature corrections (among others) have
been taken into account in these recent experiments, sometimes in a controversial
manner. It is of importance to have at disposal precise theoretical formulae for
them.

In this context, for example, it would also allow the experimental testing of
Newton’s inverse-square law of gravitation at micron length scales — after proper
subtraction of the Casimir force. These tests are important because many theo-
ries attempting to unify the four fundamental forces predict the existence of yet
undiscovered forces that would act at such scales (Fischbach & Talmadge, 1999).

1.3 Thermal effects — the semi-classical regime

Macroscopic theories

Calculations considering the thermal fluctuations of the field while still imposing
its vanishing on ideally conducting plates (i.e., on plates considered as macro-
scopic objects without internal structure), have been performed by Fierz (1960)
and Mehra (1967). Two asymptotic regimes can be retrieved depending on the
value of the dimensionless parameter

α =
�c

kBTd
(1.2)

(kB is the Boltzmann constant), which measures the ratio of the thermal photon
wavelength to the separation distance (see Section 2.3.2). For α � 1 (short dis-
tances, low temperature), Casimir’s result (1.1) is recovered. The next terms are
the black body radiation pressure (∝ T 4) and exponentially small corrections in
the parameter α. For α � 1 (high-temperature, large-distances), up to exponen-
tially small terms in 1/α, the result is found to be

f (d) = −
kBTζ(3)

4πd3 , (1.3)

where ζ(3) =
∑∞

n=1 n−3 ≈ 1.202 is the zeta Riemann function evaluated at 3. The
latter force is still attractive, and has the remarkable property of being classical: it
does neither depend on � nor on c. Quantum mechanical fluctuations of the field
that were inducing a force decaying as ∝ d−4 are taken up by thermal fluctuations
and modify its decay to a ∝ d−3 behaviour. We will refer to this regime as the

semi-classical regime of the Casimir force.
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A calculation has been performed similarly by Schaden and Spruch (2002a,
2002b), but starting with a classical field from the beginning. The same result
(1.3) is obtained.

Semi-macroscopic/semi-microscopic theories

Before the calculations of Fierz and Mehra, Lifshitz (1955) formulated a gen-
eral theory of forces between thermalised dielectrics, including thus both effects
of imperfect conductivity and finite temperature. It is based on the introduction
in the Maxwell equations of an additional “random” field, thought of as reflect-
ing the fluctuations of the plates’ microscopic constituents, exactly in the spirit
of Langevin’s stochastic force in the theory of Brownian motion. The correla-
tions of this random field are set to be local in space and homogeneous in time.
They involve the dielectric susceptibility ε(ω) of the media, Planck’s constant and
the temperature all in one, as in the theorem of fluctuation-dissipation (Landau,
Lifshitz, & Pitaevskii, 1984, Chap. 8). The random field — which represents
the polarization and magnetization of matter — gives the material sources of the
Maxwell equations. These equations are then solved for the total, stochastic, field
according to the geometry of the problem, by imposing macroscopic Maxwell
boundary conditions at the surfaces of the dielectric plates. The force by unit sur-
face is retrieved as the Maxwell stress tensor, and its average is calculated from
the given correlations of the added random field.

Lifshitz’ theory is very rich, and, to the present, the most complete and used
theory (in its various reformulations) for Casimir-related experiments. At strictly
zero temperature, it is capable of recovering Casimir’s result (1.1) for large dis-
tances and for an infinite dielectric constant corresponding to metallic plates; for
short distances and dilute media, it reduces to the van der Waals–London force
between polarizable molecules. When temperature is nonzero, at small separa-
tions — small but still large with respect to a characteristic length involved in the
absorption spectra of the metal —, again (1.1) is found for metal plates, with first
corrections in temperature. Going to large distances instead (α � 1) yields the
result

f (d) = −
kBTζ(3)

8πd3 . (1.4)

This result differs from (1.3) by a factor 2.

This observation led Schwinger and his group (Schwinger, 1975; Schwinger,
DeRaad, & Milton, 1978) to reformulate the theory in terms of Green’s dyadics
(response functions relating the electromagnetic field to a microscopic polariza-
tion source). They found that Lifshitz’ general formula was correct, but prescribed
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another way of taking the limits to recover the conducting case, which was leading
to (1.3) instead of (1.4).

For a nice presentation and comparisons of the different derivations leading
to Lifshitz’ formula, see (Milonni, 1994). A shorter account can be found in the
lecture notes of Ph. A. Martin prepared for the 1st Warsaw school of Statistical
Physics, Kazimierz, Poland (Martin & Buenzli, 2006).

The controversy

To date, the factor 2 controversy between the value (1.3) and (1.4) still holds. After
a long period of rest, it has naturally regained in strength since the experiment of
Lamoreaux, and still results in actual dense debates. In fact, these debates also
concern the low temperature corrections to Casimir’s result (1.1). As such, it is
not clear — depending on the author — whether temperature effects have been
important in the experiments so far achieved, which have aimed at investigating
the purely quantum force (1.1) but have been performed at room temperature.

The controversies arising in both regimes in Lifshitz-like theories reduce to
knowing whether the reflection coefficient of the transverse electric (TE) mode of
the field rTE(ω,k) vanishes or not in the limit of zero frequency.

In the low-temperature, small-separation regime, this difference adds — or
not — the linear temperature correction term +ζ(3)kBT/8π:5

f (d) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−
π2
�c

240d4 + O(T 4), rTE(0) = 1

−
π2
�c

240d4 + O(T 4) +
ζ(3)kBT

8πd3 , rTE(0) = 0.
(1.5)

In the semi-classical regime, it changes the amplitude of the force by a factor 2:

f (d) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−
ζ(3)kBT

4πd3 , rTE(0) = 1

−
ζ(3)kBT

8πd3 , rTE(0) = 0.
(1.6)

The reflection coefficient is expressed in terms of the frequency-dependent
dielectric susceptibility ε(ω). Different models of an explicit dielectric function
have been proposed. The question then reduces in knowing which of the two

5In his calculation, Lifshitz missed this ∝ T correction term by using the Euler–McLaurin sum
formula on a discontinuous function. See (Høye, Brevik, Aarseth, & Milton, 2003, Sec. II).
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proposed models:

ε(ω) = 1 −
ω2

p

ω2 “Plasma model” =⇒ rTE(0) = 1 (1.7)

ε(ω) = 1 −
ω2

p

ω(ω + iγ)
“Drude model” =⇒ rTE(0) = 0 (1.8)

represents adequately the physics of real conductors at small frequencies. This
has led to several studies, both theoretical and numerical, and to re-analyses of
experimental data.

Rather than citing the long list of all articles related to this controversy, and
since no net result seems to have broken through in this context, let us briefly
mention only a few works of the last developments.

• Brevik, Aarseth, Høye, and Milton (2005); Høye, Brevik, and Aarseth (2005)
argue, on the basis of an analysis of optical data of real metals that the TE
zero mode does not contribute, thus, in particular, that (1.4) is correct.

• On the other hand, Mostepanenko et al. (2005) rule out the Drude model
which they say violates the third law of thermodynamics (the Nernst heat
theorem) and contradicts experimental data (facts refuted by the former
group).

• By taking into account the effects of spatial dispersion on the field’s modes,
i.e., by allowing a wavevector-dependent dielectric function, Sernelius (2005,
2006) says he resolves the controversy and finds (1.4) in the semi-classical
regime. His work is criticized by Klimchitskaya and Mostepanenko (2006)
who point out that he assumed a translation invariant space in all direc-
tions in writing the wavevector-dependent dielectric susceptibility, so that
his conclusion is not reliable.

One of the last articles in this series is (Brevik, Ellingsen, & Milton, 2006).
These theoretical investigations are all based on Lifshitz’ formula, which proves

to be at the same time powerful, but also insidious. Thermal effects in the Casimir
force surprisingly seem to push this theory to its limits.

More refined analyses are needed. In the following, we concentrate only on
the factor 2 controversy occurring in the semi-classical regime. In a joint letter
with Jancovici and Šamaj (2005), we have stressed, on the firm basis of purely
microscopic models of conductors (see below), the importance of taking into ac-
count the charge fluctuations inside the conductors (Buenzli & Martin, 2005b).
We agree on saying that the correct result is (1.4).

As a last remark, let us note that an experiment in a cylinder–plane geometry is
currently being developed by Brown-Hayes, Dalvit, Mazzitelli, Kim, and Onofrio
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(2005) with the hope, in particular, to investigate larger distances and as such, to
be able to discriminate from the experimental point of view the factor 2 problem.

Microscopic theories

Theories aimed at retrieving the Casimir force by modeling the plates on the
atomic level have been relatively scarce, and are almost never mentioned in text
books — except for the (unjustified) pairwise summation of van der Waals forces
that led Lifshitz to develop his theory. This may be explained by the fact that these
theories in general recovered Lifshitz’ formula. In view of the preceding, and as
we will see, microscopic theories might renew interest for future developments in
Casimir forces.

Universality: an as yet not discussed remarkable characteristic of the Casimir
force is its universality: the results for the force at zero temperature (1.1) or in
the semi-classical regime (1.3)–(1.4) exerting between two conductors have in
common that they are independent of the material constitution of the latter.

However, it could not really have been otherwise, because this constitution
never entered fully in play in the modelling: in Casimir’s original calculation, as
well as in that of Fierz and Mehra, the plates consist only in perfect boundary
conditions to the field. The coupled system of interacting matter and field has
been reduced to field’s degrees of freedom only. Matter’s degrees of freedom
are thought of having been integrated out so as to result in the enforcement of
perfect conductor boundary conditions to the field, which are not made dependent
on the plates’ constitution. In Lifshitz-like theories, the material constitution of
the plates is indeed taken into account by the dielectric susceptibility. However,
the limit ε → ∞ is eventually taken to recover perfect conducting plates. This
quantity disappears “by hand” from the result.6

It is the challenge of theories modeling the plates on the microscopic level to
understand the emergence of this universality. In the case of the force between
dielectrics, it is of note that Lifshitz’ general force depends on their material con-
stitution only by the dielectric susceptibility (which is, furthermore, a bulk quan-
tity), which consists already in an extraordinary simplification of the microscopic
processes at stake in the media.

6A form of universality was, however, noted by Lifshitz, in the sense that the force between
dielectrics at large separations (for both zero and nonzero temperature) only depends on the static
dielectric constant ε(ω = 0). This has the consequence that the static conductivity σ = ω2

p/(4πγ)
and the plasma frequency ωp occurring respectively in the Drude and plasma models (1.7)–(1.8)
do not show up in the corresponding asymptotic results (1.3)–(1.4).
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In the following, we mention some works performed on the microscopic level,
and finally turn to the main subject of this thesis.

Dielectrics:

• An early microscopic calculation that retrieved the Lifshitz formula at zero
temperature is that of Renne (1971a). It relies on a previous calculation
(Renne, 1971b) expressing the energy of an arbitrary system of harmonic
oscillators (atoms) in interaction with the radiation field as a sum of 2-
particle, 3-particle, etc., retarded van der Waals interactions. This interac-
tion energy is written in terms of the dielectric constant of the medium, and
the result compares to Lifshitz’ formula for the force upon differentiation
with respect to d.

• A quantum statistical model of polarizable fluids allowed Høye and Bre-
vik (1998) to recover Lifshitz’ formula at finite temperatures. The fluids
are modeled by fluctuating dipole moments (harmonic oscillators) whose
interaction with the field is assimilated to a “spin”-field coupling term. The
path integral formalism is used to represent the quantum mechanical par-
tition function in a classical-like form and field’s degrees of freedom are
integrated out, with the effect of yielding an effective interaction between
the dipoles (Høye & Stell, 1981; Brevik & Høye, 1988). By considering
Kubo’s formula and the Ornstein–Zernike relation, they emphasize a cor-
respondence between the Green functions of the macroscopic electromag-
netic problem and the correlation functions of the microscopic system. This
correspondence makes the connection between their average force and the
Lifshitz force.

• Recently, Valeri and Scharf (2005) have formulated a microscopic theory
for the force between dielectrics based on the photon-exciton Hamiltonian
— representing the polarizable atoms interacting with the field. Using
many-body techniques, they evaluate the Green function of the total electro-
magnetic field entering into the Maxwell stress tensor and retrieve Lifshitz’
formula.

They emphasize that their model does not give an adequate description of
metals (divergent series might occur in the metallic limit). However, they
stress that at vanishing frequencies, their microscopic theory gives a van-
ishing reflection factor for the TE mode, supporting in this sense the value
(1.4) of the force in the semi-classical regime. They also find that imposing
hard boundary conditions in the macroscopic theory of the Casimir effect is
not well-defined for it includes infinite self-energy contributions by disre-
garding the finite distances between the atoms.
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Metals: The preceding microscopic theories all retrieve the Lifshitz force be-
tween dielectric media. Nevertheless, the factor 2 controversy concerns the force
between perfect metals. We have seen that calculations in which no fluctuations
at all of the field were allowed inside the metallic plates resulted in the value (1.3)
of this force in the semi-classical regime. Lifshitz-like theories, which use an
intermediate scheme — between taking into account these fluctuations, but still
enforcing macroscopic boundary conditions to the field — are capable of retriev-
ing both results (1.3) and (1.4) in the metallic limit. We will see that microscopic
models of conducting plates, in which charge fluctuations are fully taken into ac-
count and no particular conditions are imposed to the field yield the result (1.4):

• In the study of universality properties of Coulomb systems, Forrester, Jan-
covici, and Téllez (1996) have investigated the case of a statistical system of
classical charges confined to a two-dimensional plane parallel to a macro-
scopic, nonfluctuating, conductor (ideal conductor). They express the po-
tential’s correlations in terms of the Green function of the Poisson equation
(which corresponds to a kind of Debye–Hückel approximation) and thus
evaluate the stress tensor. The force between the two conductors is found to
be Formula (1.4). Precisely, it does not depend on the microscopic charges.
Jancovici and Téllez (1996) show that for this force observable, the macro-
scopic conducting plate can be thought of as a fluctuating system.

• Still in the framework of classical Coulomb systems, we provided in (Buen-
zli & Martin, 2005a) an exact calculation to retrieve the Casimir force (1.4)
beyond the Debye–Hückel approximation in the large-separation asymp-
totics. The universality of the force has been found to be a direct conse-
quence of perfect screening sum rules expressing the shielding of charges
in conducting phases. At about the same time, Jancovici and Šamaj (2004)
studied (in the Debye–Hückel theory) the screening of the Casimir force by
an additional electrolyte filling the interspace.

• With a view to settle the debate about the factor two, we published a letter
jointly with Jancovici and Šamaj (2005), based on analyses of the phys-
ical parameters at stake in the semi-classical regime of charged systems,
and on exact calculations performed in their framework. In particular, our
letter (Buenzli & Martin, 2005b) more specifically presents the calculation
where matter is treated quantum-mechanically and is coupled to a radiation
field. The main result is that the force (1.4) is retrieved, and that universal-
ity originates from the perfect screening sum rules satisfied by the charge
correlations.

Although classical models already recover this force, this calculation is an
important check that the force is not modified by the inclusion of retardation
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effects, which we know — since Casimir and Polder — can have nonper-
turbative implications in fluctuation-induced forces.

These above-mentioned works are the ingredients of the present thesis, of
which an overview is presented hereafter.

1.4 Overview of the present thesis

The present thesis has the purpose of investigating in detail the Casimir force
between metals modelled by statistical systems of fluctuating charges in a two-
slab geometry and in the semi-classical regime. Models of increasing complexity
are presented, from classical Coulomb systems to quantum systems coupled to the
radiation field.

The main results are the following. The force (1.4) is invariably retrieved. Its
universality is the result of perfect screening sum rules satisfied by the correla-
tions, that reflect the effective shielding of charges in the conductors. Our con-
clusion is that even though shielded, fluctuations of charges inside the conductors
cannot be neglected in the calculation of the Casimir force in the semi-classical
regime (at least), to retrieve correctly its value.

Each chapter will contain a detailed description of its own. The general struc-
ture and content of the document is as follows.

In the first part of Chapter 2, the microscopic and statistical description of the
various systems investigated throughout this work are presented in detail. Then
(Section 2.5), the main methods used to calculate the large-distance asymptotic
force (beyond the Debye–Hückel theory) are illustrated by carrying them out on
the simplest case of classical charges interacting via the Coulomb potential. The
result already shows the above-mentioned microscopic origin of the universality
of the force and has made the object of an article (Buenzli & Martin, 2005a),
reproduced in Chapter 3. This chapter is supplemented by a few considerations
about subleading contributions to the asymptotic force.

Matter and field decouple when they are both treated classically so that the
field is inoperative on the Casimir force in such a case. In order to include the
magnetic Lorentz forces between the slabs, we expose in Chapter 4 the formal-
ism used to treat matter quantum-mechanically and include the coupling with the
(classical) radiation field. The article (Boustani, Buenzli, & Martin, 2006) written
on this subject is included. This formalism uses the Feynman–Kac–Itô path inte-
gral to represent the full statistical system in terms of a classical system of charged
loops, whose random extension represents the quantum fluctuation of position of
the particles. The field’s degrees of freedom can be integrated out exactly, result-
ing in an additional pairwise interaction exerting between the loops. In the article,
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we also calculate the large-distance density correlations and large-distance field
correlations of this quantum charged system.

In Chapter 5, we apply the formalism developed in the precedent chapter to
the two-plate situation: the Casimir force in the semi-classical regime exerting
between field-coupled systems of quantum charges is calculated using the same
methods as in the classical case. We recover the result (1.4), even though new
terms — of magnetic origin — arise in the asymptotic interplasma correlations.
These new terms are shielded away by the screening mechanisms of the Coulomb
fluids. The calculation details of this result presented in the letter (Buenzli &
Martin, 2005b), also included in the chapter, are given.

Finally, Chapter 6 sums up the conclusions of this work and gives some per-
spectives.

Degree of rigour of the developments — asymptotic analyses:
The calculations carried out are not rigorous in the sense of pure mathematics.
They rely on a certain number of assumptions physically plausible. Still, we do
not have recourse to intermediate approximations. Among assumptions made, are
the validity of the thermodynamic limit, the approach as d → ∞ of physical quan-
tities pertaining to one of the slab to their isolated-slab counterpart, the integrable
speed of approach to bulk values of the density, the relevance of the resummed
Mayer graph series. At times, limits and integrals have been freely interchanged
(especially in the loop formalism). Whenever possible within reason, they have
been rigorously justified by dominated convergence.

Throughout the document, we have made use of the notations O(·), o(·), and
d→∞∼ . These notations have a precise mathematical meaning, see, e.g., (Olver,
1974). As an example,

f (d) d→∞∼ −
ζ(3)

8πβd3 means lim
d→∞

d3 f (d) = −
ζ(3)
8πβ
. (1.9)
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The first part of this chapter aims to present the framework of the basic phys-
ical model that we consider, and its different refinements. As announced in the
introduction, we model Casimir’s metallic plates on the atomic level by two slabs
containing moving interacting charges. In a fluid state, such slabs behave as con-
ductors. In particular, they exhibit screening effects, which will prove to lie at the
heart of universality in the high-temperature Casimir force. Yet, several laws of
mechanics can be considered ruling these plasmas. They lead to different regimes
of validity and degrees of complexity in the calculation of the total force between
the plates. Since the high-temperature/large-distance force (1.4) or (1.3) has a
classical value, one expects to be able to retrieve it already within a classical de-
scription of the plasmas. This force is, however, usually obtained as a limiting
case of quantum field models. Moreover, depending on the specific model or the
way the limiting case is obtained, its amplitude varies by a factor 2. It is therefore
of strong interest to investigate the force in our microscopic framework when the
plasmas are also quantum-mechanical, and coupled to the electromagnetic field.

The force acting between the thermalised plates will be defined in general by
the derivative of the free energy with respect to the separation distance d. In clas-
sical and quantum plasmas, this corresponds to average the microscopic Coulomb
forces exerting between the charges; for field-coupled plasmas, the whole Lorentz
forces are taken into account.

In the second part of the chapter, we outline the main method employed to
calculate the asymptotic Casimir force at large distances by illustrating it in the
classical case. We comment on the tools by which this method can be generalised
to the other cases. Explicit calculations and details will be found in the subsequent
chapters and articles.

2.1 Microscopic setting of the particles and the field

A widely used model to describe conducting electrons in a metal is the one-
component plasma, also known as jellium. It consists of electrons moving on
a positively charged uniform background representing the crystallized ions. A
more realistic representation of the microscopic entities at stake consists in re-
placing the neutralizing ionic background by positive point charges. We will be
considering such systems of negative and positive moving charges (plasmas) to
describe conducting matter.
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Figure 2.1: The two plasmas A and B of thickness a and b, surface L2, set at a distance d
apart. They interact with the radiation field enclosed in the box K.

We represent the two metallic plates of Casimir’s basic setting by a system
consisting of two interacting plasmas A and B, set at a distance d apart. Their
respective thickness is a and b and their surface L2 (Figure 2.1).

We suppose these plasmas to be composed of nonrelativistic point charges
of several species γ. At the detail level of the microscopic framework we are
interested in, these species account for the negative and positive atomic entities
mentioned above, typically electrons and ions. They can also represent positive
and negative ions in an electrolyte. We denote by eγ the charge, and by mγ the
mass of a particle of species γ.

The particles, constituting the plates, are confined by wall potentials to the two
separate regions A and B, delimited by

−a < x < 0, and d < x < d + b (2.1)

along the x axis, as shown in Figure 2.1. These confining potentials are considered
steep, so that particles of plasma A stay in region A, and particles of plasma B in
region B. As a consequence, particles in one plate are always distinguishable from
alike particles in the other. The species index set S 
 γ is split into two disjoint
contributions S A and S B (for species in A and B), even though same characteristics
of mass and charge can be found on either side. To ensure the global neutrality of
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each plate, we impose

∑
a

eγa =
∑

b

eγb = 0, (2.2)

where the sums are carried over every particle of A and B, respectively.
This system of charges is coupled to an electromagnetic field which is itself

enclosed into a larger box K englobing the plates. This field is not an external
electromagnetic field. Rather, it contains also radiation created by the moving
charges.

2.1.1 Hamiltonian

We will be using the Coulomb gauge so that electrostatic (longitudinal) effects
remain separate from radiative (transverse) ones. It is commonly used when mat-
ter is nonrelativistic and high-energy processes are neglected (Cohen-Tannoudji,
Dupont-Roc, & Grynberg, 1989, Sec. II.C.5). In this gauge, the N-particles
Hamiltonian is known to read, in Gaussian units1

HK,L =

N∑
i=1

1
2mγi

(
pi−

eγi

c
A(ri)

)2
+

∑
i< j

eγieγ j

|ri − r j|
+

N∑
i=1

Vwalls(ri, γi) + Hrad
0 . (2.3)

Namely, the charges interact via the pairwise electrostatic (instantaneous) Cou-
lomb potential

eγieγ jv(ri − r j) ≡
eγieγ j

|ri − r j|
, (2.4)

and the radiative contributions are contained in the particles’ kinetic energy, which
builds up the only matter–field coupling of this description. The vector potential
A(r) is divergence free, and the term Hrad

0 is the free field energy. The field is
supposed to satisfy periodic boundary conditions on the sides of the box K, for
simplicity.

The wall potential Vwalls(ri, γi) confines the particles either to A, if γi ∈ S A, or
to B, if γi ∈ S B. We neglect spin–field couplings.

1Electrostatic Gaussian units are most often used in atomic physics. They correspond to cgs
(centimeters, grams, seconds) and the additional charge unit of statcoulomb (statC, or esu), defined
by the requirement that the force between two unit charges at a distance of 1 cm apart is 1 dyne
(1 g cm/s2). The Coulomb potential therefore reads 1/r. See, e.g., (Jackson, 1998; Schwinger,
DeRaad, Milton, & Tsai, 1998; Sommerfeld, 1948).
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Throughout this work, the field will be treated classically. This will be justi-
fied for the calculation of the Casimir force in the semi-classical regime by the
fact that only long wavelengths of the field are relevant for interactions across
large distances d. Such modes are expected to be correctly described classically
(like in Planck’s radiation law). We will be dealing with two ways of treating the
particles’ mechanics:

• Classical plasmas: in this case, the dynamics induced by the Hamiltonian
(2.3) corresponds to the coupled system of Maxwell equations (with sources
given by the particles), and Newton’s law (with the Lorentz force). The
Casimir force due to classical plasmas is the object of Chapter 3.

• Quantum plasmas: in this situation, the particles will obey Fermi or Bose
statistics, depending on their species. At least one fermionic species in each
plasma will be assumed for stability. The Hamiltonian (2.3) acts on the
Hilbert space of N-particle states, symmetrized accordingly. We note that
we still assume particles with same characteristics in plasmas A and B to
be distinguishable by their strict confinement.2 The Casimir force due to
field-coupled and quantum plasmas is investigated in Chapter 5.

Although being rather fundamental, the microscopic description given by the
Hamiltonian (2.3) neglects a certain number of effects. Indeed, the quantum na-
ture of the field, and relativistic effects of the particles, for example, are not in-
cluded. Interaction processes of the field with matter involving high energy modes
— leading to high velocities or even particle creations, like in electron-positron
pair productions — are not described correctly in this nonrelativistic Hamilto-
nian regarding the particles. This leads to the introduction of a form factor in
the Fourier mode expansion of the radiation field, cutting off wavelengths K such
that � c|K| � mc2. Doing so improves the consistency of the model and naturally
removes ultraviolet divergencies.

By the omission of the spin–field coupling −μγiσi · B(ri), the Hamiltonian
(2.3) is independent of the spin variables (μγi are the magnetic moment amplitudes
containing the gyromagnetic factor, and σi the spin operators). The spin degrees
of freedom of the particles can, however, still be taken into account. They are then
involved in the symmetrization of the states, accordingly to Pauli’s principle.

We emphasize that the formation of neutral atoms is not presupposed. In
that respect, treating the field classically is not contradictory with the quantum-
mechanical nature of the particles (in the weak-coupling regime at least). The
moving charges may radiate at any wavelength.

2This is justified for example when the external potential is taken infinite in the whole space
between the plates, preventing any tunneling effect between the two plasmas.
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More generally, other fundamental forces than the electromagnetic one con-
sidered in this Hamiltonian are found in nature. Among them, the force one en-
counters most in its everyday experience is the gravitational force. However, the
ratio of this force to the electrostatic force is very small in atomic matter; it ranges
from 10−38–10−43 among protons and electrons. The remaining forces are the
strong force, which holds the nuclei together but is of a very short range (10−15 m,
about the size of a nucleus), and the weak force, changing the flavour of quarks.
The weak force is necessary, in particular, for the buildup of heavy nuclei; it is
of even shorter range (10−18 m, or 0.1% of a proton’s size). All forces but the
electromagnetic force are thus not relevant for the interactions taking place at the
atomic level between the charged entities we consider.

2.2 Statistical description

The above setting is used as the microscopic basis for the calculation of the av-
erage force acting between the two plasmas. In the semi-classical regime, this
force depends on temperature. The thermalised macroscopic states of our system
are defined within the theory of statistical mechanics. We consider that matter and
field are in thermal equilibrium, and in contact with a heat reservoir of temperature
T . Statistical averages, denoted by 〈. . .〉, are taken with the Gibbs weight

exp(−βHK,L), β = (kBT )−1, (2.5)

according to standard statistical mechanics formulae (canonical or grand-canonical).
The free energy ΦK,L,d of the total system is defined by

ΦK,L,d = −kBT ln ZK,L,d, (2.6)

where ZK,L,d is the partition function integrating the Gibbs weight over all micro-
scopic configurations of matter and field.

We will take the thermodynamic limit of this system in two stages. We let
first the enclosing space for the field K → �3, and then extend the plates’ surfaces
L2 → �2 in the transverse y plane (see Figure 2.1). Finitely thick as well as
semi-infinite (a, b→ ∞) plasmas will be considered.

The plasmas will be supposed in a fluid state (see Section 2.3). Macroscopic
states as defined above will be invariant under translations and rotations in the
transverse y plane. Furthermore, by the microscopic constraints (2.2), each plasma
will be globally neutral, carrying no average total charge.

2.2.1 Bohr–van Leeuwen theorem

An important difference between classical and quantum matter emerges at this
point. The so-called Bohr–van Leeuwen theorem states that matter and field de-
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couple in thermalised states when they are both treated classically. As a conse-
quence, the free energy of the total system becomes the sum of the free energy of
the electrostatic Coulombic matter, and the free energy of the free radiation field.

Classical partition function

Indeed, consider the phase space integrals of the classical Gibbs weight defining
the total partition function:

ZK,L,d ≡
∫

dα
π

∫
dr dp e−βHK,L . (2.7)

We have denoted by dα/π the integral over all field’s mode amplitudes, and, sym-
bolically, by dr dp the spatial and impulsion integrals of all particles (their exact
form depends on the ensemble chosen). The simple shifts pi �→ pi −

eγi
c A(ri) in

particles’ impulsions (at fixed positions and field amplitudes) render the kinetic
energy of the particles in the integrand independent of the vector potential A(r).
The coupling terms between matter and field are suppressed in the Hamiltonian
(2.3), so that the Gibbs weight factorizes into the product e−βH

rad
0 e−βH

mat
L , with

Hmat
L =

N∑
i=1

p2
i

2mγi

+
∑
i< j

eγieγ j

|ri − r j|
+

N∑
i=1

Vwalls(γi, ri) (2.8)

corresponding to the Hamiltonian of electrostatic matter. The partition function
of the total system becomes

ZK,L,d = Zrad
0,K Ξ

mat
L,d , (2.9)

where

Zrad
0,K =

∫
dα
π

e−βH
rad
0 , Ξmat

L,d =

∫
dp dr e−βH

mat
L (2.10)

are the partition function of the free field, and of the electrostatic particles. Finally,
the free energy (2.6) splits into

ΦK,L,d = Φ
rad
0,K + Φ

mat
L,d . (2.11)

Since the field’s free energy Φrad
0,K is obviously independent on d, it plays no role

in the calculation of the Casimir force. The field will therefore be omitted from
the description from the beginning in Chapter 3, and only electrostatic matter will
be considered.
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Quantum partition function

The partition function in the quantum case reads

ZK,L,d =

∫
dα
π

Trmat e−βHK,L . (2.12)

As before, all (classical) Fourier amplitudes of the field are integrated over. The
trace is carried over all particle wave functions with appropriate statistics. A de-
coupling between field and matter no longer holds.

2.2.2 Correlation functions

The free energy constitutes a very important function in the statistical mechan-
ics of thermalised systems. It is related, in the thermodynamic limit, to the free
energy defined by the phenomenological laws of thermodynamics. Macroscopic
observables involved in mechanical or heat processes, such as the pressure, the
entropy, etc, are obtained as derivatives of it (for the aforementioned observables:
with respect to the (specific) volume, and to temperature).

However, correlation functions — especially density and charge correlation
functions — play a not less important role. We briefly present their main charac-
teristics in what follows.

Their knowledge allows to calculate mean values of a number of observables
defined on the microscopic stage. In particular, the observables one is usually
mostly interested in are one-particle observables (like the density) or two-particles
observables (like the total energy, or the total force between the plasmas A and
B, in our two-plasma system), for which only the one-point and the two-point
density correlations need to be known. Moreover, these correlation functions can
be accessed directly through experiments. The one-point correlation function is
no more than the mean density itself. Two-point correlation functions can, e.g.,
be measured by neutron or X-ray scattering (Hansen & McDonald, 1986; Stanley,
1971).

The one-point correlation function (the density)

The microscopic density of particles of species γ at point r is defined by

ρ̂(r, γ) =
N∑

i=1

δγγiδ(r − ri) (2.13)

(N is the total number of particles, δγγi the Kronecker symbol, and δ(r − ri) the
Dirac distribution.) The mean density, or one-point correlation function, corre-



2.2. Statistical description 23

sponds to the statistical average of this microscopic observable:

ρ(r, γ) = 〈ρ̂(r, γ)〉 . (2.14)

The two-point correlation function

One may ask in a system of interacting particles how the density of particles of
species γ at a point r of the space correlates to (is influenced by) the known pres-
ence at r′ of another particle, of species γ′ (Figure 2.2).
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Figure 2.2: Because of interactions, the presence at r′ of a particle of species γ′ influ-
ences the particle density of species γ at r.

One can show that this conditional density reads, in average,

〈
ρ̂(r, γ)

∣∣∣
r′,γ′

〉
=
〈ρ̂(r, γ)ρ̂(r′, γ′)〉
〈ρ̂(r′, γ′)〉

, (2.15)

where 〈ρ̂(r, γ)ρ̂(r′, γ′)〉 is called the two-point density or the density-density corre-
lation function, and gains its meaning through the relation (2.15). This correlation
function includes the contribution of coincident points: it describes correctly for
the conditional density the situation in which r = r′ and γ = γ′. When this coinci-
dent point contribution is extracted out, we will speak of the two-point correlation
function or density correlation function ρ(r, γ; r′, γ′). One has

〈ρ̂(r, γ)ρ̂(r′, γ′)〉 = ρ(r, γ; r′, γ′) + δγγ′δ(r − r′)ρ(r, γ). (2.16)

In a noninteracting particle system, the conditional density simply results in the
mean density ρ(r, γ). Indeed, nothing can tell at point r what is happening at
point r′. The two-point density factorizes into 〈ρ̂(r, γ)〉 〈ρ̂(r′, γ′)〉. The same is
expected to happen in effect when the two points r and r′ become very distant
from one another. Often, for that reason, one considers truncated correlation
functions, where the factorized product is further subtracted. In a fluid state, such
truncated correlations tend rapidly to zero as |r − r′| → ∞. On the other hand, in
a crystallized phase, they will rather oscillate accordingly to the lattice structure
(Hansen & McDonald, 1986).
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The mean-value of a one-body observable can be expressed as an integral over
the density. Similarly, the mean-value of a two-body observable can be expressed
as a double integral over the two-point correlation function. Consider, e.g., the
average of the Coulomb potential energy UC =

∑
i< j eγieγ j/|ri − r j|. Rewriting

the double sum as 1
2(
∑

i
∑

j −
∑

i= j), one can express each of the latter sums as an
integral carried on Dirac functions: precisely the microscopic density. Using the
linearity of the expectation value 〈. . .〉, one has, in view of (2.16),

〈UC〉 = 1
2

〈∑
γ,γ′

∫
dr

∫
dr′ ρ̂(r, γ)ρ̂(r′, γ′)

eγeγ′
|r − r′|

−
∑
γ

∫
dr ρ̂(r, γ)

e2
γ

|r − r|

〉

= 1
2

∑
γ,γ′

∫
dr

∫
dr′ ρ(r, γ; r′, γ′)

eγeγ′
|r − r′|

= 1
2

∫
dr

∫
dr′ c(r, r′)

1
|r − r′|

.

In the last equation, we have defined the charge correlation function c(r, r′) =∑
γ,γ′ eγeγ′ρ(r, γ; r′, γ′). Such developments can be done the same way for any

two-body observable (except for the last equality).
Let us finally introduce the dimensionless, truncated correlation function de-

fined by

h(r, γ; r′, γ′) ≡
ρ(r, γ; r′, γ′)
ρ(r, γ)ρ(r, γ′)

− 1. (2.17)

It is called the Ursell function and is of particular importance, for it is subject
to a formal expansion in the density by means of Mayer graphs. It will be the
centrepiece investigated in this work, once the Casimir force will be expressed as
a microscopic two-body observable.

As a last remark, note that in classical statistical mechanics, calculating the
average of the microscopic density — or the average of products of the density —
with the Gibbs weight in the canonical ensemble, say, the properties of the Dirac
distribution and the fact that the Hamiltonian is symmetric under permutations of
alike particles yield the representations

ρ(r, γ) =
1
Ξmat

∫
dp

∫
dωN−1 e−βH(r,γ,p; r2,γ2,p2; ... ; rN ,γN ,pN ), (2.18)

ρ(r, γ; r′, γ′) =
1
Ξmat

∫
dp

∫
dp′

∫
dωN−2 e−βH(r,γ,p; r′,γ′,p′; r3,γ3,p3; ... ; rN ,γN ,pN ), (2.19)

sometimes posed as definition of the correlation functions. In (2.18) and (2.19),
dωN−1 and dωN−2 are the particles’ integration elements on the N − 1 and N − 2
last particles, respectively (they contain, respectively, factors Nγ/

∏
γ′′ Nγ′′! and

NγNγ′/
∏
γ′′ Nγ′′! if γ � γ′, Nγ(Nγ−1)/

∏
γ′′ Nγ′′! otherwise). Correlation functions

of higher order (three-point, four-point, etc.) are naturally defined similarly. We
will not use them in this work.
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2.3 Macroscopic properties of the system

Charged systems as defined above depict an accurate microscopic description be-
lieved to give an account of many states of matter. They incorporate, for nonrela-
tivistic matter, the principal energies in play on the atomic level.

At high temperature, low density — in the fluid state —, they obviously de-
scribe electrolytes (ionic solutions), and weakly relativistic plasmas. In this phase,
these models exhibit perfect conductor behaviours on the macroscopic scale. In
particular, the screening effects originating from the signed and long-range Cou-
lomb interaction are known to hold. A fixed charge in the plasma surrounds itself,
in average, with opposite charges, with the effect of reducing its effective strength
above a certain distance (the screening length) (see Figure 2.3). We will come
back to this property below.
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Figure 2.3: The screening length λD measures the extension of the screening cloud
around a fixed charge.

As temperature is decreased, one expects the freely moving charges to recom-
bine into neutral entities at low density. In a bulk quantum system (without radi-
ation field), it has been shown by Fefferman (1985) that in a coupled limit of low
density and low temperature, the equation of state of the electron–proton plasma
tends to the ideal gas law of recombined Hydrogen atoms in their fundamental
state. This result is called the theorem of atomic limit. The conducting behaviour
of the system is lost in this limit. The charged fluid becomes isolating.

At non-strictly-zero temperature and density, there is still a fraction of ionized
charges. When these charges and the recombined atoms are in thermal equilib-
rium (the Saha regime) it is possible to calculate the large-distance correlations
occurring between them. They lead to effective van der Waals–London-like inter-
actions in dilute systems between every species (even though charged), that take
into account many-body collective effects (Alastuey, Cornu, & Martin, n.d.).

One of the grand successes of statistical mechanics is that, from invariable
microscopic fundamental interactions, it provides a way of describing phase tran-
sitions between macroscopic regimes of very different properties, like gas–liquid,
or ferromagnetic–paramagnetic transitions. In the statistical theory, these phase
transitions correspond mathematically to nonanalyticities in the thermodynamic
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functions, occurring within the thermodynamic limit. In the particular system
of electrons and protons, when density is increased, the atomic or molecular gas
phase of the model discussed above turns into a liquid, and eventually a solid. At
very high density, one even expects a metallic Hydrogen phase to occur, showing
up fully delocalized electrons, thus, again conducting.

Let us discuss further some properties of the fundamental description of our
system, and introduce its main characteristic lengths.

2.3.1 Stability of matter and existence of the thermodynamic

limit

The Coulomb interaction, its fundamental character notwithstanding, is difficult
to deal with in statistical mechanics for essentially two reasons: its long range and
the 1/r singularity at its origin. Concerns regarding the long range are resolved
by the establishment of screening processes (see Section 2.3.5).

In classical plasmas, the collapse of opposite charges brought about by the
Coulomb divergency at the origin needs to be overcome by adding a short-range
repulsive potential

vSR(r − r′, γ, γ′) (2.20)

between the particles in the Hamiltonian (2.3). At high temperatures and low
density, its specific form is irrelevant. It intervenes at ranges much smaller than
the mean interparticle distance and the screening length (defined below).

This collapse does not occur in quantum plasmas containing at least one
fermionic species due to Pauli’s exclusion principle, which is the reason why we
assumed each of our plasmas to contain at least one such species.

Although the particles’ confining regions in our two-plasma system are not
extended to the bulk in the x direction, we assume that the partial thermodynamic
limit L → ∞ yields well-defined equilibrium states and well-defined thermody-
namic potentials as in the bulk situation (Lieb, 1976).

An account on recent results about the stability of matter coupled to the (clas-
sical or quantum) electromagnetic field can be found in Lieb (2004), and results
on their thermodynamic limit (for a bulk system) in Lieb and Loss (2005). See
also references therein.

2.3.2 Some physical parameters at stake in Coulomb systems

We introduce a number of parameters with the help of which specific regimes of
the plasmas will be characterized.
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Classical: the following parameters occur in classical plasmas already. They
characterize the electrostatic plasma and its screening properties. They will be
relevant to quantum plasmas too:

• the mean interparticle distance aρ, which corresponds to the mean density
according to aρ ≈ ρ−1/3;

• the Landau length βe2 (also called Bjerrum length). It can be thought
of as a transition range above which electrostatic interaction is dominated
by thermal fluctuations (e is a typical charge of the system, say, that of an
electron);

• from the above lengths, one defines the coupling parameter Γ =
βe2

aρ
. It

consists in the ratio between the Coulomb and thermal energies, and mea-
sures the strength of the interaction, relatively to temperature;

• a length of considerable importance is the screening length or Debye length

λD ≡ κ−1 ≈ (βe2ρ)−1/2: this length shows up once screening induced by the
long range of the Coulomb interaction is systematically dealt with. The ef-
fective, mean-field interaction between classical charges in the bulk system
is an exponentially damped potential e−κr/r: the Debye length characterizes
the range of the screening cloud surrounding a charge (Figure 2.3). One has
λD ≈ aρ/Γ1/2.

Specifically quantum-mechanical: some additional relevant lengths and pa-
rameters specific to the quantum plasmas and to the field-coupled quantum plas-
mas are:

• the thermal de Broglie wavelength λpart = �
√
β/m, which measures the

amplitude of the position fluctuations of the thermalised particles;

• the quantity λpart

aρ
, corresponding to a measure of the overlap of the wave

functions. It characterizes the degree of degeneracy (at temperature T ) of
the quantum plasma;

• when the field is taken into account, an additional important length is the
photon thermal wavelength λph = β�c. It is the wavelength of the field’s
mode whose energy is of the order of the thermal energy kBT ;

• the relativistic parameter λpart/λph = 1/
√
βmc2 will measure the strength

of physical corrections brought by the inclusion of the radiation field. For
consistency in our nonrelativistic model, this parameter must be considered
small.
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2.3.3 The weak-coupling regime

The weak-coupling regime is defined as the physical situations corresponding to
small values of the coupling parameter:

Γ � 1. (2.21)

This regime characterizes dilute systems in a fluid state, close to the ideal gas.
It is attained for low densities and high temperatures, when the strength of the
Coulomb interaction is weak. In terms of the screening length, it is equivalent
to aρ � λD: the mean interparticle distance is much smaller than the screening
length, so that the effective interactions are indeed screened, and the plasma be-
haves as a conductor.

Another parameter used to characterize this regime is Γ′ = 1
2βe

2/λD ≈ Γ3/2.
The latter coupling parameter is better adapted to the consideration of weak-
coupling expansions of the density profiles in inhomogeneous plasmas (J.-N. Aqua
& Cornu, 2001b).

2.3.4 The semi-classical regime, and the Casimir force

Semi-classical regimes, in our microscopic theory, correspond to weakly degen-
erate plasmas λpart/aρ � 1, and to relevant field modes of long wavelengths with
respect to λph. The relativistic parameter λpart/λph = 1/

√
βmc2 is also� 1.

Let us investigate how these quantities relate to the different regimes usually
considered for the Casimir force. The relevant parameter distinguishing the quan-
tum and (semi-)classical regimes in the calculation of, e.g., Lifshitz, is

α =
�c

kBTd
=
λph

d
. (2.22)

In the event that α � 1, the zero temperature Casimir force (1.1) is recovered. The
classical value (1.3) or (1.4) of the force between the metallic plates is obtained
when α � 1. We will naturally regain this result in the semi-classical regime of
the plasmas as specified right above. However, we also see that α � 1 can cor-
respond to the weak-coupling regime too, which is coherent with the conducting
fluid state assumed for the metallic plates.

Indeed, α � 1 can be attained by high temperatures and large separation
distances. In our calculations, we will expand the force for large distances at
a “high” but fixed temperature, so that the following parameter magnitudes are
satisfied:

• Γ � 1 and aρ/d � 1, λD/d � 1. The plasmas are in a conducting fluid
state (weak-coupling);
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• λpart/aρ � 1. The plasmas’ particles are weakly degenerate;

• λph/d = α � 1. This ensures that among the modes of the thermalised
field, only ones with very large wavelengths — of the order of d — may
induce sizeable effects for interplasma interactions. Such modes are usually
well-described classically (as in Planck’s radiation law), which justifies the
use of a classical treatment of the radiation field;

• λpart/λph = 1/
√
βmc2 � 1. The plasma is weakly relativistic. This has to be

ensured for the consistency of our nonrelativistic model. Temperature can
not be arbitrarily high, which is coherent with fixing temperature and letting
d → ∞.

For these reasons, the framework of our calculation and the assumptions about
its regime (weak-coupled, fluid, conductive, semi-classical) agree with the high
temperatures, large separations of the classical result (1.4)–(1.4) for the Casimir
force. The fact that the plasmas are weakly degenerate and that the field can be
treated classically in the limit d → ∞ at a high temperature also indicates (by
Bohr–van Leeuwen’s theorem) that the pure classical model presented in Chapter
3 asymptotically captures the correct expression. Corrections naturally contain
quantum and radiative contributions, but they only build up subdominant ∝ d−4

terms.

2.3.5 Debye screening and sum rules

We have already mentioned that in the fluid phase, the statistical charged system
exhibits perfect conducting behaviours. One of the reasons is that the effective
interaction arising from the classical Debye–Hückel mean-field theory is an ex-
ponentially damped potential with a range (λD) much larger than the mean in-
terparticle distance (aρ), at weak-coupling. One interprets this reduction of the
interaction range as the result of the screening of charges in the plasma. This
is supported by the fact that the mean potential satisfies integral constraints, so-
called sum rules. Perfect conducting behaviour of the system, whether classical
or quantum-mechanical, is associated to alike relations holding more generally
for its full correlation functions, especially the perfect screening sum rule (also
called electroneutrality or charge sum rule). This rule expresses explicitly the fact
that a fixed charge in the system is perfectly shielded away by a cloud of opposite
charges.

Let us recall the simple reasoning of Debye and Hückel (1923a, 1923b) estab-
lishing the mean-field theory of a charged bulk system [see also (Balescu, 1975,
Sec. 6.5)]. It naturally leads to the settlement of the perfect screening rule in the
mean-field approximation already.
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The mean-field electrostatic potential Ψ(r) is defined in such a way that a
particle of charge eγ at r experiences an average potential eγΨ(r) summing up
the collective effects of all other particles of the system. The potential energy of
the system thus reads U(r1, γ1, ..., rN , γN) =

∑N
i=1 eγiΨ(ri). Then the conditional

density at r � 0 given that there is a particle eγ0 at 0 is [see (2.15) and (2.19)]

〈
ρ̂(r, γ)

∣∣∣
0,γ0; r,γ�0,γ0

〉
≡
ρ(r, γ; 0, γ0)
ρ(γ0)

= ρ(γ)e−βeγΨ(r), (2.23)

where ρ(γ) is the homogeneous density far from the origin (Ψ(r) → 0, r →
∞). On the other hand, the macroscopic electrostatic potential at r experienced
around the fixed charge at 0 can be said to also correspond to the mean-field
potential Ψ(r). From this perspective, Ψ(r) satisfies the Poisson equation with the
conditional mean density (2.23) as source (taking into account the fixed charge):

∇2Ψ(r) = −4π
∑
γ

eγ
〈
ρ̂(r, γ)

∣∣∣
0,γ0

〉
= −4πeγ0δ(r) − 4π

∑
γ

eγ
ρ(r, γ; 0, γ0)
ρ(γ0)

. (2.24)

Inserting the mean-field expression (2.23) into (2.24), linearising the exponential
(weak-coupling regime), and using the bulk neutrality

∑
γ eγρ(γ) = 0, the potential

reads as the solution of the (linear) Poisson–Boltzmann equation[
∇2 − κ2

]
Ψ(r) = −4πeγ0δ(r), κ2 = λ−2

D = 4πβ
∑
γ

e2
γρ(γ). (2.25)

With bulk boundary conditions, its resolution yields

Ψ(r) = eγ0

e−κr

r
≡ eγ0Φ(r). (2.26)

A common approximation then consists in replacing, in a nonconstrained system,
the potential energy U by

∑
i< j eγieγ jΦ(ri − r j), on the ground that the two-point

Ursell correlation function (2.17) of the bulk system reads, by (2.23),

hDH(r, γ; 0, γ0) = −βeγeγ0Φ(r) (2.27)

(as before, the exponential is linearized by assuming a weak-coupling regime).
We will not restrict to such an approximation in our work, but, instead, will make
use of an exact expansion of the Ursell function, still involving the Debye–Hückel
potential.

It is an easy task from (2.23) and (2.26) to see that the mean charge density
ceγ0

(r) around the fixed charge explicitly reads

ceγ0
(r) = −

κ2

4π
eγ0

e−κr

r
= −
κ2

4π
eγ0Φ(r), (2.28)
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so that the total amount of charge carried by the cloud is∫
dr ceγ0

(r) = −eγ0

∫
dr
κ2

4π
Φ(r) = −eγ0 . (2.29)

This integral relation satisfied by the mean-field potential is the perfect screening

sum rule: the fixed charge is surrounded by a charge density screening it exactly.
Expressed in terms of the Ursell correlation function in the Debye–Hückel regime
(2.27), this sum rule (2.29) can be reexpressed as

∑
γ

∫
dr eγρ(γ)hDH(r, γ; 0, γ0) = −eγ0 . (2.30)

It can be shown, that the perfect screening sum rule holds in full generality for
the exact Ursell correlation function. The integrated amount of the cloud charge
density surrounding a fixed charge in the plasma compensates it exactly:

∑
γ

∫
dr eγρ(γ)h(r, γ; 0, γ0) =

∫
dr

∑
γ

eγ
〈
ρ̂(r, γ)

∣∣∣
0,γ0

〉
=

∫
dr ceγ0

(r) = −eγ0

(2.31)

(a globally neutral plasma is assumed for the first equality). This result holds
in classical as well as in quantum plasmas in a fluid state (Martin, 1988). Fur-
thermore, it will also be valid for the “inhomogeneous” plasmas considered in
our two-plasma system (i.e., of finite or semi-infinite width, and infinite surface),
whether they be classical, or field-coupled and quantum-mechanical.3

2.3.6 Perfect vs ideal conductors

The above description of perfect conductors in equilibrium with the radiation field
differs fundamentally from that of what we call ideal conductors, which are de-
fined on the macroscopic scale only. Ideal conductors represent objects without
internal structure. Their interaction with the electromagnetic field is simplified
to merely imposing Maxwell boundary conditions to the field at their interfaces.
In our microscopic viewpoint of perfect conductors, no particular boundary con-
ditions on the field are imposed there. One expects of course the macroscopic

3Taking the limit of infinite extension in at least one direction is important in the interpretation
of the result (2.31): in finite systems, this sum rule means nothing more than the conservation
of the total charge in the finite volume, whereas in our case, any macroscopic excess of charge
can be repelled to infinity and the plasma acts (in average) as a grounded conductor. The fact
that the screening cloud bears an opposite total charge while having an escape at infinity becomes
nontrivial and is really a property peculiar to conductors.
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boundary conditions to be valid in average in a region close to the surfaces (Jack-
son, 1998, Sect I.6). Ideal conductors are sometimes seen as perfect conductors
of vanishing screening length. However, the charge fluctuations present in per-
fect conductors (and disregarded in ideal ones) are responsible for a quantitative
change in the high-temperature Casimir force strength and in this respect, the
crossover from perfect to ideal has to be treated with care. Ideal conductor limits
of confining metallic walls for a classical Coulomb system have been investigated
in (Jancovici & Téllez, 1996). Potential correlations and the Maxwell stress tensor
(but not the total force integrating it) have been found to differ in the two ways of
treating the metallic walls.

2.4 The Casimir force

At the root of the basic concept of energy lies the wish of explaining the forces
observed in the nature by a general principle: if a system exhibits the freedom of
occupying different states, its natural tendency is to be drawn by the one of lowest
energy. The relative (potential) gain of energy it can acquire defines the force.

Like Casimir did in its original calculation, the force between the metallic
plates at zero temperature is defined by the derivative of the energy of the whole
system. At nonzero constant temperatures, the relevant energy function to that
purpose becomes the free energy, as advocated by the laws of thermodynamics.

Having introduced the microscopic model and specified its macroscopic ther-
malised states, the mean force by unit surface between the finite-volume slabs is
defined by the rate of change occasioned in the free energy ΦK,L,d (2.6) by varying
the separating distance d:

fK,L(d) ≡ −
1
L2

∂

∂d
ΦK,L,d. (2.32)

It corresponds to the thermodynamic internal pressure of the two-plasma sys-
tem. Applying external forces to the material volume V ≈ L2(a + d + b) of the sys-
tem, this volume can be “compressed” or “expanded” — keeping the plates’ shape
untouched — by changing d: ∂V = L2∂d, and P = − ∂

∂VΦK,L,d = − 1
L2
∂
∂dΦK,L,d. A

negative value of the internal pressure fK,L(d) will tend to press the plates together:
the force between the plates is attractive. Conversely, if the pressure is positive,
the force between the plates is repulsive.

On the microscopic level, using the form of the free energy ΦK,L,d specific to
the different natures of the model, one can relate this pressure to thermal averages
of elementary forces acting between the microscopic entities:

• classical plasmas: differentiating the free energy with respect to d gives the
average value of the electrostatic forces exerting between each pair of par-
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ticles constituted by one particle in A and one particle in B. In consideration
of our sign convention, one can regard them as being the total electrostatic
force (along the x axis) acting on plasma B.

Due to the Bohr–van Leeuwen decoupling of matter and field (2.11), the
force between the field-coupled classical plasmas receives no possible con-
tribution from the radiation field from the beginning;

• quantum plasmas: when the radiation field is not taken into account, the
Casimir force again corresponds to the microscopic electrostatic forces ex-
erting between the A and B plasmas;

• field-coupled quantum plasmas: the inclusion of the radiation field into
the description of the system introduces new contributions in addition to
the former electrostatic forces. They correspond to the missing parts (the
radiative electric part and the magnetic part) of the whole Lorentz forces

due to the coupled system of field and matter that act on the system B, and
that take support on its particles.

We finally define the Casimir force as being the force fK,L(d) (2.32) in the
thermodynamic limit, i.e.,

f (d) ≡ lim
L→∞

lim
K→�3

fK,L(d). (2.33)

2.4.1 Main result of the thesis

The essential result presented in this thesis is that, starting from the above premises,
the Casimir force at any fixed (high) temperature has the large-distance asymptotic
behaviour

f (d) = −
ζ(3)

8πβd3 + O(d−4), d → ∞, (2.34)

independently of the model chosen. The constant ζ(3) ≈ 1.202 is the value of the
Riemann zeta function ζ(s) =

∑∞
n=1 n−s at s = 3.

This result agrees with a number of authors on the asymptotic value of the
Casimir force at high-temperature. However, a large controversy about this value
is found in the literature, as said in the introduction, the debate revolving around
whether −ζ(3)/(4πβd3) or −ζ(3)/(8πβd3) is the correct result. The first value
arises naturally in macroscopic approaches imposing ideal conductor boundary
conditions to the field at the plates’ surfaces. When fluctuations of the field inside
the plates are taken into account, like in the semi-microscopic (mesoscopic) ap-
proach of Lifshitz or Schwinger, both values can be retrieved, depending on how
the metallic limit is extrapolated from dielectric media.
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By the truly microscopic and elaborate framework of our calculation, we thus
settle on a firmer basis the validity of the value −ζ(3)/(8πβd3), supporting in this
respect the use of the Drude model of the dielectric function (i.e., in turn, the
vanishing of the TE (transverse electric) field mode) at zero frequency, at least in
the semi-classical regime. We also conclude that when calculating the Casimir
force at nonzero temperature, charge fluctuations inside the conductors cannot be
ignored.

The most noteworthy property of the asymptotic result (2.34) is that it is uni-
versal, i.e., it does not depend on the material constitution of the plates, like their
density, and the microscopic charges and masses. This observation is rather nat-
ural in models not taking into account such quantities in their formulation, like
Casimir’ calculation, as well as Lifshitz’ or Schwinger’s ones — for which the di-
electric function ε(ω) is taken infinite to recover metallic behaviour of the plates.
It is, however, not a straightforward feature in microscopic models, like ours.
From the calculation of the asymptotic force, we will see that this universality
is the result, in the conductive phase, of the perfect screening sum rule in each
plasma. Its origin thus receives within our treatment a more satisfactory explana-
tion, based on microscopic mechanisms.

Since the perfect screening sum rules arising in the force involve the screening
of charges close to the inner surfaces of the plates, we also understand why the
force is independent of the plates’ thickness a and b. This holds provided that a
and b are finite and large enough to allow the screening clouds to form (i.e., not
microscopic).

Note that the asymptotic, universal, term in (2.34) does not depend on any
electric or magnetic quantity. Its form is identical in electrostatic Gaussian units
or in the MKSA international system of units (see Footnote 1).

Depending on the refinement of our model, the O(d−4) subdominant terms in
(2.34) may contain finite widths, temperature, quantum, and field corrections. We
will comment on these higher-order contributions at the end of Chapter 3, and in
the Conclusions (Chapter 6).

2.5 Outline of the calculation

In this section, we give an account of the method used to calculate the asymp-
totic Casimir force (2.34) from the microscopic premises presented in the earlier
sections. We will carry out the calculation assuming classical plasmas, for sim-
plicity. The presentation found here will differ slightly from that of the article
in Chapter 3 in regards to the method used to retrieve asymptotic information on
the Debye–Hückel mean-field potential, defined by the resummation of the long-
ranged Coulomb potential. Although not as rigorous, this method is simpler to
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generalise to the further models.
In a first stage, we also present how, by differentiating the free energy with re-

spect to d, one is led to the calculation of the average electrostatic forces between
the charges of the plasmas, which has been the starting point of the article.

In the last part, some hints will be given on how to treat the problem when
quantum mechanics and the field are added. The formalism adapted to that pur-
pose makes use of the Feynman–Kac–Itô representation. The strategy to gener-
alise the validity of the classical result is then essentially the same as the classical
one presented below. This formalism will be presented in Chapter 4. The details
of its application to the Casimir force problem are postponed until Chapter 5.

Strategy

The strategy of the calculation is as follows: in a first stage, the Casimir force
(2.33) is expressed as the average value of a two-body observable, which is rewrit-
ten as an integral over the Ursell correlation (2.17). The knowledge of the asymp-
totic correlations between the two slabs as d → ∞ is required. This asymptotic
analysis is carried out on the Ursell function by representing it in its series ex-
pansion in Mayer graphs. Resummation of the Coulomb potential is needed to
overcome nonintegrabilities due to its long range. This exact resummation pro-
cess systematically introduces the Debye–Hückel potential in replacement of the
Coulomb potential in the resummed graphs, which thereby encompass the screen-
ing effects occurring in the plasmas. The next task is to analyse the asymptotic
behaviour of this screened Debye–Hückel potential, so as to deduce its implication
in the Ursell function and, finally, in the force.

2.5.1 Expressing the force in terms of the Ursell function

(The force as a two-body observable)

From the decoupling of matter and field in the classical case — implying the
separation (2.11) of the total free energy — the force (2.32) (at finite volume)
between the two plasmas is given by

fK,L(d) = fL(d) =
kBT
L2

∂

∂d
lnΞmat

L,d =
kBT
L2

∂
∂dΞ

mat
L,d

Ξmat
L,d

, (2.35)

where Ξmat
L,d is the partition function of the purely electrostatic matter, as given by

(2.10). Integrating out the impulsions’ degrees of freedom, this partition function
reads as the positional integral of a Gibbs weight exp(−βU), where the potential
energy U can be written as

U = UA + UB + UAB + Vwalls
A + Vwalls

B,d . (2.36)
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The quantities UA and UB are the interaction potentials associated to the individual
plasmas, and

UAB =
∑

a

∑
b

eγaeγb

|ra − rb|
+ vSR(ra − rb, γa, γb) (2.37)

is the sum of the pair interactions between particles in A (indexed by “a”) and
particles in B (indexed by “b”). We have split the wall potentials

∑
i Vwalls(ri, γi) of

the Hamiltonian (2.3) explicitly into an A and a B contribution

Vwalls
A + Vwalls

B,d =
∑

a

Vwalls
A (ra, γa) +

∑
b

Vwalls
B,d (rb, γb). (2.38)

The dependence upon d in the partition function Ξmat
L,d originates only from the

particles’ confinement to plasma B, filling the region d < x < d + b.

Contact theorem

There are two ways of taking the derivative with respect to d of the partition
function Ξmat

L,d in (2.35). In the first, the derivative is taken directly on the ideally
confining factor exp(−βVwalls

B,d ) ∝
∏

bΘ(xb−d)Θ(d+b−xb) (up to yb dependencies;
Θ is the Heaviside step function). It will thus relate the Casimir force to the
average value of sums of terms ∝ δ(d + b − xb) − δ(xb − d), precisely, to the mean
densities evaluated at the interfaces x = d and x = d + b of the plate B. This
constitutes a version of the so-called contact theorem, usually relating the bulk
pressure to the density at the walls. This kind of calculation has been carried out
in the Debye–Hückel approximation (at first order around piecewise-flat densities)
by Jancovici and Šamaj (2004), to show that a third party plasma of charges (in
a conductive state) filling the empty space between the plates screens the Casimir
force.

Microscopic electrostatic forces

We will take another route to compute the force, more suitable in our setting to
overcome the restriction to the Debye–Hückel theory. Before taking the derivative
of the partition function, we perform the change of variable

xb �→ x̃b ≡ xb − d (2.39)

in every positional integral concerning the particles of plasma B. Doing so mea-
sures the positions of the particles of plasma B from the inner side of the latter
(see Figure 2.4). As an effect, the confining factor exp(−βVwalls

B,d ) becomes obvi-
ously independent on d: the new variables are constrained by 0 < x̃b < b. The
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Figure 2.4: The Casimir force as the average value of all electrostatic forces exerting
between plasma A’s and plasma B’s particles. The positions along x in plasma B are
measured from its inner surface by virtue of (2.39).

d dependence is ported explicitly and exclusively into the AB interactions, which
still must occur at a minimal distance d. The interaction potential UAB (2.37) in
the partition function Ξmat

L,d is changed into∑
a

∑
b

eγaeγb[
(xa− x̃b−d)2 + (ya−yb)2]1/2 + vSR(xa− x̃b−d, ya−yb, γa, γb). (2.40)

By differentiating the Gibbs weight in the integrand, a factor (−β) times the deriva-
tive of (2.40) with respect to d drops from the exponential. Since ∂

∂dΞ
mat
L,d is nor-

malised by Ξmat
L,d in (2.35), one reconstructs the average value

fL(d) =
1
L2

〈∑
a

∑
b

eγaeγb

(
∂xv

)(
xa− x̃b−d, ya−yb

)〉
, v(x, y) =

1√
x2 + y2

, (2.41)

after neglecting the contribution of the short-range forces. They will be irrelevant
at large separations (as soon as d is larger than their range). The expression (2.41)
represents the average value of all microscopic Coulomb forces exerting between
the particles of plasma A and the particles of plasma B (Figure 2.4).4

One can check from this microscopic interpretation that a negative value of
fL(d) effectively corresponds to attracting plates. Equivalently, fL(x) represents
the x component of the total force exerting on plasma B.

Notations

Before going further, we introduce a few short-hand notations:
4In Formula (2.41), positions in plasma B are still measured from its inner border; the reverse

shifts (2.39) can be performed if wished.
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• We regroup the species γ1 and the position variable r1 of a particle under
the common symbol “1”:

1 ≡ (r1, γ1),
∫

d1 . . . ≡
∑
γ1

∫
dr1 . . . . (2.42)

Three-dimensional positions are further split along the x axis and the y plane
of the plates (as shown in Figures 2.1 and 2.4) according to r1 = (x1, y1).
We thus also introduce the variable “1” to denote the gathering of γ1 and
the x component, only, of the position:

1 ≡ (x1, γ1),
∫

d1 . . . ≡
∑
γ1

∫
dx1 . . . . (2.43)

• From now on, the positions along x of the particles of plasma B will always
be counted from the inner surface of the latter (i.e., on the axis x̃ of Figure
2.4). (This is needed when taking the limit d → ∞ on properties pertaining
to plasma B. These properties become independent of plasma B’s position
in space.)

• Unless otherwise specified, sums over species and integrals over positions
run over the whole two-plasma system. Nevertheless, indexing one-point
and two-point functions by indices A or B will mean that their argument is
compelled to reside in A or B. For example, the mean density in plasma B
is ρB(2) ≡ B(2)ρ(2), where B(2) is the characteristic function of plasma B
(situated at the origin): this function ensures that 0 < x2 < b, and it vanishes
if γ2 � S B. Similarly, ρAA(1, 2) ≡ A(1) A(2)ρ(1, 2).

However, for two-point “A–B” functions, interactions must consistently be
taken to exert across a minimal distance d along the x axis [according to the
change of variable (2.39)]. Concretely, the function vAB(x1, x̃2, y) (reintro-
ducing tildes over B variables on the axis x̃ for a moment) corresponds to
the Coulomb potential between A and B with a least interaction distance d:

vAB(x1 − x̃2, y) ≡ v
(
x1 − (x̃2+d), y

) (2.39)
= v(x1−x2, y), (2.44)

with the constraints −a < x1 < 0, and 0 < x̃2 < b, d < x2 < d + b.

As well, ρAB(1, 2̃) = A(1) B(̃2)ρ(1; 2̃ + d)
(2.39)
= A(1) B,d(2)ρ(1; 2), where

B,d(2) confines x2 to d < x2 < d + b.

• At the limit d → ∞, the interaction between the two plasmas vanishes.
Quantities particular to the individual, isolated, plasmas will be superscripted
by “0”. For instance, the local density ρB(2) becomes, in the limit, that of a
single slab of width b situated at the origin, denoted by ρ0

B(2).



2.5. Outline of the calculation 39

Expressing the force in terms of the A–B correlation function

The finite-volume force in the form (2.41) can be conveniently expressed as an
integral weighted by the density correlation function ρ(1, 2) (see Section 2.2.2).
One replaces the sums in (2.41) by integrals over A and B of the microscopic
density ρ̂(i) =

∑
j∈A∪B δ(i, j) (2.13) at point i. By the linearity of 〈· · ·〉, this leads to

fL(d) =
1
L2

∑
γ1

∫
dr1

∑
γ2

∫
dr2 eγ1eγ2(∂xv)(x1−x2−d, y1−y2)

× A(r1, γ1) B(r2, γ2) 〈ρ̂(r1, γ1)ρ̂(x2 + d, y2, γ2)〉

=
1
L2

∫
d1

∫
d2 eγ1eγ2(∂xvAB)(1, 2) ρAB(1, 2). (2.45)

Note that since 1 ∈ A and 2 ∈ B, these points can never meet. There are never
coincident points contributions in AB correlations.

Truncation of the correlation function in the thermodynamic limit

To obtain the Casimir force (2.33), the thermodynamic limit L2 → �2 of fL(d) is
taken at this stage. The correlation function ρAB(1, 2) in (2.45) tends to a function
ρAB(1, 2, y1 − y2), invariant under translations in the y-plane. Hence, one of the
transverse y-integrals present in (2.45) cancels with the plates’ surface L2 in the
limit, resulting in

f (d) =
∫

d1
∫

d2
∫

dy eγ1eγ2(∂xvAB)(1, 2, y) ρA(1) ρB(2) hAB(1, 2, y), (2.46)

where hAB is the Ursell function (2.17) of the infinitely extended plates. The trun-
cation in hAB does not affect the force, due to the global neutrality of the plasmas.

Indeed, we can always add back to (2.46) the term f cap(d) subtracted by the
truncation of the correlation function. This term reads

f cap(d) =
∫

d1
∫

d2
∫

dy eγ1eγ2(∂xvAB)(1, 2, y) ρA(1) ρB(2)

= 2π
[∫

dx1 cA(x1)
] [∫

dx2 cB(x2)
]
, (2.47)

where cA(x1) and cB(x2) are the mean charge densities. The second equality in
(2.47) results from the fact that∫

dy (∂xvAB)(1, 2, y) = −2π sign(x1 − x2 − d) = 2π, (2.48)

as can be seen from Formula (B.8) in Appendix B, evaluated at k = 0. Thus (2.47)
vanishes from the assumed global neutrality (2.2) of the plasmas:

f cap(d) ≡ 0. (2.49)
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Nonneutral plasmas: If these neutralities are not assumed, the only change in
the total force between the plasmas is the addition of the force by unit surface
(2.47) (in Gaussian units) to the Casimir, fluctuation-induced, force (2.46). As
the densities are of order O(1) as d → ∞, the contribution f cap(d) is mainly inde-
pendent of the separation d, and corresponds to the well-known force between a
capacitor’s plates whose surface charge densities are not necessarily opposite, but
respectively

∫
dx1cA(x1) and

∫
dx2cB(x2) (Schwinger et al., 1998, Form. (11.75)–

(11.76)).

The force in a suitable form for a large-distance analysis

In preparation for an analysis of (2.46) in the large-separation limit d → ∞, the
y-integral is written in the (partial) Fourier space k (see Appendix B), and the
change of variable k = q/d is performed.

This change of variable has the effect of disentangling nonuniformities present
in the A–B electrostatic force — and remaining in the correlation function —
between the variables k and d. Indeed, as seen on its partial Fourier transform
(B.8), the electrostatic force bears the factor e−k|x1−x2−d| ≤ e−kd (k = |k|). The
dominant contribution to the integral in (2.46) at large d will thus come from
small values of k. They are more easily investigated at k = q/d, for then

(∂xvAB)(1, 2, q

d ) = 2πe−qe−
q|x1 |

d e−
q|x2 |

d (2.50)

is expandable in power series of 1/d while still being integrable on q.
In a form suitable for a large-distance analysis, the Casimir force therefore

reads

f (d) =
1
d2

∫
d1

∫
d2

∫
dq

(2π)2 eγ1eγ2(∂xvAB)(1, 2, q

d ) ρA(1) ρB(2) hAB(1, 2, q

d ),

(2.51)

with (∂xvAB)(1, 2, q

d ) given by (2.50).
From this formula, the Casimir force f (d) will turn out to be O(d−3). The

electrostatic force (2.50) is of order O(1) as d → ∞. The mean densities ρA and
ρB are averaged in the system of the two plasmas under mutual influence; they
will tend to the densities ρ0

A and ρ0
B of the single, individual plasmas. In the next

section, the correlation hAB(q

d ) between the plasmas will be seen to vanish in the
limit as O(d−1).

The issue resides in extracting the dominant contribution of the correlation
hAB(1, 2, q

d ) between the plasmas A and B as they become more distant, but also in
understanding how the universality of the Casimir force emerges from this micro-
scopic calculation. We will show that this A–B correlation function asymptotically
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involves correlation functions pertaining to the single individual plasmas and that
universality results from the perfect screening sum rules that the latter functions
satisfy on their own.

2.5.2 Introduction to Mayer graphs and their resummation

Meaningful insights into the Ursell function of our charged system are expected to
be gained by the mean-field (linearised) Debye–Hückel approximation (see Sec-
tion 2.3.5). In the bulk, this theory describes screening very simply for classi-
cal Coulomb matter. The effective mean-field potential (2.26) is exponentially
damped over the screening length κ−1 (2.25). Density and charge correlations ex-
hibit exponential clustering and satisfy the perfect screening sum rule. Moreover,
the Debye-Hückel regime is known to be asymptotically correct in the strict limit
of low density or high temperature (Brydges & Federbush, 1980). The method
of resummed Mayer graphs, presented below, provides a natural way for going
beyond this approximation while keeping its most pleasant feature: the screening
potential.

Mayer graphs in activity

The basic idea behind the expansion of the classical Ursell function h(1, 2) in
Mayer graphs in activity relies on a simple rewriting of the interacting part of its
Gibbs weight (occurring in a representation of h similar to (2.19) in the grand-
canonical ensemble):

e−β
∑

i< j V(i, j) =
∏
i< j

[ f (i, j) + 1], f (i, j) = e−βV(i, j) − 1 (2.52)

(V represents the total pairwise interaction). The product
∏

i< j is fully expanded
in a series of terms containing a certain combination of multiplied functions f .
To form h(1, 2), these terms are integrated over all variables, except the two argu-
ments 1 and 2, with weights z(i) including the activity and the external potentials:

h(1, 2) =
∑
Γ

1
S Γ

∫
d3...

∫
dmz(3)...z(m)

∏
{i, j}∈Γ

f (i, j)

= ◦
1 2

◦ + ◦ ◦
•z(3)

�� + ◦ ◦
• ��
+ ◦ ◦
•

�� ��
+ ... . (2.53)

Each of these terms is graphically represented by a diagram, or graph (a lattice
of linked points) Γ, accordingly: it has two root points (1 and 2), a number m
of intermediate points representing activity-weighted integrals, and links between
the points representing the factors f (i, j) as they occur in the term. The function
f (i, j) is called the Mayer bond.
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Mayer graphs in density

To obtain, instead, an expansion of h(1, 2) in terms of graphs whose integrated
points are weighted by the density, one has to write a similar expansion in activity
for the density ρ(i) and eliminate the activities between the two representations.
This elimination process can be made systematically, and is called “topological
reduction” because it involves a simplification in the diagrams’ structure (they
become free of articulation points).

As a result, the classical Ursell correlation function h(1, 2) is expanded in a
formal power series of the density by means of such graphs:

h(1, 2) =
∑
Γ′

1
S Γ′

∫
d3...

∫
dmρ(3)...ρ(m)

∏
{i, j}∈Γ′

f (i, j)

= ◦ ◦ + ◦ ◦
•ρ(3)

�� ��
+ ... . (2.54)

Each graph is an integral over an arbitrary number of intermediate points m weigh-
ted by the local mean density ρ(m), and operating on a product of links f (i, j)
(2.52) between the points. The two root points 1 and 2 are not integrated over.
The series is made up of all graphs of one piece, connecting the root points, and
whose network is such that none of the points (whether integrated or root) is an
articulation point. Namely, there is no point whose removal would split the graph
into pieces not all connected to a root point. Mechanically speaking, there are no
“pivotable arms” in the graph when the root points are maintained fixed. [Com-
pare the graphs of the series (2.53) to those of the series (2.54).]

A presentation of these developments can be found, e.g., in (Hansen & McDon-
ald, 1986, Sec. 4.5, 5.3), and some rigorous results about convergence issues of
activity and density expansions in the thermodynamic limit, in (Ruelle, 1989, Sec.
4.3).

Resummation of the Coulomb divergencies

In Coulomb fluids, where the interaction is V(i, j) = eγieγ jv(i, j) + vSR(i, j), the
long range of the Coulomb potential induces the nonintegrability at infinity of the
Mayer bond. Every diagram in the Mayer graph series consequently diverges in
the thermodynamic limit. However, taken together, they form the Ursell correla-
tion function, which is expected to be well-defined in this limit. Divergencies aris-
ing from individual graphs cancel out in their sum, so that partial resummations
are devised. One expects these cancellations to occur through the establishment
in the plasma of screening mechanisms that reduce the effective range of interac-
tion. To systematically deal with them in the graphs, one “resums” the Coulomb
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potentials into the Debye–Hückel potential, according to the following idea. [See
(Meeron, 1958; Abe, 1959) or, e.g., (Balescu, 1975, Sec. 6.5), and references
therein.]

One may rewrite the Poisson–Boltzmann differential equation (2.25) defining
the Debye–Hückel potential Φ (generalised for an inhomogeneous density) as an
integral equation, namely

Φ(i, j) ≡ v(i, j) −
∫

d1
κ2(1)
4π

v(i, 1)Φ(1, j), (2.55)

κ2(1) = 4πβ
∑
γ1

e2
γ1
ρ(1), (2.56)

as can be checked by applying the Laplacian ∇2
ri

to it.5 Multiplied by −βeγieγ j and
recursively iterated, this integral equation represents an infinite series of convolu-
tion chains of bonds −βeγ1eγ2v(1, 2) weighted by the density:

◦
F=−βeie jΦ

i j
◦ ≡ ◦

−βeie jv ◦ + ◦ •ρ(1) ◦ + ◦ • • ◦ + ... .

(2.57)

The idea is to prominently give rise in the Mayer graphs to such chain series
and regroup them into the quantity F = −βeγieγ jΦ. To that purpose, the Mayer
bonds f (i, j) are written as the sum of their Coulomb, long-ranged, part −βeγieγ jv,
and the rest, f R = e−βeγi eγ j v−βvSR − 1 + βeγieγ jv. Their product in (2.54) is expanded
and the resulting new graphs reorganized into subseries, so that chain convolutions
(2.57) between two specific points are exhibited, like in

◦ f R
����� ◦

•f R

� � � −βv
+ ◦ ����� ◦

•
� � � • + ◦ ����� ◦

•
� � � ••

+ ... = ◦ ����� ◦
•

� � �
−βΦ

�����
. (2.58)

We explain in more detail this procedure in Appendix A. The result is the follow-
ing.

The new diagrams, so-called resummed Mayer graphs, are then made of
links chosen among the two types

F(i, j) = −βeγieγ jΦ(i, j), (2.59)

FR(i, j) = e−β(eγi eγ jΦ+vSR)(i, j) − 1 + βeγieγ jΦ(i, j). (2.60)

5The boundary conditions supplementing the Poisson–Boltzmann equation (especially at in-
terfaces) are in fact derived from the integral relation.
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The bond F is proportional to the Debye–Hückel potential (2.55). The bond
FR sums up the contributions from the shorter-ranged part of the original Mayer
bonds. The Ursell function reads

h(1, 2) =
∑
Π

1
S Π

∫
d3 ρ(3) · · ·

∫
dmρ(m)

∏
{i, j}∈Π

F (i, j), (2.61)

where Π denotes a resummed Mayer graph with m points, two of which being
the root points 1 and 2, and a symmetry number S Π. It is made of (simple) links
F ∈ {F, FR} and there are no articulation points. The only additional topological
constraint on the resummed graphs is that convolution chains of links F are for-
bidden: they would redundantly count original chain convolutions of −βeγieγ jv, in
view of (2.57).

Remarks

• The resummation procedure can be seen as effectively replacing the Cou-
lomb interactions between the charges by the screened, integrable, Debye–
Hückel potentialΦ. It is not to be confounded with a coarse-grained scheme
that would ab initio average out some of the microscopic phase-space de-
grees of freedom by introducing the mean-field potential. Our approach
remains fine-grained and exact: the presence of the bond FR in the graph
series representation of h is the price to pay for dealing with the Debye–
Hückel potential.

• This development is, however, not rigorous: infinite quantities have been
manipulated in such a way that they cancel out. One could perform these
steps before the thermodynamic limit is taken, rearranging only finite quan-
tities. But it would not be justified to take first the thermodynamic limit on
the series (2.57) or (2.55), leading to fast decaying, thus integrable, bonds F
and FR, and then conclude that the remaining integrals in the graph (oper-
ating on F and FR) are well-defined when also extended (in a second step)
to an infinite domain.6

2.5.3 Asymptotic correlations between the plasmas

Having now at disposal a tool (the resummed Mayer graphs) explicitly incorpo-
rating collective screening effects for the two-point density correlations, we come

6Furthermore, even though the resummed Mayer series might converge, it would not do so to
the true correlation function h, for the latter is known to contain nonanalytic terms in the plasma
parameter Γ′ = 1

2βe
2κ near the strict Debye-Hückel limit Γ′ = 0, of the form e−C/Γ′ (Brydges &

Martin, 2000, Sect. II.C). Nevertheless, expanding around this Debye–Hückel limit — like we do
with the resummed Mayer graph series of h — is believed to lead to physically correct results.
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back to the force (2.51).
To extract the asymptotic large-distance behaviour of the Ursell correlation

function hAB(1, 2, q

d ), we select the class of its graphs that give the dominant con-
tribution by analysing them one by one.

In the limit d → ∞, the integrated bonds of a graph have very different be-
haviours depending on whether their arguments both lie in the same plasma, or
not, in which latter case they account for interactions at a distance at least d.
Therefore, we decompose every integrated point i in (2.61) — running over the
whole system — explicitly into an A and a B contribution, namely∫

di ρ(i)... =
∫

di ρA(i)... +
∫

di ρB(i)... . (2.62)

This specialises the bonds F and FR into FAA, FAB, FBA, FBB and FR
AA, FR

AB, FR
BA,

FR
BB contributions, according to the then known location of their arguments.7 Note

that for every type of link F ,

FBA(1, 2, y) = FAB(2, 1,−y), and FBA(1, 2,k) = FAB(2, 1,−k) (2.63)

by space-inversion invariance. We will refer to these BA bonds as being AB bonds
as well.

Only traversing bonds AB can be held responsible for the decay of hAB to
zero (note that every graph of hAB has at least such a bond). The other bonds tend
towards those of the single plasmas. The more crossing bonds there are in a graph,
the faster it is expected to decay.

The most simple graphs of hAB(1, 2, q

d ) are the single links FAB(1, 2, q

d ) and
FR

AB(1, 2, q

d ). Their decay rate needs to be determined.

The Debye–Hückel potential at large separation

The resummed Mayer bonds F and FR are given in (2.59) and (2.60) in terms of
the Debye–Hückel potential Φ. This potential, yet unknown, is solution of the
integral equation (2.55), or the Poisson–Boltzmann differential equation (2.25)
(generalised to a local inverse screening length κ(1)).

It is difficult to solve the Poisson–Boltzmann differential equation in the two-
plasma system for two reasons:

1. the first is that the density profiles ρ(1) entering into the definition of the lo-
cal screening length κ−1(1) are not explicitly known. This is a serious issue,

7We recall that positions along x in plasma B are measured from its inner boundary.
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preventing the determination of Φ to be complete, presumably.8 However,
this problem turns out irrelevant for the determination of the dominant be-
haviour of the potential as d → ∞;

2. the second is rather technical: the potential must be solved piecewise in
several regions (inside the plates, in the vacuum regions, and on each side
of the Dirac source), and the matching of the individual solutions at these
regions’ boundaries leads to cumbersome algebra.

In the article of Chapter 3, this resolution has nevertheless been undertaken. The
plates have been taken semi-infinite to relax the second difficulty (except in Ap-
pendix 3.A, where one plate is of finite width). It has the advantage of providing
an explicit bound for Φ(1, 2,k) (in particular, uniform in k) at sufficiently weak
coupling.

Result: Under the assumption that the densities of the interacting two-plasma
system tend to those of the isolated plasmas, i.e.,

ρA(1)
d→∞
−→ ρ0

A(1), ρB(2)
d→∞
−→ ρ0

B(2), (2.64)

the dominant behaviour of the effective potential Φ(1, 2, q

d ) between a charge in
plasma A and a charge in plasma B reads

ΦAB(1, 2, q

d ) d→∞∼
1
d

q
4π sinh q

Φ0
A(1, 0, 0) Φ0

B(0, 2, 0). (2.65)

+
-

+ -

+
+

+

+

-
-
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-

A B

+
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+ -

+
+

+

+

-
-

-

-

A B

It is factorized into the effective potentialsΦ0
A andΦ0

B (at a Fourier vector k = 0) of
the single plasmas with one position evaluated at their inner surface. The effective
interaction between the plasmas thus occurs through intraplasma interactions with
particles close to separating space.

The advantage of having introduced q = kd in (2.51) is clearly displayed
on this asymptotic formula: all variables of ΦAB are disentangled into factorized
dependencies. Note that although the Coulomb potential v(x,k = 0) diverges, in
conformity to its long range as |y| → ∞ (Appendix B), this is not the case of
the resummed — thus shorter ranged — potentials by their uniform bound with
respect to k.

8The unknown density profiles ρ(m) can in principle be determined self-consistently from the
first equation of the Born–Green–Yvon hierarchy, which is, in addition to the resummed Mayer
expansion representing h, another equation relating the unknown local density and density corre-
lation function. See also Section 3.8.
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Alternative method: Here we devise a simpler reasoning capable of retrieving
(2.65) based on the integral equation (2.55) rather than the Poisson–Boltzmann
differential equation. It will prove useful when considering more elaborate mod-
els, and does not lead to the difficulty 2 above.

One can establish (2.65) by noticing a similar factorization in the Coulomb po-
tential vAB(x,k) and then resumming only the dominant convolution chains defin-
ing ΦAB(1, 2, q

d ).
The series of Coulomb chain convolutions resulting from the iterated integral

equation (2.55) reads

Φ(i, j,k) = v(i, j,k) −
∫

d1
κ2(1)
4π

v(i, 1,k)v(1, j,k) + . . . . (2.66)

It is equal to (2.57) up to a factor −βeγieγ j , and written here in partial Fourier
representation. Taking i ∈ A and j ∈ B, we split every integrated point into
an A and a B contribution, as in (2.62) for the Mayer graphs before. The chain
convolutions are thus expanded into products of AA, BB, AB or BA Coulomb
potentials. Representing a traversing bond as a double headed arrow, a typical
chain of ΦAB(i, j,k) then looks like

◦A vAA
• ��A B

vAB
��• B

vBB
• B

vBB
◦, (2.67)

with weights−κ2A(1)/4π at an A-integrated point 1, and−κ2B(2)/4π at a B-integrated
point 2. Every such chain of ΦAB must contain an odd number of traversing bonds
(vAB or vBA).

From the partial Fourier representation of the Coulomb potential (B.7), Ap-
pendix B, one has

vAB(1, 2,k) =
2π
k

e−k|x1−x2−d| =
ke−kd

2π

(
2π
k

e−k|x1 |
) (

2π
k

e−k|x2 |
)

=
ke−kd

2π
vAA(1, 0,k)vBB(0, 2,k) ∀k. (2.68)

Evaluated at k = q/d, this structure is very similar to (2.65); this is not surpris-
ing, since vAB(1, 2, q

d ) is the first “chain” of ΦAB(1, 2, q

d ). The Coulomb potentials
vAA(1, 0,k) and vBB(0, 2,k) are not well-defined at k = 0, but they will be convo-
luted in chain to form the factors Φ0

A(1, 0,k)Φ0
B(0, 2,k), which are.

Because of this divergency of vAA(q

d ) and vBB(q

d ) with d → ∞, chains with any
(odd) number of crossing bonds will contribute to the asymptotic behaviour of
ΦAB(1, 2, q

d ). Let Φ(2n+1)
AB be the sum of chains (2.67) containing 2n + 1 traversing

bonds.
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To compute Φ(1)
AB, let us represent the Coulomb factorization (2.68) as

◦ �� vAB ��◦ =
ke−kd

2π
◦ vAA

∣∣∣ ∣∣∣ vBB ◦ , (2.69)

and insert it into all chains of the type (2.67) containing only one bond vAB. The
sum of all of these chains leads to the construction on each side (A or B) of sums
of vAA-chains or vBB-chains. Hence, at k = q/d,

Φ
(1)
AB(i, j, q

d ) =
qe−q

2πd
Φ̃AA(i, 0, q

d ) Φ̃BB(0, j, q

d ), (2.70)

where

Φ̃AA(i, 0, q

d ) ≡ ◦ vAA | + ◦ vAA • vAA | + ◦ • • | + ... (2.71)

(and likewise for Φ̃BB). The introduced potential Φ̃AA represents an intermediate
quantity betweenΦAA, the Debye–Hückel potential between two points of A in the
interacting two-plasma system, and Φ0

A, the effective potential between two points
of the isolated plasma A. Indeed, it collects all chains of ΦAA that do not vanish
in the limit d → ∞ (the other chains of ΦAA contain (at least two) crossing vAB

links and are of order O(d−1)), but differs from Φ0
A by having weights −κ2A(1)/4π

instead of

−
(κ0A)2(1)

4π
≡ lim

d→∞

−κ2A(1)
4π

(2.72)

at each integrated point [see (2.64)]. The definition (2.71) can equivalently be
written as (2.66) or (2.55) but with κ2A(1) in place of κ2(1). From (2.72) and its B
counterpart, one has

lim
d→∞
Φ̃AA(1, 2, q

d ) = Φ0
A(1, 2, 0), (2.73)

lim
d→∞
Φ̃BB(1, 2, q

d ) = Φ0
B(1, 2, 0). (2.74)

To obtain Φ(3)
AB(i, j, q

d ), one can resum first, among all chains containing three
crossing Coulomb links, those whose extremal vAA and vBB chains are the same.
This gives rise to no more than Φ(1)

BA in the center, as in

◦ vAA •�� vAB ��• ��
Φ

(1)
BA ������ • �� vAB ��• vBB • vBB ◦. (2.75)

The quantity Φ(3)
AB(i, j, q

d ) is thus retrieved by attaching one traversing Coulomb
bond to each extremities of Φ(1)

BA and summing the remaining vAA and vBB chains
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on each side, as before. Using the factorization (2.68) of vAB, this will lead to the
formation of Φ̃AA and Φ̃BB at the extremities:(

qe−q

2πd

)2

◦ Φ̃AA
∣∣∣ ∣∣∣ vBB • ��

Φ
(1)
BA ������ • vAA

∣∣∣ ∣∣∣ Φ̃BB ◦. (2.76)

With the factorization of Φ(1)
BA(i, j, q

d ) similar to (2.70), one has

Φ
(3)
AB(i, j, q

d ) =
(
qe−q

2πd

)3

Φ̃AA(i, 0, q

d )
[
−
∫

d1
κ2B(1)

4π
vBB(0, 1, q

d )Φ̃BB(1, 0, q

d )
]

×
[
−
∫

d2
κ2A(2)

4π
Φ̃AA(0, 2, q

d )vAA(2, 0, q

d )
]
Φ̃BB(0, j, q

d ). (2.77)

By definition of Φ̃AA and Φ̃BB, the brackets in (2.77) reduce to

Φ̃BB(0, 0, q

d ) − vBB(0, 0, q

d ) = −
2πd

q
+ O(1), (2.78)

Φ̃AA(0, 0, q

d ) − vAA(0, 0, q

d ) = −
2πd

q
+ O(1). (2.79)

On the right hand sides of (2.78) and (2.79), the dominant terms come from the
Coulomb potentials, while the estimates O(1) reflect the fact that Φ(1, 2,k), and
also Φ̃AA(1, 2,k) and Φ̃BB(1, 2,k) are bounded uniformly in k. We borrow this
result from Chapter 3, Formula (3.49). We will see below that it is equivalent to
the fact that these Debye–Hückel potentials satisfy the perfect screening sum rule
by themselves. Equation (2.77) thus has, in the limit d → ∞, a prefactor(

qe−q

2πd

)3 (
2πd

q

)2

=
qe−q

2πd
e−2q, (2.80)

so that

Φ
(3)
AB(i, j, q

d ) d→∞∼
qe−q

2πd
e−2q Φ̃AA(i, 0, q

d )Φ̃BB(0, j, q

d ). (2.81)

By induction on n, one easily sees that Φ(2n+1)
AB (i, j, q

d ) receives, instead, a prefactor
qe−q

2πd e−2nq. Summing over n = 1, 2, 3, ... and taking the limit d → ∞ on Φ̃AA and
Φ̃BB gives the final result (2.65).

The Debye–Hückel graph

The asymptotic factorization (2.65) of ΦAB gives to the Mayer graph constituted
by the bond FAB alone its asymptotic behaviour:

FAB(1, 2, q

d ) d→∞∼
−1
βd

q
4π sinh q

F0
A(1, 0, 0)

eα0

F0
B(0, 2, 0)

eβ0

, (2.82)
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where eα0 and eβ0 are the charges situated at the inner surface of the plasmas in
F0

A and F0
B. We will see that this graph alone already provides the full asymptotic

value of the Casimir force.

Dominant graphs and asymptotic behaviour of hAB

Since the dominant graphs of the Ursell function are those containing the least
number of crossing links, and that FR(1, 2) ≈ 1

2 F2(1, 2) is of shorter range than F,
the asymptotic behaviour of hAB is given by all graphs having exactly one bond
FAB. These are formed by binding any type of AA and BB links to the corre-
sponding extremities of FAB in compliance with the diagrammatic rules. Because
F-type bonds cannot be convoluted in chains [see the paragraph after Equation
(2.61)], subgraphs which bind to FAB by a single FAA or FBB bond (depending on
the extremity) are not allowed. The sum of these contributions thus reads [see also
(3.77)]

◦
(
© + FAA•© + δ

ρA

)
• �� FAB ��•

(
© +©•FBB

+ δ
ρB

)
◦, (2.83)

where the symbol ◦©◦ represents the sum of all subgraphs (in A or B) having
neither of their two root points connected to a single bond F only. The delta terms
on both sides of FAB in (2.83) allow the latter’s extremities to be the root points of
the whole graph (nothing attached).

Upon using the asymptotic factorization of FAB (2.82), the contribution (2.83)
can as well be factorized into a product of A and B correlation functions. This
provides us with the asymptotic behaviour of hAB(1, 2, q

d ):

hAB(1, 2, q

d ) d→∞∼
−1
βd

q
4π sinh q

G0
A(1, 0, 0)

eα0

G0
B(0, 2, 0)

eβ0

, (2.84)

with

G0
A = ◦

(
© +

F0
A •© + δ

ρ

)
• F0

A | = ◦©•−◦ + ◦−•©•−◦ + ◦−◦ (2.85)

and G0
B = ◦−◦ + ◦−•©•−◦ + ◦−•©◦. The latter entities are correlation functions

similar to the Ursell function of the isolated plasmas. In particular, they satisfy
the perfect screening sum rule like h in (2.31). They have their inner root point
located at the plasma’s surface like F0

A and F0
B in (2.82).

2.5.4 Validity of the perfect screening sum rules

In spite of the temptation to insert (2.82) or (2.84) right away into the force for-
mula (2.51), let us first discuss how the perfect screening sum rule (2.31) for the
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Debye–Hückel potential Φ0
A and the Ursell function h0

A of the single plasma A can
be shown to be valid. Indeed, they will be the keys to universality in the Casimir
force.

Perfect screening on the Debye–Hückel level

Once it is known that the Debye–Hückel potential Φ0
A(1, 2,k) is bounded uni-

formly with respect to k, one can show the perfect screening sum rule (2.29) or
(2.30) satisfied by it without having an explicit expression. A first way is to pro-
ceed as in the article in Chapter 3 by integrating the Poisson–Boltzmann equation.
Alternatively, one can start from the integral equation (2.55), divide it by the Cou-
lomb potential, and consider

lim
k→0

Φ0
A(i, j,k)

vAA(i, j,k)
= 1 − lim

k→0

∫
d1

(κ0A)2(1)
4π

vAA(i, 1,k)
vAA(i, j,k)

Φ0
A(1, j,k). (2.86)

The left hand side vanishes by the ∼ 1/k divergency of vAA(i, j,k) in this limit, and
the boundedness of Φ0

A. Since Φ0
A(1, j,k) has well-integrable properties on 1 even

at k = 0 [see (3.49)], and since

vAA(i, 1,k)
vAA(i, j,k)

=
e−k|xi−x1 |

e−k|xi−x j |
≤

1
e−k|xi−x j |

, lim
k→0

vAA(i, 1,k)
vAA(i, j,k)

= 1, (2.87)

the limit can be taken on the integrand by dominated convergence (for fixed xi and
x j), so that the perfect screening sum rule on the Debye–Hückel level∫

d1
(κ0A)2(1)

4π
Φ0

A(1, j,k = 0) = 1 (2.88)

is satisfied, whether the thickness of plasma A be finite or infinite.
This method clearly displays the interplay between the shielding of the long

range of the Coulomb potential incorporated into the resummed potential Φ0
A(k)

(which no longer exhibits the singularity ∼ 1/k), and the perfect screening of
charges reflected by the sum rule.

Perfect screening rule for the Ursell function

In (Martin, 1988, Sec. III), it is shown that the classical two-point correlation
function of a plasma confined to a slab of finite or semi-infinite thickness, satisfies
the perfect screening sum rule (2.31).

In fact, it is only necessary for its validity that it holds at the Debye–Hückel
level. The proof proceeds by distinguishing the graphs of h0

A according to whether
their root points are attached to the rest of the graph by a single F bond or not.
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This calculation is performed in the article of chapter 3, see Formula (3.68). We
will also present it in the quantum case (Section 5.3.6).

The same technique allows to establish that the partial correlation functions
G0

A and G0
B in (2.84) above also satisfy the electroneutrality sum rule (2.31), see

(3.82)–(3.84).

2.5.5 The asymptotic force

Knowing the asymptotic behaviour of the correlations across the plasmas at large
separation and their screening property, we can at last finalise the calculation of
the Casimir force in the limit d → ∞.

The force in the Debye–Hückel approximation

Approximating hAB by FAB in the force formula (2.51), and using the limiting
values of the densities (2.64) and of FAB (2.82), one finds that

f (d) d→∞∼
1
d2

∫
d1

∫
d2

∫
dq

(2π)2 2πe−q ρ0
A(1)ρ0

B(2) FAB(1, 2, q

d )

d→∞∼
−1

4πβd3

[∫ 0

−a
dx1

(κ0A)2(x1)
4π

Φ0
A(x1, 0, 0)

] [∫ b

0
dx2

(κ0B)2(x2)
4π

Φ0
B(0, x2, 0)

]∫ ∞

0
dq

q2e−q

sinh q

= −
ζ(3)

8πβd3 . (2.89)

Last equality results from the perfect screening sum rule (2.88), and the value
ζ(3)/2 of the q-integral. By the universality of the result, i.e., its independence
upon material parameters of the plates (in particular, upon the coupling parameters
and the screening lengths), one can expect it to hold beyond the Debye–Hückel
approximation.

The full Casimir force

Indeed, upon insertion of the asymptotic component of hAB (2.84) into the force
formula (2.51), one obtains, similarly,

f (d) d→∞∼ −
1

4πβd3

[∫
d1 eγ1 ρ

0
A(1)

G0
A(1, 0, 0)

eα0

] [∫
d2 eγ2 ρ

0
B(2)

G0
B(0, 2, 0)

eβ0

]∫ ∞

0
dq

q2e−q

sinh q
.
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(2.90)
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The two brackets in (2.90) are associated to the integrals of the screening clouds
induced around fixed charges at the inner surfaces of the plasmas, as suggested
by the picture. By the sum rule (2.31) that the correlation functions G0

A and G0
B

satisfy on their own, these brackets are equal to −1 (the fixed charges are perfectly
screened) and we thus have

f (d) d→∞∼ −
ζ(3)

8πβd3 . (2.91)

In addition to the comments of Section 2.4.1, let us mention a few points.

• The perfect screening sum rules are fundamental to wipe out the micro-
scopic details of the plasmas. Their validity reflects that the plasmas are
in conducting states, which is known to be the case, in particular, in the
weak-coupling regime. This regime is attained at high temperatures and
large distances, as discussed in Section 2.3.4. Note that only the screening
of charges at the surfaces close to the interspace is involved. This explains
why the asymptotic force is independent of the thicknesses a and b of the
plasmas.9 Furthermore, the same formula is also obtained if a and b are
taken infinite before letting d → ∞, by virtue of the good decaying proper-
ties in the bulk of the resummed Debye–Hückel potentials. (The case of ab
initio semi-infinite plasmas is explicitly dealt with in Chapter 3.)

• Exact knowledge about the local densities is not needed to calculate the
dominant behaviour of the Ursell function (and of the Casimir force) at
large distances. The speed at which they tend to the densities of the single
plasmas as d → ∞ will be necessary to determine subdominant terms (see
next point).

• The question of subdominant terms is of considerable interest. We will see
at the end of chapter 3 that O(d−4) terms in the force do not necessitate
the consideration of new Mayer graphs in the series representation of the
Ursell function. Rather, these terms will be associated to the deviation of
the O(d−1) dominant graphs (2.83) of hAB to their limiting value (2.84) ∝ d−1

as d → ∞.

As a last remark, and to establish a link with the fundamental considerations
about the model at the beginning of this chapter, let us consider the gravitational

contribution to the total force exerting between the two metallic plates (still dis-
regarding intraplasma gravitational forces.)

9This independence holds as long as the thicknesses are large enough to allow screening to
take place, i.e., λD/a � 1 and λD/b � 1. See also Appendix 3.A



54 2. General settings and outline of the method

In the two-plates geometry, if the mass densities ρmass
A and ρmass

B are supposed
constant, the gravitational force by unit surface acting on plasma B reads

−2πG(ρmass
A a)(ρmass

B b), (2.92)

similarly to the capacitor’s force (2.47). This dominant contribution of the gravi-
tational attractive force is not very interesting: it is independent of the separation
d, and also well-known10, so that its subtraction is easily done. Naturally, there is
a separation distance above which it dominates the Casimir force, in spite of the
weakness of the coupling constant G ≈ 6.7 · 10−8cm3g−1s−1. As an example, for
two plates of thickness a = b ≈ 50nm, mass densities ≈ 104kg/m3, corresponding
to the experimental setup of Bressi et al. (2002), this gravitational contribution
is ≈ 10−16dyne/cm2. At T ≈ 300K, it overcomes the high-temperature Casimir
contribution (2.90) for distances � 1cm ! 11

2.5.6 Generalisation of the method to quantum plasmas and

field-coupled quantum plasmas

To this point, the calculation presented has been carried out for classical plasmas.
It retrieves [see (2.90)] the well-known expression (1.4) for the Casimir force in
the semi-classical regime, which is expected to be correct in view of the discussion
of the physical parameters ruling the plasmas (Section 2.3.4).

Nevertheless, by its very formulation, this model cannot be really related to
other calculations that chiefly attribute the Casimir force (1.4) to the fluctuations
of the electromagnetic field. Indeed, the radiation part of the field disappears
from our description at the beginning, as a consequence of the Bohr–van Leeuwen
decoupling theorem. Our result (2.90) includes exclusively the longitudinal part
of the field. The force is built up by the thermal fluctuations of the atomic entities
inside the globally neutral metals through purely electrostatic interactions.

Because of the actual controversy about the factor 2 discrepancy between the
two results (1.4) and (1.3), investigating a more complete model that includes
quantum-mechanics and the radiation part of the field is of strong interest.

Our result is that the expression (2.90) is unchanged by such a generalisation.
Although new contributions to the Ursell function hAB show up at O(d−1), the
perfect screening sum rule cancels them when integrated into the force. Note that
by a simple dimensional analysis, one sees that in accordance to the Bohr–van

10See, however, the discussion in the introduction about probing short-range gravitational
forces.

11This is without taking into account the gravitational attraction of the plates’ supports in the
experiments. Note also that this range shrinks fast for thicker plates.
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Leeuwen theorem, the force could have been supplemented at dominant order
O(d−3) by terms of the type

1
d3

�c
λ
, (2.93)

where λ is a (classical) length (like the plasmas’ thickness a, b, the mean inter-
particle distance aρ, etc). Such terms would vanish in the limit �→ 0 of classical
plasmas, for which the field decouples and plays no role in the Casimir force. We
have shown that they do not appear at all.

We give in this last section a few hints on how the method exposed above can
be generalised to include the quantum-mechanical treatment of the particles, and
the inclusion of a classical radiation field. The details of this calculation are to be
found in Chapter 5. It relies on tools that are presented in Chapter 4.

Extension of the Mayer expansion to quantum systems

Dealing with the 1/r long range of the Coulomb potential in statistical systems
is notoriously difficult. General theorems about the thermodynamic limit or low-
density expansions usually rely on the assumption of integrable potentials. For-
tunately, by the sign of this interaction, screening mechanisms take place and its
effective range is short.

We have seen that the mean-field potential of Debye and Hückel is an ade-
quate way to exhibit screening systematically in the Ursell correlation function,
by resumming the Coulomb divergencies in the Mayer graphs. It has proven an
essential tool in the analysis leading to the result (2.90).

Yet, the Mayer series expansion of the Ursell function relies on a classical form
of the Gibbs integral, see Section 2.5.2. Such a classical form can be retrieved in
quantum systems when making use of the Feynman–Kac path integral formalism.
This point of view has been developed by Ginibre (1965a, 1965b, 1965c). It
introduces an auxiliary statistical system, that of loops (or “polymers”), which are
classical but extended objects of random Brownian shape. This shape represents
the quantum-mechanical fluctuations of the positions of the particles. A Mayer-
like series of the correlations of these classical-like objects can be developed by
the same classical methods overviewed in Section 2.5.2. Rigorous results on the
convergence of this Mayer series, for integrable (non-Coulombic) potentials, are
stated in (Ruelle, 1989, Sec. 4.6).

The same problems as in classical statistical mechanics arise when the interac-
tion is Coulombic. Due to its long range, every Mayer diagram flagrantly diverges.
The resummation of the Mayer-like series can be worked out as well. It leads sim-
ilarly to Debye–Hückel-type potentials. This procedure has been used to derive
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various properties of quantum plasmas, in particular, their large-distance correla-
tions (Cornu, 1996a, 1996b). Reviews on this topic can be found in (Alastuey,
1994; Brydges & Martin, 1999). See also (Ballenegger, Martin, & Alastuey,
2002).

The quantum plasmas considered in the above works concern purely electro-
static matter only. Adding the radiation field A(r) can be achieved by supplying
the formalism with the Itô path integral, which is the subject presented in Chap-
ter 4.

We only mention hereafter the main characteristics of this formalism.

The loop formalism

The quantum-mechanical statistical system of the charges is mapped exactly into
an auxiliary, classical-like statistical system. The particles’ quantum phase space
is replaced by the phase space of loops. Every loop consists of a position r, a
species index γ, an integral charge number q and a closed Brownian shape X(·).
Integrating on these degrees of freedom means, in particular, integrating on all
shapes X(·) by means of a Wiener (Gaussian) functional integral.

These objects interact with one another through a pairwise potential derived
from the initial interaction between the particles. This potential differs slightly,
but fundamentally, from summing up all interactions between every element of
line of the loops’ shape. The most striking consequence of this difference arises
for Coulomb fluids in their large-distance correlations. Indeed, these asymptotic
correlations no longer exhibit exponential clustering. Instead, they decorrelate
algebraically at large distances (∼ r−6), illustrating the fact that the quantum-
mechanical fluctuations of the charges effectively prevent the screening of multi-
poles. Perfect screening of monopoles, however, expressed by the electroneutral-
ity sum rule, still holds.

We will see in Chapter 4 that when the transverse field’s degrees of freedom
are added to the statistical system, the same developments can be made. When
averaging microscopic observables not concerned by the radiation field, like the
density, or the density correlation function, or when considering the total free
energy, these new degrees of freedom can be exactly integrated out. They result
in a new, effective, “magnetic” potential between the loops.

Calculating the force in this formalism

Essentially the same techniques developed for the classical two-plasma system
can be used, thanks to the similitude of the statistical system of loops and the
classical system of charges. Namely:
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1. The total free energy is expressed in terms of the auxiliary system of loops.
When the radiation field is included, differentiating it with respect to d pro-
vides new microscopic contributions to the Casimir force, representing the
magnetic part of the whole Lorentz forces exerting between the two metallic
plates. However, averaging these magnetic contributions turns out to only
result in contributions to the force of order O(d−5) as d → ∞. The force is
expressed as averages of two-body observables in the phase space of loops.

2. The averages of these two-body observables are expressed as integrals on
the Ursell function of the statistical system of loops. The truncation of the
correlation is allowed when the plasmas are globally neutral. Otherwise, a
capacitor-like force, mainly constant, is added.

3. The loop Ursell function is represented in resummed Mayer graph series.
Because of the form of the interaction potential between the loops and
the effective magnetic potential, the large-distance asymptotic analysis per-
formed on the resummed series provides a class of structurally new dom-
inant terms. These new terms represent, in particular, asymptotic correla-
tions mediated by the radiation field and residual correlations resulting from
the imperfect screening of the multipoles in the quantum plasma.

4. When inserted into the force, the first class of the dominant resummed dia-
grams builds up the classical result (2.90). Universality is obtained as in the
classical case by the perfect screening sum rule. The second, new, class of
dominant diagrams is found to provide only subleading contributions to the
force, because they are shielded away by the same perfect screening sum
rule.

As a consequence, the result (2.90) is retrieved, namely, the force between
quantum-mechanical plasmas coupled to a classical radiation field reads

f (d) = −
ζ(3)

8πβd3 + O(d−4), d → ∞. (2.94)

The subdominant O(d−4) terms depend in particular on the de Broglie wavelength
λpart and the thermal photon wavelength λph.



58 2. General settings and outline of the method



Chapter 3

The Casimir force between classical

plasmas

Contents

Microscopic origin of universality in Casimir forces, J. Stat. Phys,
119, 273–307 (2005) . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Description of the model . . . . . . . . . . . . . . . . . . . 67

3.3 Mayer series for inhomogeneous charged fluids . . . . . . . 69

3.4 Debye-Hückel theory . . . . . . . . . . . . . . . . . . . . . 72

3.5 Contributions of the other graphs . . . . . . . . . . . . . . 78

3.6 Plasma in front of a macroscopic dielectric medium . . . . 83

Appendix 3.A: Slab of finite thickness . . . . . . . . . . . . . . . 87

Appendix 3.B: Bounds for the Debye-Hückel potential . . . . . . 89

Appendix 3.C: Decay of Mayer graphs at large slab separation . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7 Decay analysis of Mayer graphs . . . . . . . . . . . . . . . 95

3.7.1 Decay of Mayer graphs at large separation . . . . . . . 95

3.7.2 Illustration on a specific example . . . . . . . . . . . 96

3.7.3 Determination of the factor d−2I = d−2(L−C) . . . . . . 98

3.8 Towards subleading orders of the force . . . . . . . . . . . 100

3.8.1 Leading and subleading orders of the Ursell function . 100

3.8.2 On subleading contributions to the classical force . . . 103



60 3. The Casimir force between classical plasmas

This chapter chiefly consists in the reproduction of the article presenting the
calculation of the Casimir force between two classical plasmas [Microscopic ori-
gin of universality in Casimir forces, J. Stat. Phys, 119, 273–307, (2005); p. 63].
It is supplemented with additional sections at the end of the chapter (see below).

The calculation presented in the article is parallel to that exposed in Section
2.5. Let us point out its main differences:

• Instead of reasoning on the integral relation defining the resummed Debye–
Hückel potential as a chain series of the Coulomb interaction, the Poisson–
Boltzmann differential equation is considered. In addition to the difficulty
of not knowing explicitly the density profiles, this method imposes match-
ing conditions of piecewise solutions at several interfaces, which leads to
cumbersome algebra. Its advantage is to provide an exact bound for the
Debye–Hückel potential Φ(x, x′,k) in partial Fourier representation.

• The force between the plasmas is defined from the beginning as the average
value of the microscopic Coulomb forces exerting between the two plasmas.
This starting point is equivalent to differentiate the free energy of the total
system, by virtue of the Bohr–van Leeuwen theorem which proclaims the
decoupling of classical matter and field (see Section 2.5). This force has
been denoted by 〈 f 〉 and defined with the opposite sign as the force f (d)
of Section 2.5.

• Two viewpoints are exposed to generalise the result obtained in the Debye–
Hückel theory so as to include the full correlations. The first uses integral
equations to appropriately exhibit the Debye–Hückel potential at the root
points of the Ursell function. Assumptions of integrable clustering for re-
lated quantities are needed. The second viewpoint proceeds by an analysis
of the decay rate of the resummed Mayer graphs constituting hAB.

Note that in the abstract and in the introduction, we assert that the factor two
discrepancy is due to the fact that the model does not include the magnetic part
of the Lorentz forces. In view of the calculation performed in the field-coupled
model (Chapter 5), this turns out to be false.

Dealing with unknown density profiles

The strategy employed to analyse the Poisson–Boltzmann equation for the Debye–
Hückel potential Φ(r, r′) even though the density profiles ρ(x1, γ1) are not explic-
itly known, is to introduce an auxiliary potential, ϕ(r, r′), solution of the same
differential problem but with piecewise-flat mean densities along the space: con-
stant inside the plasmas (equal to that of the bulk, or to the space-averaged density
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in case of a finite width), and vanishing outside. This kind of simplified Debye–
Hückel potential has already been used to calculate weak-coupling expansions
of density profiles in wall-constrained plasmas (Jancovici, 1982; J.-N. Aqua &
Cornu, 2001a, 2001b). Our method differs by coming back to the Debye–Hückel
Φ (defined for the exact structured profiles) in a convenient way.

The explicit solution ϕ has the advantage of already showing up the main char-
acteristics of the correlations across the two plasmas, in particular, their asymp-
totic factorization into A and B entities. To simplify the calculations, it is calcu-
lated for two semi-infinite plasmas in a first stage. In Appendix 3.A, it is given
when one of the plates has a finite thickness.

The Debye–Hückel potential Φ is obtained from ϕ by a convenient chain
series, much in the same way as it is defined originally from the Coulomb in-
teraction. This allows to transpose the properties of ϕ to Φ. Furthermore, the
convergence of the series is established at sufficiently weak-coupling. The proof
shows that Φ(x, x′,k) is bounded uniformly in k by an explicit function ϕ>(x, x′)
[Equation (3.49)]. This function decays exponentially in the bulk on the range
κ = min{κA, κB}, where κA and κB are the inverse screening lengths corresponding
to the flat densities.

Plasma in front of a macroscopic dielectric medium

Section 3.6 of the article deals with a slightly different version of the two-plate
system. We calculate with the same method the force exerting between a plasma
of charges on one side, and a macroscopic dielectric plate on the other side. This
generalises the force to a situation in which one of the plates is nonconducting.
The nonconducting plate is described on the macroscopic level by a dielectric
constant ε. It generates images of the plasma’s fluctuating charges, that embody
the continuity conditions imposed to the electrostatic potential at the dielectric’s
surface.

The main difference of this calculation resides in the fact that the correlation
function involved in the force concerns two charges of the same plasma: the image
charges are paired to the real charges. This correlation hence does not vanish as
the dielectric plate is sent away to infinity, and one needs to analyse its deviation
to its limit value.

The force thus retrieved depends on the dielectric constant and coincides with
a particular case of Lifshitz’ formula. It is independent of the material constitu-
tion of the metallic plate because of screening, and corresponds to the expression
obtained between the two plasmas when ε → ∞.
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On the decay of Mayer graphs and subleading orders to the force

In Appendix 3.C of the article, the decay rates of Mayer graphs are discussed. We
go back to this discussion in more detail after the reproduction of the article, in
Section 3.7, and conclude by a discussion on the subleading orders of the Ursell
function and of the classical Casimir force.
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The microscopic mechanisms for universality of Casimir forces between
macroscopic conductors are displayed in a model of classical charged flu-
ids. The model consists of two slabs in empty space at distance d con-
taining classical charged particles in thermal equilibrium (plasma, elec-
trolyte). A direct computation of the average force per unit surface yields,
at large distance, the usual form of the Casimir force in the classical
limit (up to a factor 2 due to the fact that the model does not incorpo-
rate the magnetic part of the force). Universality originates from per-
fect screening sum rules obeyed by the microscopic charge correlations
in conductors. If one of the slabs is replaced by a macroscopic dielectric
medium, the result of Lifshitz theory for the force is retrieved. The tech-
niques used are Mayer expansions and integral equations for charged fluids.

Key words: Casimir forces, classical charged fluid, universality, Mayer ex-
pansion
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3.1 Introduction

It is well known that the fluctuation-induced forces between macroscopic con-
ductors have a universal character: they only depend on the shapes of the bod-
ies, but not on their material constitution. This observation originates from the
celebrated paper of H. B. G. Casimir calculating the force between two parallel

1E-mail: pascal.buenzli@epfl.ch
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metallic plates due to the fluctuations of the quantum electromagnetic field in vac-
uum at zero temperature. The literature produced since then is so vast that we
will only quote in the sequel a number of papers relevant to our purpose. Many
references can be found for instances in the books and reviews (Milonni, 1994)
(Mostepanenko & Trunov, 1997) (Plunien, Müller, & Greiner, 1986) (Duplantier
& Rivasseau, 2003).

Regarding the extension of Casimir’s result to non zero temperature T , Balian
and Duplantier provide the general form of the free energy in presence of ideal
conductors of arbitrary shapes (Balian & Duplantier, 1977, 1978). The theory of
Lifshitz and coworkers generalizes the calculations to dielectric bodies caracter-
ized by their dielectric functions (Lifshitz, 1955), (Landau, Lifshitz, & Pitaevskii,
1984, §90), (Dzyaloshinskii, Lifshitz, & Pitaevskii, 1961) (see also (Schwinger,
DeRaad, & Milton, 1978)). The ideal conductor situation can be recovered from
the latter theory by letting the dielectric constants tend to infinity. From these
studies one can obtain the asymptotic behaviour of the attractive force between
two planar conductors at distance d at high temperature (or equivalently at large
separation d)2

f ∼
kBTζ(3)

4πd3 , d → ∞ (3.1)

where ζ is the Riemann ζ-function. In this regime the force is exclusively due to
thermal fluctuations and the result may be called classical since it does not depend
on Planck’s constant. In the above mentioned theories the conductors are treated at
the level of macroscopic physics. In fact they are represented by surfaces, called
ideal conductors, on which the electromagnetic field has to satisfy the metallic
boundary conditions. The purpose of this work is to gain an understanding of the
microscopic mechanisms in the conductor that lead to the universality of the force
(3.1).

To this end we analyse a simple model where the conductors are described
in fully microscopic terms. The conductors consist of two slabs at distance d
containing fluids of classical charges (e.g. classical electrolytes or plasmas). The
slabs are globally neutral but their material composition (charges and masses of
the particles) can be different. The space external to the slabs is empty. The system
of the two slabs, considered as a whole, is at thermal equilibrium with a Gibbs
weight that includes pairwise interactions between all the particles, consisting of
Coulomb potentials plus short-range repulsions. In this setting we present an exact
computation of the asymptotic behaviour of the average force per unit surface
between the two (infinitely thick) slabs giving

〈 f 〉 ∼
kBTζ(3)

8πd3 , d → ∞. (3.2)

2The relevant dimensionless parameter is d kBT/�c, c is the speed of light, � the Planck con-
stant, kB the Boltzmann constant.
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It is also checked that (3.2) still holds for slabs of finite thickness (appendix 3.A).
One may notice that the usual approaches consider the fluctuating electromag-

netic fields as primary objects. The thermal fluctuations of these fields originate
from the fact that they are in equilibrium with the matter constituting the conduc-
tors, but as a consequence of universality, the microscopic degrees of freedom of
the charges in the conductors do not need to be explicitly incorporated in the de-
scription. Here we adopt another point of view: we start from the thermal config-
urational fluctuations of the charges to provide a direct calculation of the average
force without recourse to the field statistics. Then the origin of universality can
be traced back to the specific sum rules obeyed by the correlations of Coulombic
matter (Martin, 1988).

Universal properties of a variety of classical models of conductor have been
studied in (Forrester, Jancovici, & Téllez, 1996) (Jancovici & Téllez, 1996). In
(Forrester et al., 1996) the authors consider a statistical mechanical system of
charges confined to a plane at distance d of another ideal planar conductor and
establish the result (3.2). In (Jancovici & Téllez, 1996), they show that replacing
the above ideal conductor by fluctuating charges does not alter (3.2). A recent
work (Jancovici & Šamaj, 2004) considers the situation where the space between
the two slabs is filled by a third Coulomb fluid, causing a screening of the Casimir
force.

The value (3.1) arising from the electromagnetic field fluctuations calculations
is twice larger than that obtained in the purely electrostatic models considered
here, as well as in (Forrester et al., 1996) (Jancovici & Téllez, 1996) (Jancovici &
Šamaj, 2004). This point has been the subject of several discussions in the litera-
ture, in particular in (Schwinger, 1975) (Schwinger et al., 1978). In (Schwinger,
1975) Schwinger performs a calculation of the Casimir force mediated by scalar
photons (corresponding to the sole electric degree of freedom of an electromag-
netic wave) leading to the result (3.2). In (Schwinger et al., 1978) the authors
show that taking the magnetic degree of freedom of the field property into ac-
count multiplies the expression (3.2) by 2. In its very formulation our model does
not include the magnetic part of the Lorentz force induced by fluctuating currents
in the conductors, whose effect has the same magnitude as that of the Coulomb
force. Although such purely electrostatic models of conductors do not account
for the physically correct value of the force at large distance, they already nicely
reveal the microscopic mechanisms occurring in conductors that guarantee its uni-
versality.

The calculation of the force requires the knowledge of the charge correlation
function across the two slabs separation, which is the main object of our study.
At large separation it remarkably factorizes into three parts. There is a first factor
independent of the slabs’ material constitution and two other factors, each solely
associated to one of the conductors. More precisely, the latter factors involve the
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charge density of the screening cloud induced by a charge located at the boundary
of a single conductor in empty space. Then the universality of the force results
from the perfect screening sum rule that holds in any conducting phase.

In this work we use the technique of Mayer expansion and integral equations
for charged fluids. In Section 3.2, we specify the system under study and express
the force by unit surface between two infinitely extended slabs in terms of the
microscopic charge correlation between them, taking the existence of the thermo-
dynamic limit for granted.

The general formalism used is recalled in Section 3.3: the charge correlation
function is written in terms of the Ursell function subjected to a Mayer expansion.
The prototype graphs entering in this expansion involve screened Coulomb bonds
resulting from chain summations (Debye-Hückel mean-field potential) and den-
sity weights at vertices (Meeron, 1958, 1961) (Aqua & Cornu, 2003). The weights
are the exact inhomogeneous densities that have to be self-consistently determined
from the first BGY equation. We do not treat here the full self-consistent problem
because it turns out that the detailed structure of density profiles is not needed
(see (Aqua & Cornu, 2001a) (Aqua & Cornu, 2001b) for a thorough study of
density profiles near boundaries). We only have to introduce weak and plausible
assumptions on the convergence of the profiles to their bulk value.

It is shown in Section 3.4 that the asymptotic value (3.2) of the force is already
obtained at the level of the Debye-Hückel theory. The main tool is the explicit
form of the mean-field potential for piecewise-flat density profiles, related to the
potential for structured profiles by an integral equation. The latter equation is
shown to have a convergent perturbative solution in the weak-coupling regime. At
large slab separation, the Debye-Hückel potential factorizes into potentials per-
taining to individual plasmas obeying electroneutrality sum rules.

We establish in Section 3.5 that the theory beyond mean-field does not pro-
vide any additional contribution to the asymptotics (3.2). This is first done non-
perturbatively with the help of integral equations corresponding to an appropriate
dressing transformation of the Ursell function and under the mild assumption of
integrable clustering. Finally the result is recovered once again by selecting and
resumming the contribution of dominant Mayer graphs to the full charge correla-
tion at large separation.

We also treat in Section 3.6 a variant situation where one of the slabs is re-
placed by an ideal macroscopic dielectric medium at distance d (namely gener-
ating images of the plasma’s fluctuating charges). Using the Green function of
the Poisson equation with appropriate dielectric boundary conditions, the Lifshitz
result for the mean force is retrieved and reduces to (3.2) as the dielectric constant
tends to infinity. It is interesting to observe that it is sufficient for the fluctuations
to occur only in one of the bodies to generate the same asymptotic behaviour.

We will come back to the inclusion of magnetic forces and to quantum models
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in future works.

3.2 Description of the model

We consider two plasmas A and B of classical point charges confined to two planar
slabs ΛA(L, a) and ΛB(L, b) in three-dimensional space. The slabs have thickness
a and b, surface L2, and are separated by a distance d:

ΛA(L, a) := {r = (x, y) | x ∈] − a, 0[, y ∈] − L
2 ,

L
2 [2}

ΛB(L, b) := {r = (x, y) | x ∈]d, d + b[, y ∈] − L
2 ,

L
2 [2}. (3.3)

The plasma A (B) is made of charges eα (eβ) of species α ∈ S A (β ∈ S B) where
S A and S B are index sets for the species in ΛA(L, a) and ΛB(L, b) respectively. We
assume both plasmas to be globally neutral, i.e., carrying no net charge,∑

a

eαa =
∑

b

eβb = 0 (3.4)

where
∑

a (
∑

b) extends on all particles in ΛA(L, a) (ΛB(L, b)). For a particle lo-
cated at r we will use the generic notation (γ r) where γ ∈ S A if r ∈ ΛA(L, a) and
γ ∈ S B if r ∈ ΛB(L, b). The space external to the slabs is supposed to have no
electrical properties, its dielectric constant being taken equal to that of vacuum.
The charges are confined in the slabs by hard walls that merely limit the available
configuration space to the regions (3.3).

All particles interact via the two-body potential

V(γ, γ′, |r − r′|) = eγeγ′v(r − r′) + vSR(γ, γ′, |r − r′|), (3.5)

where v(r − r′) = 1/|r − r′| is the Coulomb potential (in Gaussian units) and
vSR(γ, γ′, r − r′) is a short-range repulsive potential to prevent the collapse of op-
posite charges and guarantee the thermodynamic stability of the system.

The total potential energy U consists in the sum of all pairwise interactions,
separated into three contributions according to whether they take place between
two particles of A, of B, or between a particle of A and a particle of B:

U = UA + UB + UAB. (3.6)

On the microscopic level, the force between configurations of charges in the
two plasmas is the sum of all pairwise forces exerted by the particles of B on the
particles of A:

FΛB→ΛA :=
∑

a

∑
b

[
eαaeβb

ra − rb

|ra − rb|3
+ FSR(αa, βb, ra − rb)

]
ra ∈ ΛA(L, a), rb ∈ ΛB(L, b) (3.7)
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and FSR is the force associated to the short-range potential vSR. For simplicity we
assume that the range of vSR is finite so that FSR(αa, βb, ra − rb) vanishes as soon
as d is large enough, and we will omit it in the following.

Both plasmas are supposed to be in thermal equilibrium at the same temper-
ature T. The statistical average 〈· · · 〉L is defined in terms of the Gibbs weight
exp(−βU), β = (kBT )−1, associated with the total energy (3.6). There is no need
to explicitly specify the ensemble used here (canonical or grand canonical) pro-
vided that the global neutrality constraint (3.4) is taken into account. The average
particle densities ρL(γ r) are expressed as averages of the microscopic particle
densities ρ̂(γ r) =

∑
i δγ γiδ(r − ri) where the sum runs over all particles

ρL(γ r) = 〈ρ̂(γ r)〉L. (3.8)

We keep the index L to remember that averages are taken for the finite-volume
slabs (3.3). Hence expressing the sums in (3.7) as integrals on particle densities
ρ̂(γ r), the average force reads

〈F〉L =
∫
ΛA(L)
dr

∫
ΛB(L)
dr′

r − r′

|r − r′|3
cL(r, r′) (3.9)

where cL(r, r′) is the two-point charge correlation function

cL(r, r′) = 〈ĉ(r)ĉ(r′)〉L, ĉ(r) =
∑
γ

eγρ̂(γ r). (3.10)

We now consider the average force by unit surface between two infinitely ex-
tended slabs at distance d by letting their transverse dimension L tend to infinity.
We assume that the plasma phases are in fluid states homogeneous and isotropic
in the y directions, namely the charge correlation has an infinite-volume limit of
the form

lim
L→∞

cL(r, r′) = 〈ĉ(r)ĉ(r′)〉 = c(x, x′, |y − y′|). (3.11)

For symmetry reasons, 〈F〉L has no transverse component and is directed along
the x axis perpendicular to the plates. We therefore consider the x-component of
the force per unit surface

〈 f 〉 := lim
L→∞

〈Fx〉L
L2 = lim

L→∞

1
L2

∫
L2
dy

(∫ 0

−a
dx

∫ d+b

d
dx′

∫
L2
dy′

x − x′

|r − r′|3
cL(x, y, x′, y′)

)

=

∫ 0

−a
dx

∫ d+b

d
dx′

∫
dy

x − x′[
(x − x′)2 + |y|2

]3/2 c(x, x′, |y|). (3.12)

The last line results from the y translational invariance of the integrand in the
limit L → ∞. We do not justify the existence of the limit here (which depends
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on a uniform control of cL(x, y, x′, y′) as |y − y′| → ∞), but it will be clear from
the subsequent calculations that (3.12) is a well defined quantity, at least in the
weak-coupling regime.

Formula (3.12) remains valid if one replaces c(x, x′, |y|) by the truncated charge-
charge correlation function

S (x, x′, y) = 〈ĉ(r)ĉ(r′)〉 − 〈ĉ(r)〉 〈ĉ(r′)〉 , r = (x, y), r′ = (x′, 0) (3.13)

with ĉ(r) the microscopic charge density as in (3.10). Indeed, the y-Fourier trans-
form of the Coulomb force reads∫

dy e−ik·y x − x′

[(x − x′)2 + |y|2]3/2 = 2π sign(x − x′)e−k|x−x′| (3.14)

and reduces to −2π when k = 0 and x < x′. This implies that the charge den-
sity profile 〈ĉ(r)〉 = c(x) does not contribute to the force because of the global
neutrality of both plasmas ∫ 0

−a
dx c(x) =

∫ d+b

d
dx c(x) = 0. (3.15)

To take full advantage of the translational invariance in the y direction we
represent the y-integral in (3.12) in Fourier space:

〈 f 〉 = −
1

2π

∫ 0

−a
dx

∫ d+b

d
dx′

∫
dk e−k|x−x′|S (x, x′,k), (3.16)

where k = |k| and S (x, x′,k) =
∫

dy e−ik·yS (x, x′, y). The dependence of 〈 f 〉 =
〈 f 〉 (d) on the separation d between the two slabs occurs in the integration limits
in (3.16) as well as in the charge correlation function S (x, x′,k). The d depen-
dence of the correlations between the two slabs A and B originates itself from the
Coulomb interaction term UAB occurring in the total Gibbs thermal weight. The
object of the next sections is to determine the asymptotic behaviour of 〈 f 〉 (d) as
d → ∞.

3.3 Mayer series for inhomogeneous charged fluids

We briefly summarise the methods that we use to calculate the charge-charge cor-
relation function of our system. Let us consider a general charged fluid in pres-
ence of spatial inhomogeneities caused by an external potentialΨext(γ r), e.g. wall
potentials confining the system in some region of space. Hard walls without elec-
trical properties (infinite potentials) can be implemented by simply declaring that
the density vanishes in the forbidden regions.



70 3. The Casimir force between classical plasmas

It is well-known (e.g. (Hansen & McDonald, 1986)) that the two-point Ursell
function, related to the densities ρ(i), ρ( j) and the two-particle density ρ(i, j)

h(i, j) :=
ρ(i, j)
ρ(i)ρ( j)

− 1, (3.17)

can be expanded in a formal power series of the densities by means of Mayer
graphs. The basic Mayer bonds are

f (i, j) = e−βV(i, j) − 1 (3.18)

where V(i, j) is the potential (3.5) and the weights at vertices are the densities
ρ(i). Here i is a shorthand notation for the point (γi ri) in configuration space,
and integration on configurations

∑
γi

∫
dri includes the summation on particle

species. Diagrams have two root points i and j and m internal points which have
to be integrated over. Each pair of points is linked by at most one f -bond and
there are no articulation points.3 Because of the long-range of Coulomb interac-
tion, the integrals occurring in every diagram diverge in the thermodynamic limit.
It is therefore necessary to introduce the screened mean-field potential Φ(ri, r j)
as usual by resumming the chains built with pure Coulombic interaction bonds
−βeγieγ jv(ri − r j). Then replacing the bare Coulomb potential by the screened
potential leads to a reorganisation of the diagrammatic expansion of the Ursell
function resulting in the formula (Aqua & Cornu, 2003)

h(γ r, γ′ r′) =
∑
Π

1
S Π

∑
γ1,...,γm

∫
dr1 · · · drm ρ(γ1 r1) · · · ρ(γm rm)

∏
{i, j}∈Π

F (i, j) (3.19)

The first sum runs over all unlabelled topologically different connected diagrams
Π (called prototype graphs) with two root points (γ r) and (γ′ r′) and m integrated
internal points with density weights (m ranges from 0 to∞); S Π denotes the sym-
metry number of a diagram Π. Each pair of points is linked by at most one bond
F ∈ {F, FR} and there are no articulation points. Moreover, convolutions of F
bonds are forbidden to avoid multiple counting of original Mayer graphs. The
two possible bonds read

F(i, j) = −βeγieγ jΦ(ri, r j) (3.20)

FR(i, j) = exp[−βeγieγ jΦ(ri, r j) − βvSR(γi, γ j, |ri − r j|)] − 1 + βeγieγ jΦ(ri, r j).
(3.21)

3An articulation point, when removed, splits the diagram into two pieces, at least one of which
is disconnected from the root points.
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These bonds are obtained in terms of the Debye-Hückel screened potential Φ,
which is symmetric and defined as the solution of the integral equation

Φ(r, r′) = v(r − r′) −
1

4π

∫
dr1 κ

2(r1) v(r − r1) Φ(r1, r
′) = Φ(r′, r) (3.22)

or equivalently of the differential equation

ΔΦ(r, r′) − κ2(r)Φ(r, r′) = −4πδ(r − r′) (3.23)

supplemented by suitable boundary conditions. In (3.22) and (3.23)

κ(r) :=

⎛⎜⎜⎜⎜⎜⎜⎝4πβ∑
γ

e2
γρ(γ r)

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

(3.24)

can be interpreted as the local inverse Debye screening length in the inhomoge-
neous system. The bond FR(i, j) includes the short-range contribution and the
nonlinear Coulombic part of the original Mayer bond.

The densities ρ(γ r) entering in (3.19) and (3.24) have to be determined self-
consistently from the first equation of the Born-Green-Yvon hierarchy which links
the one-point and the two-point functions. For charged systems, it takes the form
(Martin, 1988)

∇ρ(γ r) = − βeγρ(γ r)

⎡⎢⎢⎢⎢⎢⎢⎣∇Ψ(γ r) +
∫

dr′

⎛⎜⎜⎜⎜⎜⎜⎝∑
γ′

eγ′ρ(γ′ r′)h(γ r, γ′ r′)

⎞⎟⎟⎟⎟⎟⎟⎠∇v(r − r′)

⎤⎥⎥⎥⎥⎥⎥⎦
− β

∑
γ′

∫
dr′ ρ(γ r, γ′ r′)∇vSR(γ, γ′, |r − r′|) (3.25)

where

Ψ(γ r) = Ψext(γ r) +
∫

dr′ c(r′)v(r − r′) (3.26)

is the sum of the external potential and the electrostatic potential caused by the in-
homogeneous mean charge density c(r′) in the system. Hence the Ursell function
(considered as a functional of the densities through its Mayer expansion (3.19))
together with (3.25) form a closed set of equations whose solution determines in
principle the exact densities and two-particle correlations. The differential equa-
tion (3.25) has still to be supplemented with appropriate boundary conditions. For
instance if the system is asymptotically uniform in some directions, one can fix
the corresponding asymptotic bulk densities.
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Finally, the charge-charge correlation function (3.13) is related to the Ursell
function by

S (r, r′) =
∑
γ,γ′

eγeγ′ρ(γ r)ρ(γ′ r′)h(γ r, γ′ r′) + δ(r − r′)
∑
γ

e2
γρ(γ r) (3.27)

The second term in the right hand side of (3.27) is the contribution of coincident
points.

We shall use the above formalism to calculate (3.27) as a function of the dis-
tance d for two infinitely thick plasmas (i.e a→ ∞ and b→ ∞ in (3.16)) and with
hard walls at x = 0 and x = d. In this situation we take Ψext(γ r) = 0 for x < 0 and
x > d, and impose

ρ(γ x) = 0, 0 ≤ x ≤ d,
lim

x→−∞
ρ(γ x) = ρA γ, lim

x→∞
ρ(γ x) = ρB γ (3.28)

where ρA γ and ρB γ are the bulk particle densities of plasmas A and B. The contri-
bution of coincident points does not enter into the force (3.16) since r and r′ are
always at least separated by the distance d. Therefore, (3.16) reads

〈 f 〉 = −
∫ 0

−∞
dx

∫ ∞

d
dx′

∫ ∞

0
dk ke−k|x−x′|

∑
γ,γ′

eγeγ′ρ(γ x)ρ(γ′ x′)h(γ x, γ′ x′,k) (3.29)

with h(γ x, γ′ x′,k) the y-Fourier transform of the Ursell function.

3.4 Debye-Hückel theory

In this section we show that the simplest contribution to h(γ r, γ′ r′) given by the
sole bond F, namely,

hDH(γ r, γ′ r′) = −βeγeγ′Φ(r, r′) (3.30)

already leads to the asymptotic value (3.2) of the force. For this we have to find the
screened potential by solving (3.23) (written in Fourier form) with the boundary
conditions imposed by the slab geometries[
∂2

∂x2 − k2 − κ2(x)
]
Φ(x, x′,k) = −4πδ(x − x′), κ(x) = 0, 0 < x < d, (3.31)

with Φ(x, x′,k) =
∫

dy e−ik·yΦ(x, x′, y). The boundary conditions are Φ(x, x′,k)
and ∂Φ(x, x′,k)/∂x continuous at x = 0 and x = d, and limx→±∞Φ(x, x′,k) = 0.
The density profiles entering in κ2(x) by (3.24) are not known (since they have to
be determined by self-consistency from (3.25)), but we will not need their explicit
form in the sequel.4 We only need to assume that their difference to bulk value is

4A mean-field approximation to the densities could be obtained by replacing h in (3.25) by
hDH. We are not doing so here but deal throughout with the exact densities.
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integrable:

ρ(γ x) − ρA γ = O
(

1
|x|1+ε

)
, x→ −∞,

ρ(γ x) − ρB γ = O
(

1
|x|1+ε

)
, x→ ∞, ε > 0. (3.32)

Integrating (3.31) on x leads to∫ ∞

−∞
dx
κ2(x)
4π
Φ(x, x′,k) = 1 −

k2

4π

∫
dxΦ(x, x′,k). (3.33)

In particular, for k = 0 ∫ ∞

−∞
dx
κ2(x)
4π
Φ(x, x′,k = 0) = 1 (3.34)

which is nothing else than the electroneutrality sum rule for the charge-charge
correlation (3.13), (3.27) within the Debye regime (3.30) (Martin, 1988):∫ ∞

−∞
dx

∫
dy S DH(x, x′, y) = 0 (3.35)

To solve (3.31) we first consider the simpler problem with piecewise-flat den-
sities ρA γ and ρB γ in each plasma[

∂2

∂x2 − k2 − κ̄2(x)
]
ϕ(x, x′,k) = −4πδ(x − x′) (3.36)

κ̄(x) = κA, x < 0, κ̄(x) = 0, 0 < x < d, κ̄(x) = κB, x > d

where

κA =

⎛⎜⎜⎜⎜⎜⎜⎝4πβ∑
α∈S A

e2
α ρAα

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

, κB =

⎛⎜⎜⎜⎜⎜⎜⎝4πβ∑
β∈S B

e2
β ρB β

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

(3.37)

are the bulk inverse screening lengths. The boundary conditions are the same
as for (3.31). Denoting by L the linear operator acting on Φ on the left hand
side of (3.31) and by L̄ the one acting similarly on ϕ, one has LΦ(x) − L̄ϕ(x) =
L̄(Φ − ϕ)(x) − u(x)Φ(x) = 0, where u(x) = κ2(x) − κ̄2(x) represents the deviation
of the density profiles to their bulk limiting values. Since −ϕ/4π is the Green
function of L̄, it follows that Φ(x, x′,k) and ϕ(x, x′,k) are related by the integral
equation

Φ(x, x′,k) = ϕ(x, x′,k) −
1

4π

∫
ds u(s) ϕ(x, s,k) Φ(s, x′,k) (3.38)
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which expresses Φ(x, x′,k) as a perturbation of ϕ(x, x′,k) by the inhomogeneity
u(x) of the plasmas’ density profiles.

Solving (3.36) piecewise and connecting the solutions together yields5

ϕ(x, x′,k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕAA(x, x′,k), x, x′ < 0,
ϕAB(x, x′ − d,k), x < 0 < d < x′,
ϕBB(x − d, x′ − d,k), d < x, x′,

(3.39)

with

ϕAA(x, x′,k) = 2π
e−kA |x−x′|

kA
+ 2π

e−kA |x+x′|

kA

(kA−k)(kB+k)ekd−(kA+k)(kB−k)e−kd

(kA+k)(kB+k)ekd−(kA−k)(kB−k)e−kd , (3.40)

ϕAB(x, x′,k) =
8πke−kA |x|e−kB|x′|

(kA + k)(kB + k)ekd − (kA − k)(kB − k)e−kd , (3.41)

kA =

√
k2 + κ2A, kB =

√
k2 + κ2B. (3.42)

The function ϕBB(x, x′,k) is obtained by interchanging the indices A and B in
(3.40). Notice that ϕ(x, x′,k) = ϕ(x′, x,k) and is invariant under the symmetry
x↔ d − x, x′ ↔ d − x′, A↔ B.

We discuss a few properties of this solution. The first term in the right hand
side of (3.40) corresponds to the bulk Debye-Hückel potential whereas the sec-
ond term is the modification due to the finite boundaries of both plasmas A and
B. As d → ∞, ϕAA(x, x′,k) reduces to the well-known Debye-Hückel potential
ϕ0

A(x, x′,k) of a single semi-infinite plasma in the region x < 0 (see Form. (24) in
(Guernsey, 1970), and (Jancovici, 1982))

lim
d→∞
ϕAA(x, x′,k) = 2π

e−kA |x−x′|

kA
+ 2π

kA − k
kA + k

e−kA |x+x′|

kA
= ϕ0

A(x, x′,k) (3.43)

uniformly with respect to k. One observes that ϕ(x, x′,k) is an even, infinitely
differentiable function of |k|, implying that ϕ(x, x′, y) decays along walls direc-
tions faster than any inverse power of y. This is to be contrasted with the small k

behaviour of the function (3.43) which has a non analytic |k| term leading to the
algebraic decay y−3 along the wall (Jancovici, 1982); see also (Martin, 1988, Sec.
III.C.2).

5The functions ϕAB, ϕBB (depending on d) refer to the system of the two plasmas under mutual
influence with the x-location of particles in plasma B measured by their distance from the boundary
at d (i.e., from 0 to +∞). In the sequel, the quantities ϕ0

A, ϕ0
B (independent of d) refer similarly to

the single semi-infinite plasma A and B. [See also Figure 2.4 and the notations of Section 2.5.1.]
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The function ϕAB(x, x′,k) (3.41) describes the correlation between the two
plasmas. In terms of the scaled dimensionless variable q = k d, it has the sim-
ple factorized asymptotic behaviour

ϕAB(x, x′, q

d ) ∼
1
d

4πq
κAκB sinh q

e−κA |x| e−κB|x
′|

=
1
d

q
4π sinh q

ϕ0
A(x, 0, 0)ϕ0

B(0, x′, 0), d → ∞ (3.44)

Finally ϕ(x, x′,k) obeys the following bound uniformly with respect to k and
d (appendix 3.B)

0 ≤ ϕ(x, x′,k) ≤ ϕ>(x, x′) ≤
4π
κ
, κd ≥ 1 (3.45)

The function ϕ>(x, x′) is defined as in (3.39) with ϕAA, ϕAB and ϕBB replaced by

ϕ>AA(x, x′) � ϕ>BB(x, x′) �
2π
κ

(
e−κ|x−x′| + e−κ|x+x′|

)
(3.46)

ϕ>AB(x, x′) � ϕ>BA(x, x′) �
4π
κ2d

e−κ|x|e−κ|x
′|, κ := min{κA, κB} (3.47)

The Debye-Hückel potential Φ(x, x′,k) can be obtained by iterating the in-
tegral equation (3.38). Convergence can be established in the weak-coupling
regime:

Lemma (see proof in appendix 3.B)

Let

r :=
1
κ

∫ ∞

−∞
dx|u(x)| =

1
κ

∫ ∞

−∞
dx|κ2(x) − κ̄2(x)| (3.48)

Then for r < 1 (3.38) has a solution with the bound

|Φ(x, x′,k)| ≤
1

1 − r
ϕ>(x, x′). (3.49)

As in (3.39) we distinguish various contributions according to the location of
the arguments x, x′ of Φ(x, x′,k) by setting (see footnote 5)

Φ(x, x′,k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ΦAA(x, x′,k) , x, x′ < 0,
ΦAB(x, x′ − d,k) , x < 0 < d < x′,
ΦBB(x − d, x′ − d,k) , d < x, x′,

(3.50)
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ρ(γ x) =

⎧⎪⎪⎨⎪⎪⎩ρA(γ x) , x < 0,
ρB(γ, x − d) , x > d.

(3.51)

The quantities κA,B(x), uA,B(x) are defined in the same way. Then the integral
equation (3.38) splits into

ΦAA(x, x′,k) = ϕAA(x, x′,k) −
1

4π

∫ 0

−∞
ds uA(s)ϕAA(x, s,k)ΦAA(s, x′,k)

−
1

4π

∫ ∞

0
ds uB(s)ϕAB(x, s,k)ΦBA(s, x′,k). (3.52)

ΦAB(x, x′,k) = ϕAB(x, x′,k) −
1

4π

∫ 0

−∞
ds uA(s)ϕAA(x, s,k)ΦAB(s, x′,k)

−
1

4π

∫ ∞

0
ds uB(s)ϕAB(x, s,k)ΦBB(s, x′,k). (3.53)

The density profiles depend on d because of the mutual Coulomb interac-
tions between the two plasmas. We shall examine the asymptotic behaviour of
Φ(x, x′,k) as d → ∞ under the assumption that these density profiles are uni-
formly bounded with respect to d and tend to those of single semi-infinite plasmas,
i.e.,

lim
d→∞
ρA(γ x) = ρ0

A(γ x), x < 0, lim
d→∞
ρB(γ x) = ρ0

B(γ x), x > 0 (3.54)

We denote by κ0A,B(x), u0
A,B(x) the analogous quantities for the single semi-infinite

plasmas. Then one concludes from (3.52) that uniformly in k

lim
d→∞
ΦAA(x, x′,k) = Φ0

A(x, x′,k), x, x′ < 0 (3.55)

where Φ0
A(x, x′,k) is the Debye-Hückel potential of a semi-infinite plasma in

the region x < 0 determined in terms of the corresponding flat profile potential
ϕ0

A(x, x′,k) (3.43) by

Φ0
A(x, x′,k) = ϕ0

A(x, x′,k) −
1

4π

∫ 0

−∞
ds u0

A(s)ϕ0
A(x, s,k)Φ0

A(s, x′,k), x, x′ < 0

(3.56)

Indeed, in view of the limits (3.43), (3.54) and using dominated convergence with
the bounds (3.45), (3.49) the integral equation (3.52) reduces to (3.56) in the limit
d→ ∞. One has likewise

lim
d→∞
ΦBB(x, x′,k) = Φ0

B(x, x′,k), x, x′ > 0 (3.57)
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where Φ0
B(x, x′,k) is the Debye-Hückel potential of a semi-infinite plasma in the

region x > 0.
We come now to the correlation ΦAB(x, x′, q

d ) which is expected to decay as
d−1 at large separation of the two plasmas. To see this it is useful to write (3.53) in
an alternative form such that ϕAB appears explicitly in each term of the equation:

ΦAB(x, x′,k) = ϕAB(x, x′,k)

−
1

4π

∫ 0

−∞
ds uA(s) Φ̃AA(x, s,k)ϕAB(s, x′,k) −

1
4π

∫ ∞

0
ds uB(s)ϕAB(x, s,k)ΦBB(s, x′,k)

+
(

1
4π

)2
∫ 0

−∞
ds1

∫ ∞

0
ds2 uA(s1)uB(s2) Φ̃AA(x, s1,k)ϕAB(s1, s2,k)ΦBB(s2, x′,k). (3.58)

Here Φ̃AA(x, x′,k) verifies the equation

Φ̃AA(x, x′,k) = ϕAA(x, x′,k) −
1

4π

∫ 0

−∞
ds uA(s)ϕAA(x, s,k) Φ̃AA(s, x′,k), (3.59)

which is the equation (3.52) with the last term omitted. Equation (3.58) is obtained
by iterating (3.53) and resumming the ϕAA chains to Φ̃AA, or by verifying that it
satisfies the basic differential equation (3.31). By the same arguments that led
to (3.55), it is clear that Φ̃AA also tends to the potential Φ0

A of the semi-infinite
plasma.

Introducing the limits (3.44), (3.54), (3.55), (3.57) in (3.58) and using again
dominated convergence provided by the bounds (3.47), (3.46), (3.49) we find that

lim
d→∞

dΦAB(x, x′, q

d ) =
q

4π sinh q

×
[
ϕ0

A(x, 0, 0) −
1

4π

∫ 0

−∞
ds u0

A(s)Φ0
A(x, s, 0)ϕ0

A(s, 0, 0)
]

×
[
ϕ0

B(0, x′, 0) −
1

4π

∫ ∞

0
ds u0

B(s)ϕ0
B(0, s, 0)Φ0

B(s, x′, 0)
]

=
q

4π sinh q
Φ0

A(x, 0, 0)Φ0
B(0, x′, 0) (3.60)

As in (3.44), the limit factorizes into the product of Debye-Hückel potentials for
single semi-infinite plasmas evaluated with one point on the boundary. The last
line of (3.60) follows from (3.56), the corresponding equation for Φ0

B(x, x′, 0), and
the fact that these functions are symmetric in x, x′.

With this result we can determine the leading term in the asymptotic behaviour
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of the force (3.16) in the Debye-Hückel regime. From (3.29) and (3.30), one has

〈 f 〉DH (d) =
1
β

∫ 0

−∞
dx

∫ ∞

d
dx′

∫ ∞

0
dk k e−k|x−x′| κ

2(x)
4π
κ2(x′)

4π
Φ(x, x′,k)

=
1
βd2

∫ 0

−∞
dx

∫ ∞

0
dx′

∫ ∞

0
dq q e−

q
d |x−x′+d| κ

2
A(x)
4π
κ2B(x′)

4π
ΦAB(x, x′, q

d ) (3.61)

To obtain the second line we have set k d = q, shifted the x′-integration by −d,
and introduced the notation (3.50),(3.51). As d → ∞, one can use (3.60) and the
bounds (3.46), (3.49) to conclude again by dominated convergence that

lim
d→∞

d3 〈 f 〉DH (d) =
1

8πβ

∫ ∞

0
dq

4q2e−q

eq − e−q

(∫ 0

−∞
dx

(κ0A)2(x)
4π

Φ0
A(x, 0, 0)

)

×
(∫ ∞

0
dx′

(κ0B)2(x′)
4π

Φ0
B(0, x′, 0)

)
=
ζ(3)
8πβ

(3.62)

Indeed, because of the charge sum rules (3.34) for the semi-infinite plasmas, both
parentheses are equal to 1, whereas the q integral yields the value ζ(3) where ζ is
the Riemann ζ-function.

3.5 Contributions of the other graphs

In this section we show that the single Debye-Hückel bond F saturates the asymp-
totic behaviour of the force, i.e., taking into account the full set of other diagrams
does not modify the result (3.62). For this we use the method of “dressing of the
root points” that has been introduced in (Cornu, 1996) (see also (Brydges & Mar-
tin, 1999, Sec. VI.A.3)), to analyse the decay of the quantum truncated charge
correlation function. Having singled out the contribution of the single resummed
bond F, all remaining diagrams constituting h(γ r, γ′ r′) can be classified into four
types, depending on whether their root points are linked to the rest of the diagram
by a single bond F or not.6 We thus write their sum in the form

hR := h − F = hcc + hcn + hnc + hnn, (3.63)

where hcc stands for the contribution of all graphs that do begin and do end with
an F bond (with anything in between), hcn for the contribution of those that do
begin but do not end with an F link, and so on. The latter quantities are obviously

6A point in a prototype diagram which is linked to the rest of the diagram by exactly one F
bond is called a Coulomb point in (Cornu, 1996; Brydges & Martin, 1999).
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related to hnn by the following integral equations (notations are as in Section 3.3)

hcn(a, b) :=
∫

d1 F(a, 1) ρ(1) hnn(1, b)

hcc(a, b) :=
∫

d1

∫
d2 F(a, 1) ρ(1) hnn(1, 2) ρ(2) F(2, b) (3.64)

and analogously for hnc. Using these representations in (3.63) together with (3.20)
and building the charge-charge correlation corresponding to hR according to (3.27)
yields

S R(x, x′,k) =
∑
γ1

∫
dx1

∑
γ2

∫
dx2

(
δ(x − x1) −

κ2(x)
4π
Φ(x, x1,k)

)

× eγ1ρ(γ1 x1) hnn(γ1 x1, γ2 x2,k) eγ2ρ(γ2 x2)
(
δ(x2 − x′) −

κ2(x′)
4π
Φ(x2, x′,k)

)
.

(3.65)

The function hnn(γ1 x1, γ2 x2,k) embodies a resummed contribution, not explicitly
known at this point, of higher-order graphs. The only assumption needed on this
function in the sequel is integrable clustering uniformly with respect to d∫ ∞

−∞
dx1

∣∣∣hnn(γ1 x1, γ2 x2,
q

d )
∣∣∣ < ∞ (3.66)∫ 0

−∞
dx1

∫ ∞

d
dx2

∣∣∣hnn(γ1 x1, γ2 x2,
q

d )
∣∣∣ < ∞ (3.67)

As a consequence of the bounds (3.45), (3.49) the condition (3.67) obviously holds
for the Debye potential Φ, and it is expected to hold for the Ursell function on the
ground that as x1 → −∞ (x2 → ∞) hnn(γ1 x1, γ2 x2,k) has a fast decay in the bulk
part of plasma A (plasma B). Note that integrating (3.65) on x (or x′) at k = 0
proves the validity of the charge sum rule for the exact charge-correlation function
(see (3.35))∫ ∞

−∞
dx

∫
dy S (x, x′, y) = 0, S (x, x′, y) = S DH(x, x′, y) + S R(x, x′, y) (3.68)

Proceeding as in (3.61) the contribution of S R(x, x′, y) to the average force can
be written in the form (permuting the x, x′ and x1, x2 integrals)

〈 f 〉R (d) = −
1
d2

∫ ∞

0
dq q

∫
dx1

∫
dx2 H1(x1,

q

d )

×
∑
γ1,γ2

eγ1eγ2ρ(γ1 x1)ρ(γ2 x2)hnn(γ1 x1, γ2 x2,
q

d , d)H2(x2,
q

d ) (3.69)
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where

H1(x1,
q

d ) =
∫ 0

−∞
dx

(
δ(x − x1) −

κ2(x)
4π
Φ(x, x1,

q

d )
)

e
q

d x

H2(x2,
q

d ) =
∫ ∞

d
dx′

(
δ(x2 − x′) −

κ2(x′)
4π
Φ(x2, x′,

q

d )
)

e−
q

d x′ (3.70)

The behaviour of 〈 f 〉R (d) as d → ∞ is determined by that of the functions H1 and
H2, because hnn(γ1 x1, γ2 x2,

q

d , d) does not vanish in the limit when the variables
x1 and x2 are both located in the same plasma, but tends to the corresponding func-
tions associated with a single semi-infinite plasma. Both H1 and H2 are O(1/d)
so that 〈 f 〉R (d) = O(1/d4) does not contribute to the asymptotic behaviour of the
force. More precisely, integrating (3.31) on x gives for x1 < 0∫ 0

−∞
dx

(
δ(x − x1) −

κ2(x)
4π
Φ(x, x1,k)

)
=

∫ ∞

d
dx
κ2(x)
4π
Φ(x, x1,k) +

k2

4π

∫
dxΦ(x, x1,k)

=

∫ ∞

0
dx
κ2B(x)

4π
ΦBA(x, x1,k) +

k2

4π

∫
dxΦ(x, x1,k) (3.71)

implying with (3.46), (3.49)

H1(x1,
q

d ) = O
(
1
d

)
+ O

(
q2

d2

)
, x1 < 0 (3.72)

For x1 > d one has

H1(x1,
q

d ) = −
∫ 0

−∞
dx eqx/d κ

2(x)
4π
Φ(x, x1,

q

d ) = O
(
1
d

)
e−κB(x1−d) (3.73)

In the same way

H2(x2,
q

d ) = O
(
e−q

d

)
e−κA |x2 |, x2 < 0,

H2(x2,
q

d ) = O
(
e−q

d

)
+ O

(
q2e−q

d2

)
, x2 > d (3.74)

(the factor e−q comes from e−qx/d ≤ e−q for x ≥ d in (3.70)). Inserting these
estimates in the four integration domains determined in (3.69) by x1, x2 < 0,
x1, x2 > d together with the integrability assumptions (3.66), (3.67) on hnn leads
to the result

lim
d→∞

d3 〈 f 〉 (d) = lim
d→∞

d3 〈 f 〉DH (d) + lim
d→∞

d3 〈 f 〉R (d) =
ζ(3)
8πβ

(3.75)
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To conclude this section we present an alternative derivation of the result
(3.75) by selecting the class of diagrams that give the dominant contribution to
the Ursell function as d → ∞. For this we decompose the bond F(γ x, γ′ x′,k) (in
Fourier representation) into the sum of four terms according to the location of the
arguments x, x′

F = FAA + FAB + FBA + FBB

FAA(γ x, γ′ x′,k) =

⎧⎪⎪⎨⎪⎪⎩F(γ x, γ′ x′,k) , x, x′ < 0
0 , otherwise

FAB(γ x, γ′ x′,k) =

⎧⎪⎪⎨⎪⎪⎩F(γ x, γ′, x′ + d,k) , x < 0, x′ > 0
0 , otherwise

(3.76)

with FBA and FBB defined likewise and the similar decomposition for FR (x-
integrals in plasma B from now on run in the interval [0,∞), see footnote 5).
The set of prototype graphs is then expanded in a larger set of graphs defined in
terms of these bonds. It follows from (3.55) that FAA and FR

AA bonds have limits
F0

A and F0 R
A as d → ∞ where F0

A and F0 R
A are the bonds corresponding to the

semi-infinite plasma A alone and likewise for BB bonds.
It is shown in appendix 3.C that the dominant part of the Ursell function

hAB(γa ra, γb rb) as d → ∞ is constituted by the set of graphs that have exactly one
FAB bond. This class is obtained by linking the extremity γ1 r1 of FAB(γ1 r1, γ2 r2)
to the root point γa ra of hAB(γa ra, γb rb) in plasma ΛA by all possible subgraphs
comprising only AA bonds (otherwise one would introduce additional AB bonds),
taking into account the excluded convolution rule for F bonds. In the same way
the other extremity γ2 r2 of FAB(γ1 r1, γ2 r2) is linked to the root point γb rb in
plasma ΛB by all possible subgraphs made of BB bonds. One finds in this way

hAB(a, b,k) ∼
∫

d1
∫

d2
[
δ(a, 1) +

(
hnn

AA(a, 1,k) + hcn
AA(a, 1,k)

)
ρA(1)

]
× FAB(1, 2,k)

[
δ(2, b) +

(
hnn

BB(2, b,k) + hcn
BB(2, b,k)

)
ρB(2)

]
(3.77)

Here a = (γa xa), 1 = (α1 x1), 2 = (β2 x2), b = (γb, xb), and the integration∫
d1 =

∑
α1

∫ 0

−∞ dx1 runs on plasma A and
∫

d2 =
∑
β2

∫ ∞
0

dx2 on plasma B. We
have also used that the convolution of translation invariant functions in the y-
direction is the product of their Fourier transforms. The functions hcn

AA and hnn
AA are

defined as in (3.63) in terms of AA bonds (similarly for hcn
BB and hnn

BB in terms of
BB bonds). One can write (3.60) in the form

FAB(1, 2, q

d ) ∼ −
q

4πβd sinh q
F0

A(1, a0, 0)
eα0

F0
B(b0, 2, 0)

eβ0

, d → ∞ (3.78)
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where a0 = (α0 0) indexes a charge eα0 located at the boundary xa0 = 0 of ΛA and
b0 indexes a charge eβ0 at the boundary of ΛB. Taking also into account that the
functions hcn

AA and hnn
AA approach the corresponding values (h0

A)cn and (h0
A)nn of a sin-

gle semi-infinite plasma, one finds that the leading term ∼ 1/d of hAB(γ x, γ′ x′, q

d )
factorizes as

hAB(a, b, q

d ) ∼ −
q

4πβd sinh q
G0

A(a, a0)
eα0

G0
B(b0, b)

eβ0

, d → ∞ (3.79)

with

G0
A(a, a0) = F0

A(a, a0) +
∫

d1
[
(h0

A)nn(a, 1) + (h0
A)cn(a, 1)

]
ρ0

A(1)F0
A(1, a0)

=
(
F0

A + (h0
A)nc + (h0

A)cc
)

(a, a0) (3.80)

In G0
A all functions are evaluated for the single semi-infinite plasma A at k = 0 and

k has been omitted from the notation. The expression for G0
B is built in the same

way. By the same calculation that led to (3.62) one finds now from (3.29) that

lim
d→∞

d3 〈 f 〉 (d) =
ζ(3)
8πβ

⎛⎜⎜⎜⎜⎜⎝
∫

da eαa ρ
0
A(a) G0

A(a, a0)

eα0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
∫

db eβb ρ
0
B(b) G0

B(b0, b)

eβ0

⎞⎟⎟⎟⎟⎟⎠
(3.81)

It remains to see that both parentheses are equal to −1 because of the electroneu-
trality sum rule in semi-infinite plasmas. Indeed, using (3.63) and (3.64), one
recognizes from (3.80) that

G0
A(a, a0) = h0

A(a, a0) −
∫

d1
[
F0

A(a, 1)ρ0
A(1) + δ(a, 1)

]
(h0

A)nn(1, a0). (3.82)

The contribution to the force of the second term of (3.82) involves∫
da eαa ρ

0
a(a)

[
F0

A(a, 1)ρ0
A(1) + δ(a, 1)

]
= eα1ρ(α1 x1)

(
1 −

1
4π

∫ 0

−∞
dxa (κ0A)2(xa)Φ0

A(xa, x1,k = 0)
)
= 0 (3.83)

which vanishes because of the sum rule (3.34) in the case of a semi-infinite plasma.
The contribution of the first term of (3.82) is∫

da eαa ρ
0
A(a) h0

A(a, a0) =
∑
αa

∫ 0

−∞
dxa eαa ρ

0
A(γa xa)h0

A(αa xa, α0 0,k = 0) = −eα0

(3.84)

The left-hand side is the total charge of the screening cloud induced in the semi-
infinite plasma ΛA by the boundary charge eα0 , which equals −eα0 because of per-
fect screening (Martin, 1988). By the same considerations the second parenthesis
in (3.81) also equals −1, hence the final result (3.75).



3.6. Plasma in front of a macroscopic dielectric medium 83

3.6 Plasma in front of a macroscopic dielectric me-

dium

In this section we investigate the situation where plasma B is replaced by a semi-
infinite macroscopic medium of homogeneous dielectric constant ε. The elec-
trostatic potential V(r, r′) at r created by a unit charge at r′ ∈ ΛA is the Green
function of the Poisson equation with the conditions that the normal component
of D(x) = ε(x)E(x), (ε(x) = ε, x ≥ d, ε(x) = 1, x < d) and the longitudinal
component of E(x) are continuous at the interface (Jackson, 1998; Schwinger,
DeRaad, Milton, & Tsai, 1998)

V(r, r′) =

⎧⎪⎪⎨⎪⎪⎩1/|r − r′| + Δ/|r − r′∗|, x < d, Δ = (1 − ε)/(1 + ε)
Δ̃/|r − r′|, x > d, Δ̃ = 2/(1 + ε)

(3.85)

where r∗ = (2d − x, y) is the point symmetric to r with respect to the dielectric
surface. The case of an ideal grounded conducting plate (ε = ∞) is formally
recovered when Δ = −1, Δ̃ = 0. In linear electrostatics, the total energy associated
to a distribution of charges ĉ(r) external to the dielectric is

1
8π

∫
dr E(r) · D(r) =

1
2

∫
dr

∫
dr′ ĉ(r)V(r, r′)ĉ(r′). (3.86)

For a configuration of charges {eαi , ri} in ΛA, ĉ(r) =
∑

i eαiδ(r − ri), one finds with
(3.85) that the total energy can be written as

U = UA + UAB, (3.87)

UA =
∑
{i, j}

eαieα j

|ri − r j|
+ vSR(αi, α j, |ri − r j|), UAB =

Δ

2

N∑
i=1

N∑
j=1

eαieα j

|ri − r∗j |
.

where we have omitted the (infinite) self-energies of the particles and added a
short-range repulsive potential for thermodynamic stability. As in (3.6), UAB

refers to the additional energy due to the presence of the dielectric at distance
d. The total force exerted by the dielectric on the particles of A is obtained by
differentiating U with respect to d

FB→ΛA =
∂

∂d
UAB = Δ

N∑
i=1

N∑
j=1

eαieα j

xi − x∗j
|ri − r∗j |3/2

. (3.88)

It corresponds to the sum of all pairwise forces between charges in the plasma A
and their image-charges Δeα j . Proceeding as in the derivation leading from (3.7)
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to (3.16), the average force along the x direction per unit surface is given by

〈 f 〉 = lim
L→∞

〈
FB→ΛA

〉
L

L2 = Δ

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫
dy

x − x′∗

|r − r′∗|3/2
S (x, x′, y)

=
−Δ
d2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫
dq

(2π)2 2πe−
q
d |x+x′|e−2qS (x, x′,

q

d
). (3.89)

To obtain the second line we have introduced the Fourier transform (3.14), used
x′∗ = 2d − x′, and set k = q/d. S (x, x′, y) is the truncated charge-charge correla-
tion function of the plasma A defined in terms of the statistical weight exp(−βU)
associated to the energy (3.87). The asymptotic analysis of (3.89) differs from that
of the previous section on two points: here the function S provides a contribution
from coincident points to the integrals and we expect S (x, x′, q

d , d) to tend towards
a non-zero limit when d → ∞, namely

lim
d→∞

S (x, x′, q

d ) = S 0(x, x′, 0) (3.90)

with S 0(x, x′, 0) the charge correlation of the semi-infinite plasma in absence of
the dielectric. Hence, the leading behaviour of the force as d → ∞

〈 f 〉 ∼ 〈 f 〉mon. + 〈 f 〉dip. (3.91)

comes from the first two terms resulting from the expansion of exp{−q|x+ x′|/d} ∼
1 − q|x + x′|/d in (3.89). At leading order in 〈 f 〉dip. one can replace S (x, x′, q

d ) by
S 0(x, x′, 0) so that

lim
d→∞

d3 〈 f 〉dip. = −Δ
∫ ∞

0
dq q2e−2q

∫ 0

−∞
dx

∫ 0

−∞
dx′ (x + x′)S 0(x, x′, 0) =

−Δ
16πβ

. (3.92)

The first term of the x, x′ integrals vanishes because of perfect screening whereas
the second one equals 1/(4πβ) as a consequence of the dipole sum rule in a semi-
infinite plasma (Martin, 1988, Form. (3.9), Sec. C).7 Since limd→∞ d2 〈 f 〉mon. = 0
because of perfect screening, one can replace S (x, x′, q

d ) by S (x, x′, q

d )−S 0(x, x′, 0)
in the monopole contribution 〈 f 〉mon.. It is convenient to further add and subtract
S 0(x, x′, q

d ) and to note that:

lim
d→∞

d3
{
−Δ
d2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dq qe−2q

[
S 0(x, x′, q

d ) − S 0(x, x′, 0)
]}

(3.93)

= −Δ
∫ ∞

0
dq q2e−2q d

dk

∣∣∣
k=0

(∫ 0

−∞
dx

∫ 0

−∞
dx′ S 0(x, x′, k)

)
=
−Δ

16πβ
. (3.94)

7Here the sign is opposite to that in (Martin, 1988) because the plasma is located in the x < 0
half space.
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This follows from the small k = |k| expansion of the x, x′ integral that has a linear
term k

4πβ (Martin, 1988, Form. (3.24), Sec. C). Collecting (3.92) and (3.94) in
(3.91) we see that the large-d behaviour of 〈 f 〉 is determined by

〈 f 〉 =
−Δ

8πβd3 −
Δ

d2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dq qe−2q

[
S (x, x′, q

d ) − S 0(x, x′, q

d )
]
+ o(d−3).

(3.95)

One can now proceed as in Section 3.3 with Mayer bonds defined in terms of the
Green function (3.85). The Debye-Hückel equation (3.31) is supplemented with
the boundary condition limx→d− ∂Φ(x, x′,k)/∂x = ε limx→d+ ∂Φ(x, x′,k)/∂x, and
κ(x) is as before for x ≤ 0 but κ(x) = 0 for x > 0. The solution for piecewise-flat
densities is (Aqua & Cornu, 2001a, Form. (3.2)-(3.5))8

ϕ(x, x′,k) = 2π
e−kA |x−x′|

kA
+ 2π

e−kA |x+x′|

kA

(kA − k)ekd + Δ(kA + k)e−kd

(kA + k)ekd + Δ(kA − k)e−kd . (3.96)

It is convenient to single out the potential ϕ0(x, x′,k) (3.43) for the semi-infinite
plasma in the absence of the dielectric and to split

ϕ(x, x′,k) = ϕ0(x, x′,k) + ϕAB(x, x′,k), (3.97)

where, from (3.43) and (3.96),

ϕAB(x, x′,k) =
8πke−kA |x|e−kA |x′|Δe−kd

(kA + k)
[
(kA + k)ekd + (kA − k)Δe−kd] (3.98)

One observes that ϕAB(x, x′,k) has the factorization property analogous to (3.44)

lim
d→∞

dϕAB(x, x′, q

d ) = z(q)ϕ0(x, 0, 0)ϕ0(0, x′, 0), (3.99)

z(q) =
q

2π
Δe−2q

1 + Δe−2q . (3.100)

The potential Φ corresponding to the exact non-uniform profile is related to ϕ by
the integral equation (3.38). With a reasoning similar to that leading to (3.58) and
(3.59), it can also be split in two parts

Φ(x, x′,k) ≡ Φ̃(x, x′,k) + ΦAB(x, x′,k) (3.101)

Here Φ̃ verifies eq. (3.59) with ϕ0 in place of ϕAA and tends to the potential Φ0 of
the semi-infinite plasma in vacuum. ΦAB solves eq. (3.58) with u in place of uA

8Here the minimal distance d between a charge and the dielectric wall plays the role of the
hard-core diameter in (Aqua & Cornu, 2001a). Notice that we defined Δ with the opposite sign
and that our plasma fills the region x < 0.
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and uB, Φ̃ in place of Φ̃AA, and Φ in place of ΦBB. Then using (3.99) and the fact
that both Φ and Φ̃ tend to Φ0 leads to the asymptotic factorisation of ΦAB

lim
d→∞

dΦAB(x, x′, q

d ) = z(q)Φ0(x, 0, 0)Φ0(0, x′, 0). (3.102)

We are now ready to evaluate the force (3.95) as d → ∞ in the Debye-Hückel
approximation. From (3.27), (3.24) and (3.30) one has

S DH(x, x′, q

d ) = −
1
β

κ2(x)
4π
κ2(x′)

4π
Φ(x, x′, q

d ) + δ(x − x′)
κ2(x)
4πβ

(3.103)

and the analogous relation for S 0 DH(x, x′, q

d ); some care has to be exercised here
since coincident points do contribute when both x, x′ are in the same integration
range. We subtract and add Φ̃(x, x′, q

d ) to Φ(x, x′, q

d ) in (3.103). This gives two
contributions to the force (3.95). The first one is

−Δ
8πβd3 +

Δ

βd2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dq q e−2q κ

2(x)
4π
κ2(x′)

4π

[
Φ(x, x′, q

d ) − Φ̃(x, x′, q

d )
]

=
−Δ

8πβd3 +
Δ

βd2

∫ 0

−∞
dx

∫ 0

−∞
dx′

∫ ∞

0
dq q e−2q κ

2(x)
4π
κ2(x′)

4π
ΦAB(x, x′, q

d ). (3.104)

The second one involves the quantity

1
4πβ

[
κ2(x) − (κ0)2(x)

]
+
−1
β

∫ 0

−∞
dx′

[
κ2(x)
4π
κ2(x′)

4π
Φ̃(x, x′, q

d ) −
(κ0)2(x)

4π
(κ0)2(x′)

4π
Φ0(x, x′, q

d )
]

=
q2

4πβd2

∫
dx′

[
Φ̃(x, x′, q

d ) − Φ0(x, x′, q

d )
]
= O

(
1
d2

)
. (3.105)

This equality follows from the relation (3.33) for Φ̃ (relative to κ) and for Φ0

(relative to κ0) since both potentials satisfy the basic differential equation (3.31).
Thus the contribution of (3.105) to the force is O

(
1
d4

)
. With the factorisation

(3.102) and using the sum rule (3.34) for Φ0, one finds from (3.104) and (3.100)
the final result

lim
d→∞

d3 〈 f 〉 =
−Δ
8πβ
+
Δ

β

∫ ∞

0
dq q e−2q z(q) =

1
8πβ

∞∑
n=1

(−Δ)n

n3 . (3.106)

It can be shown along the lines presented in Section 3.5 that the non mean-field
part of the charge correlation function does not contribute to this asymptotic result.
According to (3.101) one splits the bonds F = F̃ + FAB and FR = F̃R + FR

AB with
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FR
AB ≡ exp(FAB−βvS R)−1−FAB. The bonds F̃ and F̃R tend to the bonds F0 and F0 R

pertaining to the semi-infinite plasma without dielectric, whereas FAB vanishes in
the limit. At large separation, FR

AB ∼ (FAB)2 vanishes more rapidly than FAB (see
appendix 3.A). As in the analysis leading to (3.79), the leading behaviour of the
Ursell function comes from graphs having bonds F̃, F̃R, a single FAB one, and
it takes the factorized form (3.79). The only difference is that both functions G0

refer to the same plasma A. Then one establishes the validity of (3.106) as in
(3.81)-(3.84).

This result coincides with that of Lifshitz. Indeed, a straightforward generali-
sation of its asymptotic force as d

β�c � 1 (Lifshitz, 1955, Form. (5.5)) to the case
of two different homogeneous dielectric media of constants ε1, ε2 yields9

f ∼
1

8πβd3

∞∑
n=1

(Δ1Δ2)n

n3 , Δi =
1 − εi
1 + εi

, i = 1, 2. (3.107)

This reduces to (3.106) once one of the slabs is a conductor, i.e Δ1 = −1. We have
therefore provided a derivation of this formula when the conductor is described as
a statistical system of fluctuating charges in thermal equilibrium. It is interesting
to note that thermal fluctuations in one of the slabs suffice to generate the correct
asymptotic value of the force.
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Appendix 3.A: Slab of finite thickness

The analysis of Sections 3.2-3.5 applies to infinitely thick slabs. It is interesting
to check that the asymptotic behaviour of the force does not depend on the slab
thickness. We consider now that the slab ΛA has finite thickness a < ∞, while, for
simplicity, we keep the slabΛB infinitely thick. The setting of Sections 3.2 and 3.3
remains the same with the x−integration on ΛA limited to the interval −a ≤ x ≤ 0.
We then follow the same route as in Section 3.4 and 3.5 by first considering the
equation (3.36) for the piecewise-flat profile

κ̄(x) = 0, x < −a, κ̄(x) =
1
a

∫ 0

−a
dx κ(x) ≡ κA, −a < x < 0

κ̄(x) = 0, 0 < x < d, κ̄(x) = κB, x > d (3A.1)

9One generalises Formulae (5.2), (5.3) and finally (5.5) of (Lifshitz, 1955) starting from (2.4)
by keeping ε1 and ε2 different.
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It is convenient to choose κ̄(x) equal to the average of κ(x) in ΛA, since we expect
the latter to be close to its mean value at weak-coupling.

Solving equation (3.36) with x′ fixed, continuity conditions of x �→ ϕ(x, x′,k)
and of x �→ ∂xϕ(x, x′,k) at x = −a, x = 0, x = d as well with limx→±∞ ϕ(x, x′,k) =
0 yields

ϕ(x, x′,k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕAA(x, x′,k), −a < x, x′ < 0
ϕAB(x, x′ − d,k), −a < x < 0 < d < x′

ϕBB(x − d, x′ − d,k), d < x, x′
(3A.2)

where

ϕAA(x, x′,k) = 2π
kA

(kA+k)ekAa
(
e−kA |x′−x|σ1+e−kA |x′+x|σ2

)
+(kA−k)e−kAa

(
ekA |x′−x|σ2+ekA |x′+x|σ1

)
(kA+k)ekAaσ1−(kA−k)e−kAaσ2

(3A.3)

ϕAB(x, x′,k) =
8πk

[
(kA + k)ekAaekA x + (kA − k)e−kAae−kA x

]
e−kBx′

(kA + k)ekAaσ1 − (kA − k)e−kAaσ2
(3A.4)

ϕBB(x, x′,k) =
2π
kB

(
e−kB|x′−x| + e−kB|x′+x| (kA+k)ekAaσ3−(kA−k)e−kAaσ4

(kA+k)ekAaσ1−(kA−k)e−kAaσ2

)
(3A.5)

and

σ1 = (kA+k)(kB+k)ekd−(kA−k)(kB−k)e−kd σ2 = (kA−k)(kB+k)ekd−(kA+k)(kB−k)e−kd (3A.6)
σ3 = (kA+k)(kB−k)ekd−(kA−k)(kB+k)e−kd σ4 = (kA−k)(kB−k)ekd−(kA+k)(kB+k)e−kd

kA =
√

k2 + κA2 kB =
√

k2 + κB2.

One deduces also from the differential equations that for any a > 0 both ϕ and Φ
verify the charge sum rule (3.34). As a → ∞, formulae reduce to those obtained
in Section 3.4 for two semi-infinite plasmas.

The main observation to be made on this explicit result is that it obeys exactly
the same factorisation property in terms of the scaled variable q = kd as (3.44)
with the the same factors (here ϕ0

A(x, 0, 0) corresponds to the single plasma A with
finite thickness). The rest of the analysis is the same as in section 3.4, with the
difference that the above solution verifies a−dependent bounds in place of (3.45)-
(3.47), namely (appendix 3.B)10

|ϕ(x, x′,k)| ≤ ϕ>(x, x′) ≤
4π
κ

coth κa, κd ≥ 1, (3A.7)

10See also the note added on p. 106
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where ϕ>(x, x′) is defined piecewise from ϕ>AA, ϕ>AB, etc. as in (3A.2) with

ϕ>AA(x, x′) =
2π
κ

cosh κ(a − |x′ − x|) + cosh κ(a − |x′ + x|)
sinh κa

(3A.8)

ϕ>AB(x, x′) =
4π
κ2d

cosh κ(a − |x|)
sinh κa

e−κx
′

(3A.9)

ϕ>BB(x, x′) =
2π
κ

(
e−κ|x

′−x| + e−κ|x
′+x|

)
, κ := min{κA, κB} (3A.10)

The potential Φ with structured profiles is related to ϕ by the integral equation
(3.38) and the estimate (3.49) of the lemma becomes

|Φ(x, x′,k)| ≤
1

1 − r(a)
ϕ>(x, x′), r(a) := r coth κa (3A.11)

where r is defined by (3.48). To have r(a) < 1 one needs r sufficiently small
(weak-coupling, see appendix 3.B) and κa not too small, i.e., the slab width is
larger than the typical screening length in the plasma.11 Then the steps leading
to (3.62) are the same as in Section 3.4 and the considerations of Section 3.5
apply as well. The reason for the asymptotic force being independent of the slab
thickness is clearly displayed in expressions (3.62) and (3.81): it only depends on
the screening cloud associated to charges located at the inner boundaries of the
slabs, and thus is insensitive to charge fluctuations elsewhere in the slabs.

Appendix 3.B: Bounds for the Debye-Hückel poten-

tial

In this appendix we present some details of the calculations leading to bounds
used throughout the paper for the Debye-Hückel potentials ϕ and Φ and discuss
the validity of (3.49) in the weak-coupling regime.

At first, we show the bound (3A.7), which is a generalisation of (3.45) to
the case where plasma A is of finite thickness a. Result (3.45) is recovered by
taking a → ∞. From (3A.6), one has σ1 ≥ σ2; σ1 ≥ κAκB(ekd − e−kd), and
σ2 + σ4 ≤ σ1 + σ3; σ3 − σ1 ≤ σ4 − σ2 < 0. This implies

−1 ≤ (kA+k)ekAaσ3−(kA−k)e−kAaσ4
(kA+k)ekAaσ1−(kA−k)e−kAaσ2

≤ 1,

which yields the bound (3A.10) for ϕBB:

|ϕBB| ≤ 2π
kB

(
e−kB|x′−x| + e−kB|x′+x|

)
≤ ϕ>BB(x, x′).

11Notice that the above bounds cannot be uniform in a: ϕ0
A(x, x′, 0) diverges as a→ 0 so that its

integral over [−a, 0] leads to the constant value 4π
κA

requested by the charge sum rule.
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To obtain the bound (3A.9) for ϕAB, we then note that

σ1 − kA−k
kA+k e−2kAaσ2 ≥

(
1 − e−2kAa

)
σ1. (3B.1)

Thus, k
σ1−

kA−k
kA+k e−2kAaσ2

≤ 1
1−e−2kAa

1
κAκBd

kd
ekd−e−kd ≤ 1

1−e−2kAa
1
κ2d

1
2 , so that

0 ≤ ϕAB(x, x′,k) ≤ 4π
κ2d

ekA(a−|x|) + e−kA(a−|x|)

ekAa − e−kAa e−kBx′ ≤ ϕ>AB(x, x′).

Last inequality uses

ekx + e−kx

ekX − e−kX ≤
eκx + e−κx

eκX − e−κX
, 0 < x ≤ X, k ≥ κ > 0. (3B.2)

Finally, (3B.1), the fact that |σ2/σ1| ≤ 1 and (3B.2) show the bound (3A.8)

|ϕAA(x, x′,k)| ≤ 2π
κA

σ1e−kA |x′−x| + |σ2|e−kA |x′+x| + e−2kAa
(
|σ2|ekA |x′−x| + σ1ekA |x′+x|

)
(
1 − e−2kAa)σ1

≤ ϕ>AA(x, x′).

Proof of the lemma

To proof the bound (3.49) of Φ(x, x′,k), we proceed as follows. By (3.38) we can
develop Φ(x, x′,k) as a perturbation series with respect to ϕ(x, x′,k), whose nth

term reads(
−1
4π

)n ∫
ds1 · · · dsn u(s1) · · · u(sn)ϕ(x, s1,k)ϕ(s1, s2,k) · · ·ϕ(sn, x′,k). (3B.3)

This term is bounded by rnϕ>(x, x′), where r is given by (3.48). Indeed, according
to (3.45), ϕ(x, x′,k) is bounded by ϕ>(x, x′), which itself satisfies

ϕ>(x, s)ϕ>(s, x′) ≤
4π
κ
ϕ>(x, x′), ∀s, x, x′. (3B.4)

Consequently, if r < 1, the series is absolutely convergent and the lemma
holds. Inequality (3B.4) is proven using (3.46), (3.47) and verifying it for each
case. As an example,

ϕ>AA(x, s)ϕ>AB(s, x′) =
2π
κ

4π
κ2d

e−κ|x
′|
(
e−κ(|x−s|+|s|) + e−κ(|x+s|+|s|)

)
(3B.5)

≤
4π
κ
ϕ>AB(x, x′), (3B.6)

because |x±s|+|s| ≥ |x|. Some of the majorations leading to (3B.4) assume κd ≥ 1.
If plasma A is finitely thick, (3B.4) generalizes to

ϕ>(x, s)ϕ>(s, x′) ≤
4π
κ

coth(κa) ϕ>(x, x′), ∀x, x′, s (3B.7)

and we obtain the bound (3A.11) for Φ.
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Profiles in weakly-coupled plasmas

The parameter r occurring in the bound (3.49) can be chosen small enough in the
weak-coupling regime, defined by Γ = 1

2βe
2κ � 1 (e is a typical charge of the

system). Indeed, to estimate r, the deviations of the density profiles to their bulk
values need to be known. In the simplest case of a semi-infinite charge-symmetric
plasma12 in the weak-coupling regime, Jancovici (Jancovici, 1982) finds

ρA(γ x) − ρA γ

ρA γ
�
βe2
γ

2
κAχ(κAx), Γ � 1,

where χ is integrable. Integrating over x < 0 and forming r according to (3.48)
shows that r is proportional to Γ. This also holds if the semi-infinite plasma is not
charge-symmetric (Aqua & Cornu, 2001a, Sec. 5). For our two-plasmas system,
r will be less than 1 provided Γ is small and d is large.

Appendix 3.C: Decay of Mayer graphs at large slab

separation

We consider prototype graphs constituted of bonds (3.76) labelled by the indices
AA, AB, BA, BB according to the respective location of the variables x, x′ in slab
A or in slab B. In view of (3.29) and after the changes kd = q, x′ → x′ − d, the
contribution to the force of a graph ΠAB with first root point in ΛA and second root
point in ΛB is

〈 f 〉ΠAB = −
1
d2

∫ 0

−∞
dx

∫ ∞

0
dx′

∫ ∞

0
dq qe−

q
d |x−x′|e−q

∑
γ,γ′

eγeγ′ρA(γ x)ρB(γ′ x′)ΠAB(γ x, γ′ x′, q

d ).

(3C.1)

A graph ΠAB having L bonds of FAB or FBA type, written in Fourier space with
respect to the y-variables, is of the general form

ΠAB(γ x, γ′ x′,k) =
1

S πAB

∫
d1 ρ(1) · · ·

∫
dm ρ(m)

∫ L∏
j=1

d��� j

(2π)2F[AB](��� j)

×
∫ ∏

a

dka

(2π)2FAA(ka)
∫ ∏

b

dkb

(2π)2FBB(kb)
m∏

n=0

(2π)2δ[k, {��� j}n, {ka}n, {kb}n].

(3C.2)

12A charge-symmetric plasma has two species with opposite charges and same bulk densities.
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Here m is the number of internal points, i = (γi, xi) and
∫

di stands for summation
over particle species and integration over xi. F (k) stands either for F(k) or FR(k)
and we have omitted the species and x, x′ dependencies from the notation.13 The
product of m + 1 δ-functions expresses the conservation of wave numbers at the
m internal points plus a relation that fixes the sum of ingoing (or outgoing) wave
numbers to k, as a result of y−translation invariance. These constitute m+1 linear
equations between wave numbers from the sets {��� j}, {ka}, {kb}, which imply C in-
dependent relations involving only ��� variables. Depending on the topology of the
graph, 1 ≤ C ≤ L. Consider, e.g., the graph constituted by a single chain of bonds
FAB(���1)FR

BB(kb)FBA(���2)FR
AA(ka)FBA(���3) with L = 3 .14 The conservation laws k =

���1 = ka = ���2 = kb = ���3 imply the independent relations k = ���1, ���1 = ���2, ���2 = ���3
between the ��� variables, thus C = 3. Consider now the graph constituted of two
parallel chains FR

AA(ka1)FAB(���1)FR
BB(kb1) and FR

AA(ka2)FAB(���2)FR
BB(kb2) with L = 2.

The conservation laws are k = ka1 +ka2, ka1 = ���1 = kb1, ka2 = ���2 = kb2 implying
the single relation k = ���1 + ���2, thus C = 1.

Then we perform the integrations in (3C.2) in the following order. We first
carry C integrals on the δ functions corresponding to the above relations between
��� variables: this expresses the ��� j variables j = 1, . . . , L in the integrand as linear
combinations of the remaining L−C ones, say ���C+1, . . . , ���L. We evaluate now ΠAB

at k = q/d and change the variables ��� j = q j/d, j = C + 1, . . . , L: the Jacobian
provides a factor d−2(L−C). As d → ∞ the ka, kb and q integrals factorize. Indeed
in FAA or FBB bonds the q dependences occur in the form q/d → 0, d → ∞
whereas for FAB or FBA bonds we use the asymptotic form (3.60). This yields a
factor d−n[AB] if the number of F[AB] bonds is n[AB] and d−4nR[AB] if the number of
FR

[AB] bonds is nR[AB] (for the latter, see at the end of this appendix). Then the ka

and kb integrals refer to products of FAA and FBB as in single semi-infinite plasmas
and the q integrals are carried on product of functions q/ sinh q. For the above
examples the q integrals are

∫
dq(q/ sinh q)3 and

∫
dq1

∫
dq2(q1/ sinh q1)(|q1 −

q2|/ sinh |q1 − q2|). As a final result a graph decays as

d−2(L−C)d−n[AB]d−4nR[AB], d → ∞ (3C.3)

times a factor of order one resulting of the above integrals. It is clear that the
minimal decay d−1 is obtained when there is only one FAB bond.

It remains to examine the decay of a FR
[AB] bond, which reads in Fourier form,

according to (3.21)

FR
AB(k) =

∫
dy e−ik·y [

exp(−βe1e2ΦAB(y)) − 1 + βe1e2ΦAB(y)
]
. (3C.4)

13In (3C.2), F[AB] designates either a FAB or a FBA bond. Notice that FBA(i, j,k) = FAB( j, i,k).
14The FR bonds are needed because of the excluded convolution rule between F bonds.
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The x variables are omitted and |x1− x2| is large enough so that the short range part
of the potential does not contribute. In view of (3.60), ΦAB(y) has the asymptotic
form

ΦAB(y) =
1
d2

∫
dq

(2π)2 exp
(
iq

d · y
)
ΦAB

(
q

d

)
∼

1
d3 f

(
y

d

)
with f (y) = Φ0

AΦ
0
B

∫
dq

(2π)2 eiq·y q
4π sinh q

. (3C.5)

Hence substituting (3C.5) in (3C.4) and expanding for large d after the change of
variable u = y/d gives

FR
AB

(
q

d

)
∼ d2

∫
du e−iq·u

[
exp

(
−
β

d3 f (u)
)
− 1 +

β

d3 f (u)
]

∼
1
d4

∫
du e−iq·u( f (u))2 = O

(
1
d4

)
. (3C.6)
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3.7 Decay analysis of Mayer graphs

The asymptotic value of the Casimir force has been retrieved in the last part of the
precedent article by analysing the Mayer graph series of hAB(1, 2, q

d ) in the large-
distance limit. As has been expected in Section 2.5, graphs with the least number
of traversing bonds decay the slowest, and give to hAB its dominant contribution.
The consideration of more complicated graphs than the simple ones containing
a unique FAB bond is not really needed. Nevertheless, as soon as one wants to
investigate subleading orders of the force, a more refined analysis of the Mayer
graphs is mandatory.

3.7.1 Decay of Mayer graphs at large separation

We come back shortly to the development sketched in Appendix 3.C (p. 91) to
retrieve the minimal decay of an arbitrary Mayer graph of hAB. We will illustrate
it on a specific example in the next section (3.7.2) and then give a simple way of
determining immediately these minimal decays graphically (Section 3.7.3).

We have seen in Appendix 3.C, Formula (3C.3), that the decay of a graph with
L(FAB) bonds FAB and L(FR

AB) bonds FR
AB is at least

d−2Id−L(FAB)d−4L(FR
AB), (3.108)

where

I = L −C (3.109)

depends on the number C of independent constraints there are, that involve only
the L Fourier vectors �1, ..., �L of all crossing bonds.

The graph in Fourier representation:

Since we are interested in hAB in Fourier representation, every bond is written in
the partial Fourier space k, yielding (3C.2). Indeed, by the y-translation invariance
of the space, the meeting of bonds at an integrated point implies the presence of a
Dirac factor, which depends on the bonds’ Fourier variable. When only two bonds
meet at a point (like in a chain), one simply has δ(k1 − k2). If one of the Fourier
integrals, say, on k2, would be readily effectuated, both bonds would be evaluated
at the same Fourier vector k1. This is the convolution theorem. When more than
two bonds meet at a point, the Dirac factor involves other Fourier variables but
only one of them could be readily integrated.

Because the Fourier variables are only added and subtracted in the argument
of a Dirac factor, one can state the nonvanishing contribution of the latter as a
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conservation law: at the internal point of the graph to which the Dirac factor is
associated, the sum of the ingoing Fourier quantities (say, with plus sign) equals
the sum of the outgoing ones (with minus sign). This is pretty much the same
as the conservation of impulsion in Feynman diagrams, originating from the total
space translation invariance.

Strategy/Problem:

The aim pursued in the development of Appendix 3.C is — from the Fourier rep-
resentation (3C.2) of the graph under investigation — to evaluate all traversing
bonds FAB and FR

AB at a Fourier vector of the type Q/d, so that they are expand-
able in inverse powers of d, like the Coulomb force in (2.50). (Otherwise, they are
nonanalytic in 1/d and entangle the integrated Fourier variables and d, as seen on
the explicit expression of ϕAB(x, x′,k) (3.41)) This aim can be satisfied in essen-
tially two ways. Let us illustrate it in two simple cases:

1. If traversing bonds are convoluted to each other in a simple chain, like in
(FAB ∗ FR

BA ∗ FAB)(q

d ), nothing needs to be done, for, by the convolution
theorem, this chain equals FAB(q

d )FR
BA(q

d )FAB(q

d ).

2. When there are several parallel chains bent across the root points, only one
of them will transmit q/d to the other side. For the other chains, expressed in
Fourier representation, the changes of variables �l = ql/d can be performed,
each of which providing a supplementary factor d−2.

The problem is that simply performing �l = ql/d on all L crossing bonds15 does
not result in an overall factor d−2L, as illustrates the example of the chain in point 1
above: a factor δ(�l − q

d ) would become d−2δ(ql
d −

q

d ) = δ(ql − q).
One thus needs to know how many independent variables I there are among

the L crossing ones: the other crossing variables can be expressed in terms of
these I ones, for which performing �l = ql/d then achieves the aim.

Since there are L traversing bonds, there has to be a number C of constraints
(represented by Dirac factors) involving only them, such that I = L − C. This is
how this number has been introduced in Appendix 3.C. Before turning to a geo-
metrical determination of C, let us present these concepts on an explicit example.

3.7.2 Illustration on a specific example

We illustrate the precedent discussion on the graph depicted below (Figure 3.1).
It is constituted of M = 2 internal points (integrated over A), and a total of N = 5

15We do not want such a change of variable on a noncrossing bond, for it would become asymp-
totically nonintegrable on its Fourier variable.



3.7. Decay analysis of Mayer graphs 97

bonds. Among them, L = 2 are crossing bonds; they are represented by dashed
lines.

(a)
q/d
→ ◦ ��ka

���
��

��

q

d −ka
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��

��
�

•
�� ka′ ���

�
�

�
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B��
�

�

• ������
q
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Figure 3.1: Decay analysis of a Mayer graph with M = 2 internal points, N = 5
bonds, of which L = 2 are crossing ones (dashed).

Fig. 3.1(a): From the N initial Fourier variables and the M + 1 points imposing
an independent conservation law (the first root point, at which q/d is injected, and
the M internal points), there are N−M−1 = 2 independent Fourier variables, that
still need to be integrated over to constitute the value of the whole graph.

These two variables are denoted by ka and ka′ , and have been chosen among
the links in accordance with the conservation laws at the internal (black) and root
points (white). It is seen, however, that only the combination ka + ka′ travels
along the crossing bonds. Had we chosen another set of independent variables,
we would have had only one (= I) independent Fourier vector crossing from A to
B. Note that the sum of the traversing Fourier variables must give q/d.

It is not allowed to perform the changes of variable

ka = qa/d, and ka′ = qa′/d. (3.110)

If this is done, the AA bonds become independent of qa and qa′ in the limit d → ∞;
integrative factors of the type ∝ e−|qa+qa′ | are still provided by the AB bonds, but
integrating them on, say, qa over �2 wipes out their dependence upon qa′ , and the
integral on the latter variable diverges.
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Fig. 3.1(b): Here we chose the independent variables ka and �L (e.g., obtained
from the previous independent variables ka,ka′ in (a) by the simple change ka′ = �L − ka).
We further performed the change of variable �L = qL/d. Both traversing bonds
have thus arguments of the type Q/d.

Fig. 3.1(c): In taking the limit d → ∞, AA bonds become independent on
q/d and qL/d. They are, however, still dependent on ka. Integrability on this
variable is assumed to be provided by these links, as in the single plasma. As
regards the Fourier integrations, the product of AA links thus factorizes from the
rest. The integral on qL converges as well, by the integrative factors provided
by the AB bonds. Only one change of variable (�L = qL/d) has been performed
(corresponding to I = 1). In addition to the factor d−2 it provides, factors d−1 and
d−4 arise from the traversing bonds, depending on their type.

3.7.3 Determination of the factor d−2I = d−2(L−C)

We turn now to the determination of the number C, which will allow an immediate
characterization of a graph’s overall decay merely by looking at it. It is useful to
that purpose to introduce a graphical representation of the Fourier conservation
laws at the nodes of the diagram. Surrounding the immediate neighbourhood of
a node by a closed path, one needs to impose the zero balance of the ingoing (+)
and outgoing (−) Fourier vectors encountered along it:

•
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��k

��








k1






��
k2

=⇒ k − k1 − k2 = 0. (3.111)

Since the Fourier quantities are conserved at each node of the graph, the total
amount of the ingoing vectors in a whole subgraph must match the total amount of
the outgoing ones. As an example, let us consider two points in a diagram. Sum-
ming their two conservation relations yields a third one, necessarily independent
of the Fourier variable travelling between the two points:
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⎧⎪⎪⎨⎪⎪⎩k − k1 − k2 = 0

k2 − k3 − k4 − k5 = 0

(+)
=⇒ k − k1 − k3 − k4 − k5 = 0.

(3.112)
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(a)

A

A

B

(b)

A

A

B

Figure 3.2: (a) A two-point graph with three sectors linked by traversing bonds (full
lines). The three sectors are shown separately in (b). Encircling each sector by a closed
path (dashed circles) defines relations involving only traversing Fourier variables.

The third equation corresponds graphically to the larger path englobing both points.
Note that only two of these three equations (or paths) are independent. Graphi-
cally, a closed path is not independent from a second one, if it is deformable into
the latter by “adding” (merging) or “subtracting” (detaching) other closed paths.
(“Adding” the two dashed circles in (3.112) yields the larger path.)

The determination of the number C of a graph is now immediate. As said
before, it corresponds to the number of relations that can be set between the L
Fourier variables �1, ..., �L of the crossing links. One thus only needs to determine
the number of independent closed paths it is possible to draw in a way that they
encounter only crossing bonds. It is clear that each A or B sector of the graph,
i.e., each piece one receives when cutting every traversing bond, defines such a
relation (see Figure 3.2). However, if S is the number of these sectors, only S − 1
are independent from each other. Indeed, “adding” all S relations yields the trivial
equation q/d = q/d. It is graphically equivalent to encircling the whole Mayer
graph, and just asserts that the Fourier quantity entering the first root point is
released at the second one. Consequently,

C = S − 1, =⇒ I = L − S + 1.

Thus, the more the A and B sectors are interconnected, the faster the graph
decays also by a reason of topology.

In the example presented in Section 3.7.2, the number of sectors is S = 2: one
is constituted by the A root point together with the two internal points, and the
other one by the B root point alone. Since L = 2, we recover that I = 1.

Note that L ≥ S − 1 because the graphs are connected. Furthermore, S ≥ 2 by
the fact that the root points lie in different plasmas. These bounds correctly ensure
that 0 ≤ I ≤ L − 1, or 1 ≤ C ≤ L, as stated in the article. The case I = L − 1
is obtained, e.g., when there are L parallel AB paths stretched out between the
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root points. The case I = 0 is of particular interest, since it concerns the slowest
decaying diagrams. It is obtained for chains of A and B sectors, like in

... FBA • A • FAB • B •
FR

BA ... . (3.113)

We can show that if the graphs are connected and without articulation points

I = 0 ⇔ the graph is a chain of A and B
sectors like in (3.113). (3.114)

Proof: ⇒: from each sector not containing a root point, (at least) two
traversing bonds must leave — otherwise, there is an articulation point.
Thus, we attach two “half” bonds per such sector. From the two sectors A
and B having each one root point, at least one traversing bond must leave
— otherwise, there is no path between the two root points, and again an
articulation point: the root point itself. We also attach a half bond to each
of these root sectors. Having no more bonds at disposal, the only way of
assembling the sectors together to recompose whole bonds is to form a
chain graph. The direction⇐ is straightforward.

3.8 Towards subleading orders of the force

3.8.1 Leading and subleading orders of the Ursell function

We emphasize that to a graph of hAB is not associated a single power of d−1. The
decays (3.108) obtained for the graphs are only minimal. Higher-order contribu-
tions are understood.

Dominant graphs

From (3.108), the slowest possible decay of a graph is d−1. It is attained when
I = 0 and when there is only one crossing bond, a single FAB one. The dominant
component of hAB(1, 2, q

d ) is thus given by

◦
(
© + FAA•© + δ

ρA

)
• FAB •

(
© +©•FBB

+ δ
ρB

)
◦, (3.115)

where the symbol ◦©◦ [corresponding to hnn
AA or hnn

BB in (3.77)] represents the sum
of the graphs (in A or B) whose root points are not attached to the rest of the dia-
gram by a single bond of type F [see (2.83), or, (3.77)]. In fact, these graphs build
up the whole leading contribution ∝ d−1 and the whole subleading contribution
∝ d−2 of hAB, as will be clear from the discussion below.
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Minimal decay of the other graphs

An important consequence of the presence of the factor d−2I in (3.108), is that
aside from the class of graphs O(d−1) building (3.115), all other graphs are at
least

O(d−3). (3.116)

Indeed, d−2I supplements a minimal factor d−2 except when I = 0. In this latter
case, the graph is a chain of A and B sectors of the type (3.113), but it has to
count an odd number of traversing links because the two root points lie in different
plasmas. The graphs having one crossing link either build the contribution (3.115),
if the traversing link is FAB, or are O(d−4) if it is FR

AB. Having three or more
crossing links necessarily results in a graph O(d−3).

Leading and subleading orders of the Ursell function

The asymptotic value of the correlation hAB across the two plasmas is given by
taking the limit d → ∞ on (3.115). In that limit, the asymptotic factorization of
FAB can be used, and

hAB(1, 2, q

d ) d→∞∼ −
1
βd

q
4π sinh q

G0
A(1, 0, 0)

eα0

G0
B(0, 2, 0)

eβ0

, (3.117)

as already seen in (2.84) or (3.79).
Since the graphs other than (3.115) result in O(d−3) contributions to hAB(1, 2, q

d ),
the next order of the Ursell function is contained in the deviation of (3.115) from
its limiting value (3.117):

◦
(
©+ FAA•©+ δ

ρA

)
• FAB •

(
©+©•FBB

+ δ
ρB

)
◦ −

(−1)
βd

q
4π sinh q

G0
A(1, 0, 0)

eα0

G0
B(0, 2, 0)

eβ0

= O(d−2). (3.118)

Determining this deviation is still an open problem. The task is difficult, for the
sources leading to an additional factor d−1 are numerous:

• all densities ρA(i) and ρB( j) of the plasmas under mutual influence are likely
to tend at a rate ∝ d−1 towards the densities ρ0

A(i) and ρ0
B( j) of the individual

plasmas;

• all noncrossing bonds or two-point subgraphs, like GAA(q

d ) or GBB(q

d ), de-
pend upon d in two ways: explicitly in their argument, and implicitly by the
fact that they tend towards their single plasma counterparts, G0

A and G0
B;
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• the traversing bond FAB(q

d ), also tends towards its asymptotic factorization
(2.82) at a rate ∝ d−1.

The problem of characterizing the amplitudes of these O(d−1) deviations is diffi-
cult to tackle, for these quantities are interrelated: the Mayer bonds are defined
by density-weighted convolution chains of the Coulomb potential, and the den-
sity depends on the two-point correlation function by the first Born–Green–Yvon
equation.

A preliminary analysis of the difference ρA(1) − ρ0
A(1) calculated at lowest

order in the coupling parameter, following the methods of J.-N. Aqua and Cornu
(2001a, 2001b), has revealed that it indeed vanishes as O(d−1) as d → ∞.

Comment on resummed graphs in activity

An alternative way of analysing the interplasma correlations as d → ∞ would
have been to investigate the resummed Mayer series of hAB(1, 2, q

d ) in activity.
The main advantage of this point of view is that the activity weights

zA(1) = eβμγ1 e−βV
walls
A (r1,γ1), zB(2) = eβμγ2 e−βV

walls
B (r2,γ2) (3.119)

are independent of the separation d (once particles in plasma B are measured from
its inner border). The resummation procedure of these graphs makes a second type
of weight emerge, which depends on d. Namely, W(1) = eI(1) − 1, where I(1) is
the sum of Coulomb convolution chains closed in a loop. However, the integrated
points of this chain are d-independent activity weights, so that the behaviour as
d → ∞ of WA(1) and WB(2) can be investigated easily.

The main drawbacks of graphs in activity is that they can have articulation
points, and that the perfect screening sum rule involved in the Casimir force im-
plies density-weighted integrals (they express the shielding of charges). These
densities need to be reconstructed by resumming parts of the z-weighted dia-
grams.16

Activity-weighted Mayer graphs may be used as an alternative to the first
Born–Green–Yvon equation mentioned above to analyse how ρA(1) and ρB(2) de-
viate from their limits ρ0

A(1) and ρ0
B(2).

16Consistently, (3.114) no longer holds: nonchain diagrams contribute to the asymptotic corre-
lation. One indeed needs to attach articulated subgraphs at z-integrated points so as to reconstruct
the densities involved in the correlations G0

A and G0
B.
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3.8.2 On subleading contributions to the classical force

The complete form of the subdominant term ∝ d−4 of the Casimir force is naturally
as difficult to exhibit. In principle, any length λ can induce a correction of the type

1
d3

λ

d
. (3.120)

A microscopic theory like ours provides a vast number of such lengths. They can
be the thicknesses a and b, the screening length λD, the mean interparticle dis-
tance aρ, etc., but also less obvious ones like mean dipole lengths of screening
clouds (see below). Physically, the difficulty originates in the fact that subdomi-
nant orders are not necessarily universal any more. They may involve integrals of
correlation functions that do not necessarily reduce to simple values by means of
sum rules, as shows the following example.

Multipole moment contributions: a whole series of higher order contribu-
tions to the force arise from the expansion of the microscopic Coulomb force
(∂xvAB)(1, 2, q

d ) in (2.51):

(∂xvAB)(1, 2, q

d ) = 2πe−qe−
q|x1 |

d e−
q|x2 |

d = 2π e−q − 2π e−q q(|x2 |+|x1 |)
d + O(d−2). (3.121)

The first term of this expansion was used to retrieve the asymptotic Casimir force.
For the contribution of the second term, one can use again the asymptotic factor-
ized form of the Ursell function, resulting in a term

π3

480βd4

⎡⎢⎢⎢⎢⎢⎢⎣
∫ b

0
dx2 |x2|

∑
γ2

eγ2ρ
0
B(2)

G0
B(0, 2, 0)

eβ0

+

∫ 0

−a
dx1 |x1|

∑
γ1

eγ1ρ
0
A(1)

G0
A(1, 0, 0)

eα0

⎤⎥⎥⎥⎥⎥⎥⎦ .
(3.122)

The macroscopic length constituted by each integral term is associated to the total
dipole moment along x carried by the screening cloud around the fixed charge
at the boundary. In a bulk geometry, this screening cloud is symmetric and the
dipole moment vanishes in average. This result is known as the dipole sum rule
(Martin, 1988, Form. (1.22)). Obviously, it no longer can hold when the cloud
forms against a wall, so that this dipole moment is nonzero.17

17Note, however, that the integrals occurring above involve the functions G0
A or G0

B, which
consist in the Ursell functions h0

A or h0
B and a subtracted term defined in terms of the Debye–Hückel

potential, see (3.82). Still, it is unlikely that a cancellation occurs by this subtraction because the
dipole length is nonuniversal: in the simplified Debye–Hückel theory (with flat density profiles),
it coincides with the screening length.
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One can similarly exhibit higher-order terms in powers of d−1 from (3.121).
They will involve the multipole moments of the wall-constrained screening cloud
induced around the fixed charge.

The other O(d−4) contributions to the force necessitate the knowledge of the
subdominant orders of the Ursell function.

Debye–Hückel approximation: an explicit expression for the ∝ d−4 correction
to the force can be exhibited on the level of the simplified Debye–Hückel the-
ory with flat profiles (see Section 3.4): one can calculate the ∝ d−4 contribution
given by the approximate correlation −βeγ1eγ2ϕAB(x, x′,k) (3.41). Instead of im-
mediately integrating its explicit form in the force formula similarly to what do
Jancovici and Šamaj (2004, Form. (3.44)), let us take another route, more prone
to a generalisation to the full correlations. On this Debye–Hückel level, the term
(3.122) has the functions G0

A and G0
B (arising from the factorisation of the full cor-

relation) replaced by ϕ0
A and ϕ0

B (emerging from the factorization of ϕAB). In this
case, the dipole length correction term reads

π3

480βd4 (λD,A + λD,B), (3.123)

where λD,A = κ
−1
A and λD,B = κ

−1
B are the screening lengths assumed constant along

the semi-infinite plasmas. The remainder of the contribution ∝ d−4 is contained
in the deviation of ϕAB from its factorized limit (3.44), say ϕfact.

AB . This deviation is
found to be

(ϕAB − ϕfact.
AB )(x1, x2,

q

d ) =ϕfact.
AB

[
ϕAB

ϕfact.
AB

− 1
]

d→∞∼ ϕfact.
AB (x1, x2,

q

d )
(−q)

d
eq + e−q

eq − e−q (λD,A + λD,B). (3.124)

This Formula can be proven by using the explicit expressions for ϕ found in the
article. Better, it can also be retrieved by keeping all next subdominant terms in the
summation of the dominant Coulomb convolution chains building ϕAB, presented
in Section 2.5.3 for ΦAB [Equations (2.66)–(2.81)]. In this case, one arrives first at

ϕAB(x1, x2,
q

d ) =
qe−q

2πd(1 − e−2q)
ϕ0

A(x1, 0,
q

d )ϕ0
B(0, x2,

q

d )

−
q2e−qe−2q

(2πd)2(1 − e−2q)2

[
ϕ0

A(0, 0, 0) + ϕ0
B(0, 0, 0)

]
ϕ0

A(x1, 0, 0)ϕ0
B(0, x2, 0)

+ O(d−3). (3.125)
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The first term, when evaluated at q/d = 0 corresponds to ϕfact.. For a single semi-
infinite plasma, one can show (using the explicit expression of ϕ0

A) that

∂

∂k

∣∣∣∣
k=0
ϕ0

A(x, x′, k) =
−1
4π
ϕ0

A(x, 0, 0)ϕ0
A(0, x′, 0). (3.126)

This result is in accordance with the sum rule (3.24) of (Martin, 1988) on this
simplified Debye–Hückel level. Using it to expand the product ϕ0

A(q/d)ϕ0
B(q/d)

at first order in q/d, one reconstructs in (3.125) a term similar to the second term.
Thus,

ϕAB(x1, x2,
q

d ) =ϕfact.
AB (x1, x2,q, d)

−
(

q2e−q

8π2d2(1 − e−2q)
+

q2e−qe−2q

(2πd)2(1 − e−2q)2

)
×

[
ϕ0

A(0, 0, 0) + ϕ0
B(0, 0, 0)

]
ϕ0

A(x1, 0, 0)ϕ0
B(0, x2, 0) + O(d−3).

(3.127)

This expression is equivalent to (3.124) once it has been recognised that

1
4π
ϕ0

A(0, 0, 0) =
∫ 0

−∞
dx |x|

(κ0A)2(x)
4π

ϕ0
A(x, 0, 0) = λD,A (3.128)

is the mean dipole length of the screening cloud of a charge at the inner surface
of the plasma. (The same holds for ϕ0

B(0, 0, 0).) The relation (3.128) is easily
obtained by suitably integrating on (−∞, 0) the Poisson–Boltzmann equation for
ϕ0

A.
Inserting the asymptotic deviation (3.124) into the force formula with (3.44)

to express ϕfact.
AB results in

1
βd4 (λD,A + λD,B)

[∫
dq

(2π)2 2πe−q q
4π sinh q

q(eq + e−q)
eq − e−q

]

×
[∫ 0

−∞
dx1
κ2A
4π
ϕ0

A(x1, 0, 0)
] [∫ ∞

0
dx2
κ2B
4π
ϕ0

B(0, x2, 0)
]
. (3.129)

The q integral reduces to 1
4π

[
− π4

120 +
3ζ(3)

2

]
. The other integrals give unity by the

perfect screening sum rule. Adding this contribution to (3.123) results in the total
subdominant term.18 Consequently,

f DH,flat(d) = −
ζ(3)

8πβd3

[
1 −

3
d

(λD,A + λD,B) + O(d−2)
]
. (3.130)

18Note the exact cancellation of the dipole term (3.123). Such a cancellation is likely to still
occur when taking into account structured profiles. However, other sources of subdominant terms
will arise, also if the plasmas are of finite thickness.
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This result coincides with (Jancovici & Šamaj, 2004, Form. (3.45)) when the
plasmas A and B are taken identical so that λD,A = λD,B. We see that although
screening mechanisms have been used, a nonuniversal character remains.

Added note in Appendix 3.A

Bound of Φ independent of the thickness: as long as a � λD, the bound (3A.11)
of Φ(x, x′,k) can be rendered uniform with respect to a, involving a function
ϕ>(x, x′) showing good integrability properties in the bulk. This may be useful
to commute lima→∞ limits and spatial integrals of the Debye–Hückel potential by
dominated convergence. One can simply bound further the a-dependent function
ϕ>(x, x′, a) given in (3A.8)–(3A.10), on the basis that

cosh κ(a − |x|)
sinh κa

=
e−κ|x|

1 − e−2κa +
e−2κaeκ|x|

1 − e−2κa

a≥|x|
≤

2e−κ|x|

1 − e−2κa

κa�1
≤ Ce−κ|x|. (3.131)

This leads to

ϕ>(x, x′, a) ≤ C ϕ>(x, x′), (3.132)

where ϕ>(x, x′) = lima→∞ ϕ
>(x, x′, a) is the bound obtained for semi-infinite plas-

mas (3.46)–(3.47) and C ≥ 2/(1 − exp(−2κa)).
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Field-coupled quantum plasmas:

path integral representation
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This chapter deviates temporarily — but importantly — from the Casimir
force investigation. It constitutes a part on its own, where the formalism necessary
to the inclusion of the radiation field into the statistical mechanical description of
the charged system is developed. Indeed, we have mentioned in Chapter 2.2.1 that
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because of the Bohr–van Leeuwen theorem, matter and field decouple when they
are both treated classically. To improve the classical model of electrostatically
interacting charges and include the magnetic part of the Lorentz forces exerting
between the two slabs, it is necessary to take into account quantum mechanics.

In the article to be found hereunder [Equilibrium correlations in charged fluids
coupled to the radiation field, Phys. Rev. E, 73, 036113, (2006); see p. 115] the
path integral formulation of quantum statistical mechanics for electrostatic matter
is extended by including a thermalised radiation field interacting with the charges.
The field is kept classical, but the particles are quantum-mechanical.

Without field, this well-known formalism makes use of the Feynman–Kac path
integral to represent the integral kernel of the quantum propagator in imaginery
time (corresponding to the integrated Gibbs weight) in terms of an auxiliary statis-
tical system: that of loops (or “polymers”). They consist in classical but extended
objects of random Brownian shape. This stochastic shape represents the quantum-
mechanical fluctuations of the positions of the particles; it is scaled by the thermal
de Broglie wavelength. Such a representation has now been long studied. Presen-
tations of it can be found in (Martin, 2003; Høye & Stell, 1994). We will briefly
recall its main features below.

The inclusion of field’s degrees of freedom in the loop formalism is performed
by means of the Feynman–Kac–Itô path integral. The field intervenes in this rep-
resentation in a convenient form, that allows its exact (Gaussian) integration. The
effect of this integration is to add an effective “magnetic” pair potential between
the loops. We will also illustrate these steps below. The same kind of method has
been employed by Høye and Stell (1981); Brevik and Høye (1988) in the case of
harmonic oscillators interacting with the field by a “spin”-field coupling term. In-
tegration of the field’s degrees of freedom yielded an effective potential between
the fluctuating dipoles.

The article comprises the following points:

• The microscopic model is presented in a first stage. This model corresponds
to the one exposed in Chapter 2 (except for the geometry).

• It is then exposed how, by the use of the Feynman–Kac–Itô path integral,
one comes to integrate field’s degrees of freedom, which yields an effective
magnetic pair interaction between loops.

• The method is applied to retrieve the large-distance behaviour of the den-
sity correlations in a bulk plasma. It is shown that the algebraic decay ∼ r−6

induced by the imperfect screening of multipoles in quantum charged sys-
tems has its amplitude modified by the inclusion of the field: small con-
tributions of order O((βmc2)−2) are added. This is first illustrated between
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two quantum charges in a classical plasma, and then extended to the full
quantum-mechanical system of charges.

• The formalism proves to be well-adapted too to the investigation of trans-
verse field correlations in the charged fluids. A coupling term linear in the
field is added to the Hamiltonian. The field’s moments and correlations can
then be retrieved by functional differentiation, in particular, after its inte-
gration has led to the magnetic effective interaction. Total field correlations
are calculated. Because their long range contradicts Landau and Lifshitz’
results, it is suggested that spatial dispersion (a wave-dependent dielectric
function) should be used in their theories.

This work was mainly the subject of the master thesis of Sami el Boustani
(2005). I contributed to it more specifically in the investigation of the asymp-
totic particle correlations in the many-body system and in the investigation of the
transverse field correlations.

Erratum

A small error has been found in the article. It concerns the order of decay when
� → 0 of a constant involved in the asymptotic field correlations. The footnotes
12 and 13 have been added to rectify this decay order from O(�4) to O(�2).

The loop formalism without field

We recall the basic formulae at which one arrives when the Feynman–Kac path
integral representation of the Gibbs weight is used (i.e., when no radiation field is
coupled to matter). We assume in this paragraph that the quantum charges interact
via the Coulomb potential, and that they are confined to a finite volume of exten-
sion L. In a first stage, we assume that they obey Maxwell–Boltzmann statistics
(MB). We will then present the formulae when the Bose or Fermi statistics of the
particles is taken into account.

The grand-canonical partition function ZMB
L L(T,μ) of the quantum system is

defined as the trace of the Gibbs weight:

ZMB
L (T,μ) =

0...∞∑
{Nγ}

[∏
γ

z(γ)Nγ

Nγ!

] ∫
dr1...drN 〈r1...rN |e−βHN |r1...rN〉. (4.a)

The integral kernel of the Gibbs weight can be conveniently represented by using
the Feynman–Kac path integral formalism as follows. The integral kernel of the
quantum-mechanical propagator is known to be equal to a functional integral of



110 4. Field-coupled quantum plasmas: path integral representation

the exponential of the action over classical trajectories r(t) (Feynman & Hibbs,
1965). For one particle subject to an external potential Vwalls(r), one has

〈r|e−i tH
� |r〉 =

∫ r(t)=r

r(0)=r

d[r(·)] e
i
�

∫ t
0 ds 1

2 mṙ(s)2
e−

i
�

∫ t
0 ds Vwalls(r(s)). (4.b)

The two exponentials correspond to the “kinetic” and “potential” terms of the
Lagrangian. Evaluating this formula at an imaginery time β = it/�, and after
suitable changes of variables, one can express it as

〈r|e−βH |r〉 ∝
∫

d[ξ(·)] e−
1
2

∫ 1
0 ds ξ̇(s)2︸�����������������︷︷�����������������︸

D(ξ)

exp
[
−β

∫ 1

0
ds Vwalls(r + λγξ(s))︸�����������������������︷︷�����������������������︸
≡Vwalls(r,γ,ξ(·))

] r
λξ(s)ξξ

(4.c)

where λγ = �
√
β/mγ is the de Broglie wavelength of the particle. We can interpret

this result by saying that to a quantum particle at r is associated a closed random
path r + λγξ(s) situated at r, whose extension represents the particle’s quantum-
mechanical fluctuations of position. The quantum average of the Gibbs weight
then corresponds to integrate over all such random paths [by means of D(ξ)] the
Gibbs weight of the potential felt all along. The normalised Gaussian functional
integral D(ξ) corresponds to the Wiener integral of a Brownian process. This
formula can be easily generalised to several particles.

Then, in the ensemble integrals yielding ZMB
L , one may consider the arising

D(ξ1)...D(ξN) as being part of the degrees of freedom of extended but classical-
like objects, called “loops” or “filaments”, whose interactions are derived from
the primitive interactions between the quantum particles, as above.

When the Bose–Fermi statistics of the particles is taken into account, essen-
tially the same holds, except that “loops” will be constituted by gathering in a
closed path open Brownian paths of several particles:

quantum particles loops

Vcpath integral

representation

(4.d)

The grand-canonical partition function ZL(T,μ) of the properly symmetrized quan-
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tum system can then be exactly represented, in terms of these loops, as

ZL(T,μ) =
∞∑

n=0

1
n!

n∏
i=1

dLi z(Li) e−β
[∑

i< j eγi eγ j V
c(Li,L j)+

∑n
i=1 Vwalls(Li)

]
. (4.e)

A loop L = (r, χ) = (r, γ, q,X(·)) is made of a position r in the real space, and in-
ternal degrees of freedom χ, which comprise a species γ, an integral charge num-
ber q ∈ 1, 2, ..., and a closed Brownian shape X(s), s ∈ [0, q], X(0) = X(q) = 0.
The loop’s spatial extension is scaled by λγ = �

√
β/mγ, so that its path in space

reads

r[s] = r + λγX(s), s ∈ [0, q]. (4.f)

The integral number q is the number of original particles that the loop regroups.
Their positions are at r[ j], j = 0, ..., q− 1. The shape X(s) is a Gaussian stochastic
process whose functional integral has unit normalization, zero mean, and covari-
ance1 ∫

D(X) Xμ(s1)Xν(s2) = δμνq
[
min

{
s1

q
,

s2

q

}
−

s1

q
s2

q

]
. (4.g)

Integrating on all internal degrees of freedom of the loop means∫
dL . . . =

∫
dr

∫
dχ . . . =

∫
dr

∑
γ

∞∑
q=1

∫
D(X) . . . . (4.h)

The two-loop “Coulomb” potential Vc occurring in (4.e) above, reads

Vc(Li,L j)=
∫ qi

0
dsi

∫ q j

0
ds j δ(s̃i− s̃ j)

1
|ri+λγiXi(si)−r j−λγ jX j(s j)|

(4.i)

(s̃ = s mod 1). Note that due to the Feynman–Kac representation, Coulomb
interaction only occurs at “equal times” in the unit portions of the two loops,
as depicted in (4.d). The confinement of the particles into the volume results
in the confinement of the whole loop’s path (∀s) into that volume. This loop
confinement is represented here by the wall potential Vwalls(L). The loop activity
z(L) embodies the Bosonic (ηγ = +1) or Fermionic (ηγ = −1) character of the
particles, and the loop’s self energy, which consists in the interaction energy of
the original particles that the loops contains:

z(L) =
(2sγ + 1)(ηγ)q−1

q
(eβμγ)q

(2πqλ2
γ)3/2 e−βU

self(L). (4.j)

When the Hamiltonian is spin-independent (which is the case in our models),
considering the spin of the particles merely adds to the activity the factor 2sγ + 1
above.

1We recall that Gaussian integrals are entirely determined by these three properties.
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Inclusion of the field: the effective magnetic potential

One can summarize the steps extending the loop formalism so as to include the
field as follows.

The total partition function of matter and field ZK,L (2.12), when normalized
by the free field partition function Zrad

0,K , can be interpreted as the field-average of
the partition function Zmat

K,L(T,μ,A) of matter embedded in an external field A(r):

ZK,L

Zrad
0,K

=
1

Zrad
0,K

∫ ∏
K,λ

d2aK,λ

π
e−βH

rad
0 Zmat

K,L(A) ≡
〈
Zmat

K,L(A)
〉rad

0
(4.k)

(the pair K, λ denotes a field mode in the large enclosing box K).

Loops in external field: at fixed field A(r), the Feynman-Kac-Itô path integral
is used to represent the partition function Zmat

K,L(A) in terms of loops. At this stage,
the loops interact with one another via the Coulomb-like potential Vc as above,
but also interact with the external field through a one-loop potential. The loop
energy is supplemented with

i
∑

j

eγ jλγ j

�c

∫ q j

0
dX j(s j) ·A(r j + λγ jX j(s j)) ≡ i

∑
K,λ

[
J∗K,λαK,λ + JK,λα

∗
K,λ

]
. (4.l)

On the right hand side, a “loop current” density JK,λ =
∑

j JK,λ(L j) is defined.
The line-integrals on the left hand side run along the loops’ shape. They can be
formally assimilated to the magnetic flux through the loops. Schematically, the
system of thermalised quantum particles in an external field is represented by a
system of thermalised classical-like loops in the same external field:

A

quantum particles

A

loops

Vcpath integral

representation

(4.m)

An essential advantage of the path integral representation is that the field–loop
coupling (4.l) is classical and linear in the field, in contradistinction to the original
field–particle coupling.
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Loops in thermalised field: the next step is to compute the average of Zmat
K,L(A)

in the thermally fluctuating field. The free field Hamiltonian Hrad
0 is quadratic

in the field amplitudes αK,λ, and the external field potential (4.l) linear in them.
The current density JK,λ =

∑
j JK,λ(L j) thus represents the vector of the Fourier

transform with respect to αK,λ of the Gaussian exp(−βHrad
0 ); the latter transform

builds up a Gaussian exp[−(J,GJ)]. By extracting the sums
∑

j included in the
Js, this factor can be recast in the form exp[−β

∑
i, j eγieγ jW

m(Li,L j)], thereby
providing the effective two-loop potential of magnetic origin.

magnetic potential W

Vc

A

thermalized field m

Wm

Vc
< ... >rad0

(4.n)

After extending field’s enclosing box K → �3, the Fourier modes K become con-
tinuous and one has, explicitly,

Wm(Li,L j) =
1

β
√mγimγ jc2

∑
μ,ν

∫
dK

(2π)3 [Jμ
K

(Li)]∗JνK(L j)Gμν(K), (4.o)

Jμ
K

(L) =
∫ q

0
dXμ(s) eiK·(r+λγX(s)), Gμν(K) =

4π
k2

(
δμν −

kμkν
k2

) ∣∣∣g(K)
∣∣∣2. (4.p)

Remarks

• The auxiliary system of the classical-like loops is an exact representation
of the original quantum particles system. There are no approximations in-
volved in this correspondence. It thus consists in a powerful tool, allowing
the use of methods from classical statistical mechanics on the loops’ system.

• The quantum character of the original particles gives the loops their ex-
tension, but also their particular Coulomb interaction, which does not cor-
respond exactly to the classical one that would exert between uniformly
charged wires, because of the “equal-time” Dirac condition.

Loop correlations and particle correlations

We recall that one can introduce one-loop, two-loop, etc., correlations as for the
particles, by defining the “microscopic loop density”

ρ̂(L) =
n∑

i=1

δ(L,Li), (4.q)
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where δ(L,Li) is defined such that
∫

dL1 δ(L,L1)φ(L1) = φ(L). The average
ρ(L) = 〈ρ̂(L)〉 of the loop density is taken in the phase space of loops. Such den-
sities do not have a real physical meaning before integrating on the involved loop
shapes. For example, the one-particle and two-particle correlation functions are
given from the one-loop and two-loop correlations by (Ballenegger et al., 2002,
Appendix D)

ρ(r, γ) =
∞∑

q=1

q
∫

D(X) ρ(L), (4.r)

ρ(r1, γ1; r2, γ2) =
∑
q1,q2

q1q2

∫
D(X1)

∫
D(X2) ρ(L1,L2)

+ δγ1γ2

∑
q2

q2

q2−1∑
j=1

∫
D(X2) δ(r2 + λγ2X2( j) − r1)ρ(L2). (4.s)
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Equilibrium correlations in charged
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We provide an exact microscopic statistical treatment of particle and
field correlations in a system of quantum charges in equilibrium with
a classical radiation field. Using the Feynman-Kac-Itô representa-
tion of the Gibbs weight, the system of particles is mapped onto
a collection of random charged wires. The field degrees of free-
dom can be integrated out, providing an effective pairwise magnetic
potential. We then calculate the contribution of the transverse field
coupling to the large-distance particle correlations. The asymptotics
of the field correlations in the plasma are also exactly determined.

PACS numbers:

05.30.-d— Quantum statistical mechanics.
05.40.-a— Fluctuation phenomena, random processes, noise,

and Brownian motion
11.10.Wx— Finite-temperature field theory

4.1 Introduction

Thermal states of non relativistic particles interacting by the sole Coulomb poten-
tial are known to provide an adequate description of many states of matter. The
introduction of magnetic interactions between the particles poses a novel problem
since they are mediated by the coupling to the transverse part of the electromag-
netic field. This immediately leads to consider the full system of matter in equi-
librium with radiation : the relevant theory becomes then the thermal quantum
electrodynamics (thermal QED).

2Electronic address: pascal.buenzli@epfl.ch
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In order to go beyond pure electrostatics without facing the full QED, a num-
ber of studies rely on the Darwin approximation. Darwin has shown (Darwin,
1920), (Landau, Lifshitz, & Pitaevskii, 1984) that one can eliminate the transverse
degrees of freedom of the field within the Lagrangian formalism up to order c−2

(c is the speed of light). A nice review of the derivation of the Darwin Lagrangian
and a lucid discussion of its consequences can be found in (Essén, 1996). The
resulting Darwin Hamiltonian can be used to investigate the equilibrium proper-
ties of the so called weakly relativistic plasmas; see the recent works of Appel
and Alastuey (Alastuey & Appel, 1997), (Appel & Alastuey, 1998), (Appel &
Alastuey, 1999) and earlier references therein. These authors have done a care-
ful analysis of the domain of validity of the Darwin approximation and shown in
particular that the predictions of the Darwin Hamiltonian on the tail of particle
correlations in thermal states cannot be correct. Indeed the well-known Bohr–van
Leeuwen theorem (Alastuey & Appel, 2000) asserts that classical (non-quantum)
matter completely decouples from the radiation field. Thus the Darwin Hamil-
tonian, which treats the particles classically, should not predict any effect of the
transverse field when used for thermal equilibrium computations. The Darwin
approximation is, however, not deprived of any meaning in statistical physics.
Indeed, the authors show in (Appel & Alastuey, 1999) that Darwin predictions
about current correlations coincide with those of thermal QED in the restricted
window of distances λpart � r � λph, where λpart = �

√
β/m is the de Broglie

thermal wavelength of the particles and λph = β�c the thermal wavelength of the
photons. But to determine the tail r � λph of the correlations in the presence
of the radiation field, matter has to be treated quantum mechanically to avoid the
conclusion of the Bohr–van Leeuwen theorem. The situation is similar to orbital
diamagnetism in equilibrium, which is of quantum-mechanical origin.

In this work, we consider equilibrium states of non-relativistic spinless quan-
tum charges coupled with the radiation field in the standard way (Section 4.2).
We shall, however, treat the field classically on the ground that the large dis-
tances r � λph are controlled by the small wave numbers K ∼ 1

r �
1
λph

, implying

β�ωK ∼
λph

r � 1. Hence only long-wavelength photons will contribute to the
asymptotics which is expected to be adequately described by classical fields. The
full QED model with quantized electromagnetic field will be studied in a subse-
quent work (see also comments in the concluding remarks, Section 4.8).

Our main tool will be the Feynman-Kac-Itô path integral representation of the
degrees of freedom of the charges. The Feynman-Kac integral representation has
been widely used to derive various properties of quantum Coulomb systems, in
particular to determine the exact large-distance behaviour of the correlations; see
(Cornu, 1996a), (Cornu, 1996b), and (Alastuey, 1994), (Brydges & Martin, 1999)
for reviews. In this representation quantum charges become fluctuating charged
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loops (closed Brownian paths), formally analogous to classical fluctuating wires
carrying multipoles of all orders. These fluctuations are responsible for the lack
of exponential screening in the quantum plasma and for an algebraic tail ∼ r−6 of
the particle correlations (Alastuey & Martin, 1989).

Adding an external magnetic field produces a phase factor in the Feynman-
Kac-Itô formula, whose argument is the flux of the magnetic field across the ran-
dom loop. Correlations in the case of an homogeneous external magnetic field
have been studied in (Cornu, 1998a, 1998b). When the particles are thermalized
with the field, the latter becomes itself random and distributed according to the
thermal weight of the free radiation. The system can be viewed as a classical-
like system of random loops immersed in a random electromagnetic field. At this
point, the field degrees of freedom can be exactly integrated out by means of a
simple Gaussian integral since the Hamiltonian of free radiation is quadratic in
the field amplitudes. One is then left with an effective pairwise current-current in-
teraction between the loops which has a form similar to the magnetostatic energy
between a pair of classical currents. For the sake of illustrating the basic mecha-
nisms in a simple setting, this program is carried out in Section 4.3 with particles
obeying Maxwell-Boltzmann statistics. Appropriate modifications needed to take
into account the particle statistics (Bose or Fermi) are given in Section 4.7.

In Section 4.4 we apply the formalism to the determination of the asymptotic
form of the correlation between two quantum particles embedded in a classical
plasma. This simple model already illustrates the main features occurring in the
general system. The effective magnetic interaction contributes to the r−6 tail, but
its ratio to the Coulombic contribution is of the order of the square of the relativis-
tic parameter (βmc2)−1 = (λpart/λph)2.

In Section 4.5 we consider the generalization of the results obtained for two
particles to the full system of quantum charges. The analysis relies on the tech-
nique of quantum Mayer graphs previously developed for Coulomb systems, and
we merely point out the few changes that are needed to include the effective mag-
netic interactions.

Field fluctuations in plasmas have been studied for a long time at macroscopic
scales, much larger than interparticle distances; see (Landau et al., 1984), (Felder-
hof, 1965) and references cited therein. In Section 4.6, we reexamine this question
from a microscopic viewpoint and show that electromagnetic field correlations are
always long ranged due to the quantum nature of the particles. This is in disagree-
ment with the prediction of macroscopic theories. We come back to this point in
the concluding remarks (Section 4.8). However, in the classical limit, we recover
the fact already observed in (Felderhof, 1965) that the long-range behaviour of
the longitudinal and transverse parts of the electric field correlations compensate
exactly.

In Section 4.7, we generalise the formalism developed in Section 4.3 to in-
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clude Bose and Fermi particle statistics. This is done as usual by decomposing
the permutation group into cycles and grouping particles belonging to a cycle into
an extended Brownian loop. When this is combined with the Feynman-Kac-Itô
path integral representation of the particles, the system takes again a classical-like
form: a collection of Brownian loops immersed in a classical random electromag-
netic field. At this point the physical quantities can again be analyzed in terms of
Mayer graphs comprising pairwise Coulomb and effective magnetic interactions,
as in Section 4.5.

The methods presented in this paper have been applied to the study of the
semi-classical Casimir effect (Buenzli & Martin, 2005), (Buenzli & Martin, 2006;
Martin & Buenzli, 2006).

4.2 The model

We first consider the QED model for non-relativistic quantum charges (electrons,
nuclei, ions) with masses mγ and charges eγ contained in a box Λ ∈ �3 of linear
size L and appropriate statistics. The index γ labels the S different species and
runs from 1 to S. The particles are in equilibrium with the radiation field at
temperature T . The field is itself enclosed into a large box K with sides of length
R, R � L. The Hamiltonian of the total finite volume system reads, in Gaussian
units,

HL,R =

n∑
i=1

(
pi −

eγi
c A(ri)

)2

2mγi

+

n∑
i< j

eγieγ j

|ri − r j|
+

n∑
i=1

Vwalls(γi, ri) + Hrad
0 . (4.1)

The sums run on all particles with position ri, momentum pi, and species index γi;
Vwalls(γi, ri) is a steep external potential that confines a particle in Λ. It can even-
tually be taken infinitely steep at the wall’s position, implying Dirichlet boundary
conditions—i.e., vanishing of the particle wave functions at the boundaries of Λ.
The electromagnetic field is written in the Coulomb (or transverse) gauge so that
the vector potential A(r) is divergence free and Hrad

0 is the Hamiltonian of the free
radiation field. The Coulomb gauge is usually preferred for simplicity in situ-
ations where the particles are non-relativistic and high-energy processes are ne-
glected (Cohen-Tannoudji, Dupont-Roc, & Grynberg, 1989). It has the advantage
to clearly disentangle electrostatic and magnetic couplings in the Hamiltonian.

We impose periodic boundary conditions on the faces of the large box K.3

Hence expanding A(r) and the free photon energy Hrad
0 in the plane-wave modes

3Periodic conditions are convenient here. We could as well choose metallic boundary condi-
tions. Since the field region K will be extended over all space right away, the choice of conditions
on the boundaries of K are expected to make no differences for the particles confined in Λ.
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K = ( 2πnx
R ,

2πny

R ,
2πnz

R ) gives

A(r) =
(
4π�c2

R3

)1/2 ∑
Kλ

g(K)
eKλ√
2ωK

(a∗Kλe
−iK·r + aKλeiK·r) (4.2)

Hrad
0 =

∑
Kλ

�ωK a∗KλaKλ (4.3)

where a∗
Kλ and aKλ are the creation and annihilation operators for photons of

modes (Kλ), eKλ (λ = 1, 2) are two unit polarization vectors orthogonal to K, and
ωK = cK, K = |K|. In (4.2), g(K), g(0) = 1, is a real spherically symmetric smooth
form factor needed to take care of the ultraviolet divergencies. It is supposed to
decay rapidly beyond the characteristic wave number Kc = mc/� (see (Cohen-
Tannoudji et al., 1989), chap. 3). Since we are interested in the large-distance
r → ∞ asymptotics, related to the small-K behaviour K → 0, the final result will
be independent of this cut-off function.

The total partition function

ZL,R = Tr e−βHL,R (4.4)

is obtained by carrying the trace Tr = TrmatTrrad of the total Gibbs weight over
particles’ and the field’s degrees of freedom: namely, on the particle wave func-
tions with appropriate quantum statistics and on the Fock states of the photons.
The average values of observables 〈Omat〉 = Z−1

L,RTr
(
e−βHL,ROmat

)
concerning only

the particle degrees of freedom can be computed from the reduced thermal weight

ρL,R =
Trrad e−βHL,R

Zrad
0,R

, (4.5)

where Zrad
0,R = Trrad exp (−βHrad

0 ) is the partition function of the free radiation field,
as follows from the obvious identity

〈Omat〉 =
Trmat

(
Omat ρL,R

)
Trmat ρL,R

. (4.6)

We shall perform the thermodynamic limit in two stages by first letting R → ∞.
Then ρL = limR→∞ ρL,R defines the effective statistical weight of the particles in Λ
immersed in an infinitely extended thermalized radiation field.

As discussed in the Introduction, in this paper we treat the electromagnetic
field classically. This amounts to replacing the photon creation and annihilation
operators in (4.2) and (4.3) by complex amplitudes α∗

Kλ and αKλ. In this case, the
free field distribution factorizes out as exp

(
−βHR,L

)
= exp

(
−βHrad

0

)
exp (−βHA),
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where

HR,L = HA + Hrad
0 , HA =

n∑
i=1

(
pi −

eγi
c A(ri)

)2

2mγi

+ Upot(r1, γ1, . . . , rn, γn), (4.7)

and Upot is the total potential energy. Since the free radiation weight exp
(
−βHrad

0

)
is Gaussian, A(r) = A(r, {αKλ}) can be viewed as a realization of a Gaussian
random field, and the term HA = HA({αKλ}) becomes the energy of the particles
in a given realization of the vector potential having Fourier amplitudes {αKλ}.

The partial trace (4.5) becomes, explicitly,

ρL,R =
〈
e−βHA

〉
rad
, (4.8)

where for a general function F({αKλ}) of the mode amplitudes 〈F〉rad denotes the
normalized Gaussian average over all modes4

〈F〉rad =
∏
Kλ

∫
d2αKλ

π

[
β�ωKe−β�ωK |αKλ |

2]
F({αKλ}). (4.9)

Note that the stability of Coulombic matter and the existence of thermody-
namics for extended systems are assured if at least one of the species obeys Fermi
statistics (Lieb, 1976). In the next section, merely as a matter of simplifying the
presentation, we compute the effective particle interactions defined by ρL ignor-
ing quantum statistics. In this case, Maxwell-Boltzmann statistics requires the
presence of an additional short-range repulsive potential VSR(γi, γ j, |ri − r j|) in the
Hamiltonian (4.1) to prevent the collapse of opposite charges and guarantee ther-
modynamical stability. The generalization to Fermi and Bose statistics will be
given in Section 4.7.

4.3 The gas of charged loops and the effective mag-

netic interaction

We now introduce the Feynman-Kac-Itô path integral representation of the con-
figurational matrix element 〈r1, ..., rn|e−βHA |r1, ..., rn〉 for the particles interacting
with a fixed realization of the field. For a single particle of mass m and charge e in

4The classical field is expanded as in (4.2) and (4.3) with dimensionless amplitudes αKλ. In
fact there will be no � dependence arising from the field, as seen by changing everywhere αKλ �→
αKλ/

√
�.
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a scalar potential Vext(r) and vector potential A(r), we first recall that this matrix
element reads (Feynman & Hibbs, 1965), (Roespstorff, 1994), (Simon, 1979)

〈
r
∣∣∣ exp

(
−β

[
1

2m

(
p −

e
c

A(r)
)2
+ Vext(r)

]) ∣∣∣r〉 = (
1

2πλ2

)3/2∫
D(ξ)

× exp

⎛⎜⎜⎜⎜⎜⎝−β
⎡⎢⎢⎢⎢⎢⎣
∫ 1

0
ds Vext(r + λξ(s)

)
− i

e√
βmc2

∫ 1

0
dξ(s) · A

(
r + λξ(s)

)⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ . (4.10)

Here ξ(s), 0 ≤ s ≤ 1, ξ(0) = ξ(1) = 0, is a closed dimensionless Brownian path
and D(ξ) is the corresponding conditional Wiener measure normalized to 1. It is
Gaussian, formally written as exp

(
− 1

2

∫ 1

0
ds

∣∣∣dξ(s)
ds

∣∣∣2 )
d[ξ(·)], with zero mean and

covariance ∫
D(ξ) ξμ(s1)ξν(s2) = δμν(min(s1, s2) − s1s2) (4.11)

where ξμ(s) are the Cartesian coordinates of ξ(s). In this representation a quantum
point charge looks like a classical charged closed loop denoted by F = (r, ξ),
located at r and with a random shape ξ(s) having an extension given by the de
Broglie length λ = �

√
β/m (the quantum fluctuation). The magnetic phase in

(4.10) is a stochastic line integral: it is the flux of the magnetic field across the
closed loop. The correct interpretation of this stochastic integral is given by the
rule of the middle point; namely, the integral on a small element of line x − x′ is
defined by ∫ x′

x

dξ · f(ξ) = (x − x′) · f
(
x + x′

2

)
, x − x′ → 0 (4.12)

We shall stick to this rule when performing explicit calculations.5 Note the di-
mensionless relativistic factor (βmc2)−1/2 in front of the vector potential term.

This is readily generalized to a system of n interacting particles: The weight
in the space of n loops F1 = (r1, γ1, ξ1), . . . ,Fn = (rn, γn, ξn) coming from the
path integral representation of 〈r1, ..., rn|e−βHA |r1, ..., rn〉 is exp(−βU(F1, ...,Fn,A))
where

U(F1, ...,Fn,A) =
n∑

i< j

eγieγ jV
c(Fi,F j)

− i
n∑

j=1

eγ j√
βmγ jc2

∫ 1

0
dξ j(s) · A(r j + λγ jξ j(s)) (4.13)

5Other prescriptions are possible for the path integral to correctly represent the quantum me-
chanical Gibbs weight in presence of a magnetic field. The Itô rule may be used when f is diver-
gence free (Roespstorff, 1994).
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The matrix element 〈r1, ..., rn|e−βHA |r1, ..., rn〉 is obtained by integrating
exp(−βU(F1, ...,Fn,A)) over the random shapes ξ1, ..., ξn of the loops, as in (4.10).
In (4.13),

Vc(Fi,F j) =
∫ 1

0
ds

1
|ri + λγiξi(s) − r j − λγ jξ j(s)|

(4.14)

is the Coulomb potential between two loops, and for the sake of brevity, we have
omitted the non electromagnetic terms

n∑
i< j

VSR(Fi,F j) +
n∑

i=1

Vwalls(Fi) (4.15)

corresponding to the short-range regularization and to the confinement potential.
The vector potential term can be written as −i

∫
dx A(x) ·J (x) in terms of current

densities associated with the Brownian loops:

J (x) =
n∑

i=1

j(Fi, x), j(Fi, x) =
eγi√
βmγic2

∫ 1

0
dξi(s) δ(x − ri − λγiξi(s)). (4.16)

If one interprets the (ill-defined) derivative λγidξi(s)/ds = vi(s) as the “velocity”
of a particle of charge eγi moving along the loop ξi(s), the quantity
eγivi(s)δ(x−ri−λγiξi(s)) corresponds to a classical current density. This is just
a formal analogy. In subsequent calculations of stochastic integrals arising from
(4.16), we will always use the mathematically well-defined rule of the middle
point (4.12). Moreover, such “imaginary time” currents appearing in the Feynman-
Kac-Itô representation are not the physical “real-time” current observables. Our
definition (4.16) also includes the relativistic factor (βmγic

2)−1/2.
A remarkable fact is that the transverse part of the field enters in

exp(−βU(F1, ...,Fn,A)) as a phase factor linear in A and its Fourier amplitudes
(contrary to the Hamiltonian (4.1) written in operatorial form). Since the statistical
weight e−βH

rad
0 (4.3) is a Gaussian function of these Fourier amplitudes, it makes it

possible to perform explicitly the partial trace over the field degrees of freedom in
(4.8) according to the following steps:〈

exp
[
iβ

∫
dx A(x) ·J (x)

]〉
rad
=

〈∏
Kλ

exp
[
i(u∗KλαKλ + uKλα

∗
Kλ)

]〉
rad

=

exp

⎡⎢⎢⎢⎢⎢⎣− β2R3

∑
Kλ

4πg2(K)
K2 |J (K) · eKλ|2

⎤⎥⎥⎥⎥⎥⎦ = exp
[
−
β

2

∫
dK

(2π)3 (Jμ(K))∗Gμν(K)Jν(K)
]
.

(4.17)
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The first equality is obtained by introducing the mode expansion (4.2), yielding

uKλ = β

(
4π�c2

R3

)1/2 g(K)
√

2ωK

J (K) · eKλ, J (K) =
∫

dx e−iK·xJ (x) (4.18)

The second equality results from (4.8), (4.9) and the Gaussian integral∫
d2α
π

e−b|α|2+i(u∗α+uα∗) = b−1e−b−1 |u|2 , b > 0, whereas the infinite volume limit R →
∞ and the polarization sum have been performed in the last equality. We have
denoted by Gμν(K) the covariance of the free transverse field:

Gμν(K) =
4πg2(K)

K2 δ
μν
tr (K), δμνtr (K) = δμν −

kμkν

K2 , kμGμν(K) ≡ 0 (4.19)

(δμνtr (K) is the transverse Kronecker symbol). In (4.17) and throughout the paper,
summation on repeated vector components μ, ν = 1, 2, 3 is understood. In the con-
figuration space, the asymptotic behaviour of Gμν(x) is obtained by approximating
g2(K) ∼ 1 in the inverse Fourier transform of Gμν(K):

Gμν(x) ∼
∫

dK

(2π)3 eiK·x 4π
K2

(
δμν −

kμkν

K2

)
=

1
2r

(
δμν +

xμxν

r2

)
, r = |x| → ∞. (4.20)

Decomposing the total current (4.16) into the individual loop currents we see that
the effective weight (4.17) takes the form〈

exp
[
iβ

∫
dx A(x) ·J (x)

]〉
rad
=

n∏
i=1

exp
⎛⎜⎜⎜⎜⎝−βe2

γi

2
Wm(i, i)

⎞⎟⎟⎟⎟⎠
× exp

⎛⎜⎜⎜⎜⎜⎜⎝−β
n∑

i< j

eγieγ jW
m(i, j)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.21)

where for two loops i = Fi and j = F j we have introduced the loop-loop effective
magnetic potential

eγieγ jW
m(i, j) =

∫
dx

∫
dy ( jμ(Fi, x))∗Gμν(x − y) jν(F j, y) = (4.22)

=
eγieγ j

β
√mγimγ jc2

∫
dK

(2π)3 eiK·(ri−r j)
∫ 1

0
dξμi (s1) eiK·λγiξi(s1)

∫ 1

0
dξνj(s2) e−iK·λγ jξ j(s2)Gμν(K).

As a consequence of Gaussian integration, one recovers pairwise interactions
(4.22) between loops. The product in (4.21) contains the magnetic self-energies
of the loops.

It is pleasing and convenient that after averaging over the field modes, the
energy of the system of loops becomes an exact and explicit sum of pair potentials
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(and self-energies):6

〈
e−βU(F1,...,Fn,A)

〉
rad
=

[ n∏
i=1

e−
βe2
γi
2 Wm(i,i)

]
e−β

∑
i< j eγi eγ j

(
Vc(i, j)+Wm(i, j)

)
. (4.23)

It is interesting to ask for the status of the partial density matrix (4.5) compared
to that generated by the Darwin Hamiltonian ρDarwin ∝ e−βHDarwin or, more gener-
ally, if ρL,R can be cast in the form ρL,R ∝ e−βHeff for some tractable Hamiltonian
Heff({pi, ri}) depending on the canonical variables of the particles. The answer
to this last question is very presumably negative. Indeed the magnetic interac-
tion (4.22) is a two times functional of the Brownian loops; namely, it lacks the
equal-time constraint occurring in the Coulomb potential (4.14) (see the discus-
sion before (4.26) below) necessary to come back to a simple operator form by
using the Feynman-Kac-Itô formula backwards. This is a well-known common
feature of interactions resulting from integrating out external degrees of freedom
(Feynman & Hibbs, 1965).

The long-distance asymptotics of Wm(i, j) as |ri − r j| → ∞ is determined by
the small K behaviour in the integrand of (4.22). Noting that

∫ 1

0
dξ(s) = 0 for a

closed loop (Itô’s lemma), one has

∫ 1

0
dξμi (s) eiK·λγiξi(s) ∼ iλγi

∫ 1

0
dξμi (s) K · ξi(s), K→ 0, (4.24)

and thus

Wm(i, j) ∼ (4.25)

∼
λγiλγ j

β
√mγimγ jc2

∫
dK

(2π)3 eiK·(ri−r j)
∫ 1

0
dξμi (s1)(K · ξi(s1))

∫ 1

0
dξνj(s2)(K · ξ j(s2))Gμν(K)

=
λγiλγ j

β
√mγimγ jc2

∫ 1

0
dξμi (s1)(ξi(s1) · ∇ri)

∫ 1

0
dξνj(s2)(ξ j(s2) · ∇r j) Gμν(ri − r j),

as |ri − r j| → ∞. Upon using the asymptotic form (4.20) of Gμν(ri − r j), it is clear
that for fixed loop shapes ξi and ξ j the decay of Wm(i, j) is ∼ |ri − r j|−3. It is of
dipolar type modified by the constraint imposed by the transversality.

The Coulombic part (4.14) of the loop-loop interaction still decays as r−1 and
deserves the following remark. From the Feynman-Kac formula the potential
(4.14) inherits the quantum-mechanical equal-time constraint; i.e., every element
of charge eγiλγidξi(s1) of the first loop does not interact with every other element

6We omit again in (4.23) the non-electromagnetic terms (4.15).
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eγ jλγ jdξ j(s2) as would be the case in classical physics, but the interaction takes
place only if s1 = s2. It is therefore of interest to split

Vc(i, j) = Vel(i, j) +Wc(i, j), (4.26)

where

Vel(i, j) =
∫ 1

0
ds1

∫ 1

0
ds2

1
|ri + λγiξi(s1) − r j − λγ jξ j(s2)|

(4.27)

is a genuine classical electrostatic potential between two charged loops and

Wc(i, j) =
∫ 1

0
ds1

∫ 1

0
ds2 (δ(s1−s2)−1)

1
|ri + λγiξi(s1) − r j − λγ jξ j(s2)|

(4.28)

is the part of Vc(i, j) due to intrinsic quantum fluctuations (Wc(i, j) vanishes if �
is set equal to zero). Because of the identities∫ 1

0
ds1 (δ(s1 − s2) − 1) =

∫ 1

0
ds2 (δ(s1 − s2) − 1) = 0, (4.29)

the large-distance behaviour of Wc originates again from the term bilinear in ξi
and ξ j in the multipolar expansion of the Coulomb potential in (4.28)

Wc(i, j) ∼
∫ 1

0
ds1

∫ 1

0
ds2 (δ(s1−s2)−1)

(
λγiξi(s1) · ∇ri

) (
λγ jξ j(s2) · ∇r j

) 1
|ri − r j|

.

(4.30)

It is dipolar and formally similar to that of two electrical dipoles of sizes eγiλγiξi
and eγ jλγ jξ j.

4.4 Two quantum charges in a classical plasma

In order to exhibit the effect of the magnetic potential on the particle correla-
tions, we consider the simple model of two quantum charges ea and eb with
corresponding loops Fa = (ra, ξa) and Fb = (rb, ξb) immersed in a configura-
tion ω of classical charges, following Sec. VII of (Alastuey & Martin, 1989) or
Sec. IV.C of (Brydges & Martin, 1999). According to (4.26) one can decom-
pose the total energy as U(Fa,Fb, ω) = eaebW(Fa,Fb) + Ucl(Fa,Fb, ω) where
W(Fa,Fb) = Wc(Fa,Fb) + Wm(Fa,Fb) is the sum of the electric and magnetic
quantum dipolar interactions and Ucl(Fa,Fb, ω) is the purely classical Coulomb
energy (4.27) of the two loops Fa and Fb together with that of the particles in
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the configuration ω. The correlation ρ(Fa,Fb) between the loops is obtained by
integrating out the coordinates ω of the classical charges:

ρ(Fa,Fb) =
1
Ξcl

∫
Λ

dω e−βU(Fa,Fb,ω) = e−βeaebW(Fa,Fb)ρcl(Fa,Fb), (4.31)

where Ξcl is the partition function of the classical plasma and ρcl(Fa,Fb) is the
correlation of the two loops embedded in the plasma interacting with genuine
classical Coulomb forces. In the latter quantity, the classical theory of screening
applies so that effective interaction between the loops decay exponentially fast.7

Thus one can approximate ρcl(Fa,Fb) in (4.31) by ρ(Fa)ρ(Fb) up to a term expo-
nentially decaying as |ra − rb| → ∞. Furthermore, integrating ρ(Fa,Fb) on the
loop shapes leads to the following expression for the positional correlation of the
quantum charges

ρ(ra, rb) =
∫

D(ξa)
∫

D(ξb) e−βeaebW(Fa,Fb)ρ(Fa)ρ(Fb) + O(e−C|ra−rb |) =

= ρaρb − βeaeb

∫
D(ξa)

∫
D(ξb) W(Fa,Fb)ρ(ξa)ρ(ξb)+

+
1
2
β2e2

ae2
b

∫
D(ξa)

∫
D(ξb) W2(Fa,Fb)ρ(ξa)ρ(ξb) + ... + O(e−C|ra−rb |) (4.32)

Since W(Fa,Fb) ∼ |ra−rb|−3 (see (4.25), (4.30)), the above expansion in powers of
W generates algebraically decaying terms at large separation. It is known that in a
homogeneous and isotropic phase, the electric dipole part Wc does not contribute
at linear order (Alastuey & Martin, 1989), (Brydges & Martin, 1999). The same
is true for the magnetic part. To see this, it is convenient to write the linear Wm

term of (4.32) as

− βeaeb

∫
D(ξa)

∫
D(ξb) Wm(Fa,Fb)ρ(ξa)ρ(ξb)

= −
βeaeb√

βmac2
√
βmbc2

∫
d3

K

(2π)3 eiK·(ra−rb) tμa
∗(K)tνb(K)Gμν(K). (4.33)

The stochastic ξa-line-integral is now included in the definition of the tensor

tμa(K) =
∫

D(ξa)ρ(ξa)
∫ 1

0
dξμa(s) e−iλaK·ξa(s) (4.34)

and likewise for tνb(K). Since both the measure D(ξa) and ρ(ξa) are invariant under
a rotation of ξa in an isotropic system, tμa(K) transforms in a covariant manner

7The usual Debye theory of screening has been rigorously shown to be valid at least at suffi-
ciently high temperature (Brydges & Federbush, 1980).
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under rotations of K. Thus it is necessarily of the form tμa(K) = kμ fa(|K|), implying
the vanishing of (4.33) because of the transversality of Gμν(K). One concludes that
the slowest non-vanishing contribution comes from the W2 term in (4.32)

ρ(ra, rb) − ρaρb =
A(β)
|ra − rb|6

+ O
(

1
|ra − rb|8

)
. (4.35)

The temperature-dependent amplitude A(β) = Acc(β) + Amm(β) + Acm(β) involves
in principle electric and magnetic contributions from Wc2 and Wm2, as well as a
cross contribution from 2WcWm. These contributions can be calculated explic-
itly at lowest order in � (or equivalently in the high-temperature limit β → 0).
The electric contribution in this limit is known to be (Alastuey & Martin, 1989),
(Brydges & Martin, 1999)

Acc(β) ∼ �4 β
4

240
e2

ae2
b

mamb
ρaρb. (4.36)

To compute the magnetic contribution in the same limit, we write the quadratic
term

β2e2
ae2

b

2

∫
D(ξa)ρ(ξa)

∫
D(ξb)ρ(ξb) Wm2(Fa,Fb) =

e2
ae2

b

2mac2mbc2

×
∫

d3
K1

(2π)3

∫
d3

K2

(2π)3 ei(K1+K2)·(ra−rb) (
T μνa (K1, K2)

)∗ Tστb (K1, K2)Gμσ(K1)Gντ(K2) (4.37)

in terms of the tensors

T μνa (K1, K2) =
∫

D(ξa)ρ(ξa)
∫ 1

0
dξμa(s1)

∫ 1

0
dξνa(s2) e−iλaK1·ξa(s1)e−iλaK2·ξa(s2) (4.38)

and Tστb (K1, K2), defined likewise. As usual the behaviour at large distances is
controlled by that of the integrand of (4.37) at small wave numbers. Expanding
(4.38) at lowest order in K1 and K2 gives

T μνa (K1, K2) ∼
∫

D(ξa)ρ(ξa)
∫ 1

0
dξμa(s1)

∫ 1

0
dξνa(s2)

(
−iλaK1 · ξa(s1)

) (
−iλaK2 · ξa(s2)

)
= −λ2

akε1kη2

∫
D(ξa)ρ(ξa)

∫ 1

0
dξμa(s1)

∫ 1

0
dξνa(s2) ξεa(s1)ξηa(s2) (4.39)

and likewise for Tστb (K1, K2). One sees that because of the factor λ2
aλ

2
b, the overall

contribution in (4.37) will have a �4 factor so that at this order we can neglect the
quantum fluctuation in the density setting ρ(ξa) ∼ ρa independent of ξa. Thus the
stochastic integral to be calculated becomes (appendix 5.A)∫

D(ξ)
∫ 1

0
dξμ(s)

∫ 1

0
dξν(t) ξε(s)ξη(t) =

1
12

(δμνδηε − δμηδνε), (4.40)
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leading to

T μνa (K1, K2) ∼ −
λ2

aρa

12
(δμνK1 · K2 − kμ2kν1),

Tστb (K1, K2) ∼ −
λ2

bρb

12
(δστK1 · K2 − kσ2 kτ1). (4.41)

When this is inserted into (4.37) and summation on vectorial indices are per-
formed, one finds the expression

A
∫

dK1

(2π)3

∫
dK2

(2π)3 ei(K1+K2)·(ra−rb) (4π)2|g(K1)|2|g(K2)|2
[
1 +

(K1 · K2)2

K2
1K2

2

]
, (4.42)

with A = λ
2
aλ

2
be2

ae2
bρaρb

288mambc4 . The first term in the large brackets gives a rapidly decaying
contribution since it involves the Fourier transform of the form factor g2(K). The
algebraic large-distance contribution comes from the second term which reads,
after Fourier transformation (approximating g(K) ∼ 1, K→ 0),

A
(
∂μ∂ν

1
|ra − rb|

) (
∂μ∂ν

1
|ra − rb|

)
= A

6
|ra − rb|6

. (4.43)

Finally one checks that there is no cross Coulomb-magnetic contribution Acm(β)
at the dominant order r−6 as a consequence of transversality (appendix 5.B). So
adding (4.36) and (4.43) gives the final result

ρ(ra, rb) − ρaρb ∼ �4β4 ρaρbe2
ae2

b

240 mamb

[
1 +

5
(βmac2)(βmbc2)

]
1

|ra − rb|6
(4.44)

as |ra − rb| → ∞ and at lowest order in �. One sees from (4.14) and (4.22) that
the order of magnitude of the ratio Wm/Vc is (βmc2)−1. In an electrolyte at room
temperature T = 300K, this ratio is found to be ≈ 10−11. The magnetic correction
to the correlation decay (4.44) is negligible in this case.

4.5 Particle correlations in the many-body system

We apply the formalism developed in Section 4.3 to the determination of the large-
distance decay of the particle density correlations in the more general case where
all particles are quantum-mechanical, but still obeying Maxwell-Boltzmann statis-
tics.

We show hereafter that the algebraic r−6 decay of the (truncated) particle den-
sity correlations

ρT(γa, ra, γb, rb) ∼
Aab(β, {ργ})
|ra − rb|6

, |ra − rb| → ∞ (4.45)
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found in the absence of the radiation field (Cornu, 1996b), (Brydges & Martin,
1999) is not altered, but that the coefficient Aab(β, {ργ}) contains in addition small
magnetic terms of the order (βmc2)−2, as in (4.44). As an illustration, we give the
lowest order contribution of this coefficient with respect to Planck’s constant �.

By the Feynman-Kac-Itô representation, the full system composed of quantum
point charges coupled to the radiation field has reduced to a classical-like system
of extended charged loops F = (r, γ, ξ) for which all the methods of classical
statistical mechanics apply. The only novelty comes from the additional magnetic
potential Wm. In the following, we merely summarize the arguments since they
are essentially the same as those found in (Cornu, 1996b), (Brydges & Martin,
1999) when no radiation field is present.

As usual, we express the truncated two-loop correlation ρT(Fa,Fb) =
ρ(Fa)ρ(Fb)h(Fa,Fb) in terms of the loop Ursell function h(Fa,Fb). The latter
function can be expanded in a formal diagrammatic Mayer series of powers of
the loop densities ρ(F ). One needs to resum the long-range part of the Coulomb
potential Vc, which is responsible for the non-integrability of the Mayer bonds
f (Fi,F j) = exp(−βeγieγ j[V

c(Fi,F j) +Wm(Fi,F j)]) − 1 at infinity. Using the de-
composition (4.26) we resum the convolution chains built with the purely elec-
trostatic long-range part Vel(F ,F ′) into a Debye-Hückel-type screened potential
Φ(F ,F ′). Then reorganizing the diagrams leads to a representation of the loop
Ursell function by terms of so-called prototype diagrams, built with the two kinds
of bonds

F(F ,F ′) = −βeγeγ′Φ(F ,F ′), (4.46)

FR(F ,F ′) = e−βeγeγ′ [Φ(F ,F ′)+W(F ,F ′)] − 1 + βeγeγ′Φ(F ,F ′), (4.47)

where we have defined W = Wc +Wm as in Section 4.4.8

The potential Φ(F ,F ′) has been studied in (Ballenegger, Martin, & Alastuey,
2002). It corresponds to the term n = 0 of the full quantum analog of the Debye-
Hückel potential given by formula (89) of (Ballenegger et al., 2002). This contri-
bution n = 0 is shown to be decaying at infinity faster than any inverse power of
|r− r′| (see formula (58) of (Ballenegger et al., 2002), and the comment following
it).

The asymptotic decay of the two-particle correlation ρT(γa, ra, γb, rb) is in-
ferred from that of the loop correlation ρT(Fa,Fb) by integrating it over the Brow-
nian shapes ξa and ξb. The bond F is rapidly decreasing, and the asymptotic
decay of FR is dominated by the dipolar decays of Wc and Wm: FR(F ,F ′) ∼
−βeγeγ′W(F ,F ′) as |r − r′| → ∞. We further extract this dipolar part from FR

8Strictly speaking, the short-range repulsive potential needed in the framework of Maxwell-
Boltzmann statistics would arise here in the exponent of (4.47). It has no implication in this
discussion about long-range behaviours, and we simply omit it.
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and define the bond

F̃R(F ,F ′) = FR(F ,F ′) + βeγeγ′W(F ,F ′)
∼ 1

2 [βeγeγ′W(F ,F ′)]2 = O(|r − r′|−6) (4.48)

and work now with the three bonds F, F̃R, and W.9

To find out the slowest-decaying diagrams, we write the truncated two-loop
correlation ρT(Fa,Fb) in an exact Dyson series of convolution chains involving W
and H:

ρT(Fa,Fb) =ρ(Fa)ρ(Fb)H(Fa,Fb) − β(K �W � K)(Fa,Fb)

+ β2(K �W � K �W � K)(Fa,Fb) + ... (4.49)

where H denotes the sum of the diagrams that remain connected under removal
of one W-bond and K(F1,F2) = ρ(F1)ρ(F2)H(F1,F2) + δ(F1,F2)ρ(F1). This
topological constraint ensures that H decays at least as r−6. The series (4.49)
is conveniently analysed in Fourier representation with respect to ra − rb. After
expanding W into the sum Wc + Wm, we have three types of chains: pure Wc

or Wm chains and mixed Wc,Wm chains. It is shown in (Cornu, 1996b), (Bry-
dges & Martin, 1999) that the contribution of pure Wc chains to the particle cor-
relation ρT(γa, ra, γb, rb) =

∫
D(ξa)

∫
D(ξb) ρT(Fa,Fb) decays strictly faster than

o(|ra − rb|−6).10 We show below that all other chains containing Wm bonds vanish
identically as the consequence of transversality. This implies that the longest-
range part of the correlations originates from the function H in the first term of
the right-hand side of (4.49), hence the result (4.45).

A chain mixing Wc and Wm bonds must have at least one element Wc�K�Wm

or Wm � K �Wc. In Fourier space, one can write, from (4.28) and (4.22),

(Wc � K �Wm)(γa, ξa, γb, ξb, K) =
∫ 1

0
dsa

∫ 1

0
ds1 (δ(sa − s1) − 1)

4π
K2 eiK·λγaξa(sa)

×
[
T ν2(K, s1)Gν2,νb(K)

] ∫ 1

0
dξνbb (sb)e−iK·λγbξb(sb), (4.50)

where

T ν2(K, s1) =
∑
γ1

∫
D(ξ1)

∑
γ2

∫
D(ξ2) e−iK·λγ1ξ1(s1)K(γ1, ξ1, γ2, ξ2, K)

×
∫ 1

0
dξν22 (s2)eiK·λγ2ξ2(s2) (4.51)

9In (Brydges & Martin, 1999), the bond F is further decomposed into a multipole expansion.
Our bonds FR and F̃R differ formally from their bonds Fl and F̃l only by the inclusion of the
magnetic contribution Wm into W.

10In this proof, only the invariance of H under rotations is used, which also holds when the
magnetic potential is included.
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and K(γ1, ξ1, γ2, ξ2, K) is the Fourier transform of K(F1,F2) with respect to r1−r2.
As the measures D(ξ1) and D(ξ2) and the function K(γ1, ξ1, γ2, ξ2, K) are invariant
under spatial rotations, T ν2(K, s1) transforms as a tensor, implying that it is neces-
sarily of the form T ν2(K, s1) = kν2 a(K, s1) for some rotationally invariant function
a of K. Using kμGμν(K) ≡ 0 one deduces immediately that (4.50) vanishes. The
case of Wm�K�Wc is similar. To see that there are no chains containing only Wm

bonds in ρT(γa, ra, γb, rb), it is sufficient to notice that the integrated root element∫
D(ξa) K�Wm also involves a factor [T ν2(K)Gν2,νb(K)] (for another function T ν2(K)

transforming in a covariant manner), and thereby vanishes for the same reason.
The graphs that do contribute to the coefficient Aab(β, {ργ}) of (4.45) are those

of H that contain bonds with algebraic decay: namely, F̃R and W. To select the
lowest contribution in �, one notes first that W is at least of order �2, as seen
in (4.25), (4.30) which correspond to the lowest-order terms in the multipolar
expansions of Wc and Wm. (Higher-order multipoles generate higher powers of
the de Broglie wavelengths.) Since Φ is rapidly decreasing, the algebraic part of
F̃R is of order �4 and is given by 1

2[βeγeγ′W(F ,F ′)]2, as in (4.48). Thus, up to
order �4, graphs with an algebraic decay can contain only one bond W, two bonds
W, or one bond F̃R belonging to paths connecting the two root points. If there is
a single such link W, by the topological structure of H there exists another path
connecting the root points made of the more rapidly decreasing bonds F and F̃R.
Hence the whole graph has a decay faster than r−6. If there are two W bonds
in between the root points, as each of them is of order �2 all the other bonds and
vertices can be evaluated in the classical limit �→ 0. Consequently, at least one of
the extremities of either bond W is attached to a purely classical part of the graph,
which is independent of the Brownian shapes. We call such a point a classical
end of W. At such points, integration over the Brownian shape of the loop “kills”
the r−3 decay of W (see appendix 5.C), leading to an overall decay faster than r−6.
Finally, at order �4, the only graphs that contribute to (4.45) are constituted by a
single F̃R bond linked to the root points by purely classical subgraphs. The sum
of such graphs contributes to the particle correlation in the large-distance limit as

ρT(γa, ra, γb, rb) ∼
∑
γ1,γ2

[∫
dr ncl

T (γa, γ1, r)
] [∫

dr ncl
T (γ2, γb, r)

]
(4.52)

×
∫

D(ξ1)
∫

D(ξ2) 1
2

[
βeγ1eγ2W

dip(γ1, ξ1, γ2, ξ2, ra − rb)
]2
,

where Wdip = Wc,dip + Wm,dip is the sum of the dipolar parts (4.30) and (4.25) of
Wc and Wm, and ncl

T (γa, γ1, r) is the classical truncated two-point density corre-
lation (including coincident points). The functional integrals in (4.52) have been
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calculated in Section 4.4, see (4.37)-(4.44), yielding the final result

ρT(γa, ra, γb, rb) ∼
�

4β4

240

∑
γ1,γ2

[∫
dr ncl

T (γa, γ1, r)
] [∫

dr ncl
T (γ2, γb, r)

]

×
e2
γ1

e2
γ2

mγ1mγ2

[
1 +

5
βmγ1c2βmγ2c2

]
1

|ra − rb|6
(4.53)

as |ra − rb| → ∞ and at lowest order in �. To this order, the only difference with
(4.44) is the occurrence of the classical correlation functions ncl

T , a manifestation of
the fact that in the quantum many-body problem, every pair of particles contribute
to the tail of the correlation function. This generalizes the result of (Alastuey &
Martin, 1989), formula (5.12), to the inclusion of the magnetic interactions.

As a final comment, we observe that the inclusion of the transverse degrees of
freedom of the field does not modify the charge sum rule in the system of loops
and hence it also holds for the charge correlations in the particle system. This sum
rule reads ∫

dr

∫
D(ξ)

∑
γ

eγρT(F ,F1)
ρ(F1)

= −eγ1 . (4.54)

It states that the charge of the cloud of loops induced around a fixed loop F1

exactly compensates that of F1. The proof can be carried out word by word as in
(Ballenegger et al., 2002, Sec. 6.1.2). It relies exclusively on the long-range part
r−1 of the Coulomb potential Vc and is not altered by the presence of the magnetic
potential Wm.

4.6 Transverse field correlations

A characteristic feature of charged systems is that longitudinal field correlations
always remain long ranged in spite of the screening mechanisms that reduce the
range of the particle correlations. It has been established on a microscopic basis
that the correlations of the longitudinal electric field El behave as (Lebowitz &
Martin, 1984), (Martin, 1988)

〈Eμl (x)Eνl (y)〉T ∼ −∂μ∂ν
1
|x − y|

[
−2π

3

∫
dr |r|2S (r)

]
, |x − y| → ∞, (4.55)

where S (r) is the (classical or quantum-mechanical) charge-charge correlation
function.

In order to obtain the correlations of the transverse fields we first consider
correlations 〈Aμ(x)Aν(y)〉T of the vector potential at free points x and y in space.
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These correlations are easily obtained by functional differentiation, adding to the
original Hamiltonian (4.1) a coupling to an external current J ext(x)

HL,R(J ext) = HL,R − i
∫

dx J ext(x) · A(x), (4.56)

so that

〈Aμ(x)Aν(y)〉T = −
1
β2

δ2

δJμext(x)δJνext(y)
ln Tr e−βHL,R(J ext)

∣∣∣∣∣∣J ext=0

. (4.57)

Decomposing HL,R as in (4.7) one can write

〈Aμ(x)Aν(y)〉T =

= −
1
β2

δ2

δJμext(x)δJνext(y)
ln Trmat

〈
e−βHAeiβ

∫
dx J ext(x)·A(x)

〉
rad

∣∣∣∣∣∣J ext=0

. (4.58)

Using the Feynman-Kac formula as in Section 4.3 one sees that the only modifi-
cation in (4.17) is the replacement of the loop current J (x) by the total current11

J tot(x) = J (x) +J ext(x). (4.59)

The Gaussian integration on the field variables replaces (4.17) by

exp
{
−
β

2

∫
dK

(2π)3

(
Jμtot(K)

)∗Gμν(K)Jνtot(K)
}
= exp

{
−
β

2

∫
dK

(2π)3 Gμν(K)

×
[
(Jμ)∗ Jν +

(
Jμext

)∗ Jν + (Jμ)∗ Jνext +
(
Jμext

)∗ Jνext

]
(K)

}
. (4.60)

Therefore, from (4.60), functional differentiation with respect to J ext according
to (4.58) produces two terms

〈Aμ(x)Aν(y)〉T = 〈Aμ(x)Aν(y)〉0T + 〈A
μ(x)Aν(y)〉mat

T . (4.61)

The first contribution (written in Fourier form)

〈Aμ(x)Aν(y)〉0T =
1
β

∫
dK

(2π)3 eiK·(x−y)Gμν(K)

∼
1

2βr

(
δμν +

rμrν

r2

)
, r → ∞, r = x − y, (4.62)

11As a consequence of the imaginary coupling constant in the Hamiltonian (4.56), the total
current is real, so that we can still apply the Gaussian integration formula used in (4.17).
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arises from the part quadratic in J ext in (4.60). It describes the thermal fluctu-
ations of the free field, and in view of (4.20), decays as r−1. The second term,
coming from the part linear in J ext,

〈Aμ(x)Aν(y)〉mat
T =

= −
∫

dK

(2π)3 eiK·x
∫

dK
′

(2π)3 eiK′·yGμσ(K)Gντ(K
′) 〈Jσ(K)Jτ(K

′)〉T, (4.63)

represents the modification to the free-field fluctuations caused by the presence
of matter. It involves the loop current correlation function 〈Jσ(K)Jτ(K

′)〉T where
the average is taken with respect to the thermal weight (4.23) for the statistical-
mechanical system of loops. Expressing the currents J (K) =

∫
dF j(F , K)ρ̂(F )

in terms of the density of loops ρ̂(F ) =
∑

i δ(F ,Fi) (see (4.16)), one can write this
current correlation in terms of the loop density correlation function nT(γ1, ξ1, γ2, ξ2, K)
(including the contribution of coincident points):

〈Jσ(K)Jτ(K
′)〉T = (2π)3δ(K + K

′)

×
∑
γ1,γ2

∫
D(ξ1)

∫
D(ξ2) T σ(γ1, ξ1, K)

(
T τ(γ2, ξ2, K)

)∗nT(γ1, ξ1, γ2, ξ2, K). (4.64)

The δ(K + K
′) is the manifestation of the translational invariance of the state, and

we have set

T σ(γi, ξi, K) =
eγi√
βmγic2

∫ 1

0
dξσi (si) eiλγi K·ξi(si). (4.65)

When (4.64) is introduced into (4.63), one obtains the final form

〈Aμ(x)Aν(y)〉mat
T = −

∫
dK

(2π)3 eiK·(x−y)Gμσ(K)Gντ(K)Qστ(K), (4.66)

where Qστ(K) is the tensor

Qστ(K) =
∑
γ1,γ2

∫
D(ξ1)

∫
D(ξ2)T σ(γ1, ξ1, K)

(
T τ(γ2, ξ2, K)

)∗nT(γ1, ξ1, γ2, ξ2, K).

(4.67)

To obtain the long-distance behaviour of this correlation we examine the integrand
in (4.67) at small K. Because of isotropy, the tensor Qστ(K) transforms covariantly
under the rotations, and thus is of the form

Qστ(K) = a(K)δστ + b(K)kσkτ, K = |K| (4.68)
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The term kσkτ does not contribute to (4.67) since Gμσ(K) is transversal. Because of
Itô’s lemma, T σ(γi, ξi, K) is linear in K as K → 0, implying a(K) = a K2[1 + o(K)].
Hence, using δμσtr (K)δνσtr (K) = δμνtr (K) one finds

Gμσ(K)Gντ(K)Qστ(K) = 4π a
4π
K2 δ

μν
tr (K)[1 + o(K)] = 4π a Gμν(K)[1 + o(K)] (4.69)

as K → 0. This shows that 〈Aμ(x)Aν(y)〉mat
T has the same type of decay as the free

field part (4.62) with a modified amplitude. Summing up the two contributions
(4.61) gives

〈Aμ(x)Aν(y)〉T ∼
1
2r

(
δμν +

rμrν

r2

) (
1
β
− 4πa

)
, r → ∞. (4.70)

For B(x) = ∇ × A(x), one finds, from (4.70),

〈Bμ(x)Bν(y)〉T ∼
(
∂μ∂ν

1
r

) (
1
β
− 4πa

)
, r → ∞. (4.71)

The constant a = a(�, β, ρ) embodies the effects of matter on the transverse field
fluctuations. It has a relativistic factor (mc2)−1 and vanishes in the classical limit
� → 0 (in accordance to the Bohr–van Leeuwen decoupling) as O(�4) (see ap-
pendix 4.D).12

In order to find the correlations of the transverse electric field

Et(x) = −
1
c
∂A(x, t)
∂t

∣∣∣∣∣
t=0

= −
(
4π�c2

R3

)1/2 ∑
Kλ

g(K)
eKλ√
2ωK

( iωK

c
α∗Kλe

−iK·x −
iωK

c
αKλeiK·x

)
, (4.72)

we couple the latter to an external polarisation Pext(x),

HL,R(Pext) = HL,R − i
∫

dx Pext(x) · Et(x), (4.73)

and proceed as after (4.56). This amounts to replacing everywhere J ext(K) by
iKPext(K) so that the right-hand side of equation (4.60) is changed into

exp
{
−
β

2

∫
dK

(2π)3 Gμν(K) (4.74)

×
[
(Jμ)∗ Jν − iK

(
Pμext

)∗ Jν + iK (Jμ)∗ Pνext + K
2 (
Pμext

)∗ Pνext

]
(K)

}
.

12The O(�4) decay is erroneous. In fact, a vanishes as O(�2). See footnote 13.
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As Pext(r) and J (r) are real, P∗ext(K) = Pext(−K) and likewise for J . From the
change of variable K �→ −K, one sees that the second term in the integrand in (4.74)
is exactly compensated by the third term. Only the term quadratic inPext remains,
which is responsible upon functional differentiation for the thermal fluctuations
of the free field, as in (4.62). Hence, the correlations of the transverse part of the
electric field are decoupled from matter and one finds

〈Eμt (x)Eνt (y)〉T = 〈Eμt (x)Eνt (y)〉0T ∼
(
∂μ∂ν

1
r

)
1
β
, r → ∞. (4.75)

The asymptotic correlation of the complete electric field E(x) = El(x) + Et(x)
follows from (4.55) and (4.75) (one can check by similar calculations that the
cross correlation 〈Eμl (x)Eνt (y)〉T vanishes identically):

〈Eμ(x)Eν(y)〉T = 〈Eμl (x)Eνl (y)〉T + 〈Eμt (x)Eνt (y)〉T

=

(
∂μ∂ν

1
r

) (
2π
3

∫
dr |r|2S (r) +

1
β

)
, r → ∞. (4.76)

In the classical limit, S (r) satisfies the second-moment Stillinger–Lovett sum rule
(Martin, 1988) −2π

3

∫
dr |r|2S (r) = 1/β. Hence, the asymptotic longitudinal elec-

tric field correlations in the matter are exactly compensated by those of the free
radiation part, as noted in (Felderhof, 1965). However, this no longer holds for
quantum plasmas. As an illustration, for the quantum one-component plasma (jel-
lium), one has (Pines & Nozières, 1966)

−2π
3

∫
dr |r|2S (r) = �ωp

2 coth
(
�ωpβ

2

)
=

1
β
+
β

3

(
�ωp

2

)2

+ O(�4), (4.77)

where ωp is the plasmon frequency. The long range of the electric field corre-
lations is thus a purely quantum-mechanical effect. These findings are further
discussed in the concluding remarks (Section 4.8).

4.7 Bose and Fermi statistics

In this final section we introduce the needed modifications when the Fermionic or
Bosonic particle statistics are taken into account.

The Bose or Fermi statistics of the particles can be incorporated in the formal-
ism following the same procedure as described in (Cornu, 1996a), (Brydges &
Martin, 1999, Sec. V). The matrix elements of (4.8), which is still an operator de-
pending on the particle variables, are to be evaluated with properly symmetrized
(antisymmetrized) states. When combining the decomposition of the permutation



4.7. Bose and Fermi statistics 137

into cycles with the Feynman-Kac-Itô path integral representation this leads to
generalize the previous loops F = (r, γ, ξ) to Brownian loops L = (q, r, γ,X)
that carry q particles (a set of particles labeled by indices belonging to a permu-
tation cycle of length q). The loop is located at r and has a random shape which
is a Brownian bridge X(s), 0 ≤ s ≤ q, X(0) = X(q) = 0 with zero mean and
covariance ∫

D(X) Xμ(s1)Xν(s2) = δμν q
[
min

(
s1

q
,

s2

q

)
−

s1

q
s2

q

]
. (4.78)

We merely give the final formulae since all steps are essentially identical as those
presented in the above mentioned works.

The grand canonical partition function of the particle system, with the field
degrees of freedom integrated out, takes the following classical-like form in the
space of loops

ΞΛ =

∞∑
n=0

1
n!

∫ n∏
i=1

dLi z(Li) exp
(
− βU(L1, . . . ,Ln)

)
. (4.79)

Integration on phase space means integration over space and summation over all
internal degrees of freedom of the loops:∫

dL · · · =
∫

dr
∑
γ

∞∑
q=1

∫
D(X) · · · . (4.80)

U(L1, . . . ,Ln) is the sum of the pair interactions between two different loops
eγieγ j[Vc(Li,L j) +Wm(Li,L j)] with

Vc(Li,L j) =
∫ qi

0
ds1

∫ q j

0
ds2 δ(s̃1 − s̃2)

1∣∣∣ri + λγiXi(s1) − r j − λγ jX j(s2)
∣∣∣ (4.81)

the Coulomb potential, and

Wm(Li,L j) =
1

β
√mγimγ jc2

∫
dK

(2π)3 eiK·(ri−r j) (4.82)

×
∫ qi

0
dXμi (s1) eiK·λγi Xi(s1)

∫ q j

0
dXνj (s2) e−iK·λγ j X j(s2) Gμν(K)

the effective magnetic potential obtained after integrating out the field variables.
Here s̃ = s mod 1 and δ(s̃) =

∑∞
n=−∞ e2iπns is the periodic Dirac function of period

1 that takes into account the equal time constraint imposed by the Feynman-Kac
formula. Finally, the activity z(Li) of a loop

z(Li) =
(ηγi)

qi−1

qi

zqi
γi

(2πqiλ2
γi

)3/2 exp(−β[Uself(Li) +Vwalls(Li)]), zγi = eβμγi

(4.83)
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incorporates the chemical potential μγi of the particle, the effects of quantum
statistics (ηγi = 1 for bosons and ηγi = −1 for fermions), and the internal interac-

tionUself(Li) =
e2

i
2 (Vc +Wm)(Li,Li) of the particles belonging to the same loop

(omitting the infinite Coulomb self-energies of the point particles). The addition
of the magnetic potential Wm is the only modification compared to the formal-
ism previously developed for pure Coulombic interactions. Maxwell-Boltzmann
statistics and the potentials (4.22) and (4.14) of Section 4.3 are recovered when
only single-particle loops (q = 1) are retained.

At this point, due to the classical-like structure of the partition function (4.79),
methods of classical statistical mechanics can be used in the auxiliary system
of loops, in particular the technique of Mayer graphs, as in Section 4.5. The
statistics of the particles affects the coefficients of the tails of the density and field
correlations, but not their general forms (4.45), (4.71) and (4.76).

4.8 Concluding remarks

The Feynman–Kac–Itô path integral representation of the Gibbs weight enables
one to integrate out the (classical) field variables. This yields an exact pairwise
magnetic potential in the space of loops, which is asymptotically dipolar. It gen-
erates small (O((βmc2)−2)) corrections to the tail of the particle correlation due to
the pure Coulombic interaction.

A word is necessary about spin interactions that have not been included in the
above discussion. Spin-1/2 electrons give rise to the additional term −ν

∑n
i=1σi ·

B(ri) in the Hamiltonian, with B(r) = ∇ ∧ A(r), ν = gse�
4mc , gs the gyromagnetic

factor, and σ the Pauli matrices. Using spin coherent states (Klauder & Skager-
stam, 1985), a functional integral representation of the Gibbs weight can be con-
structed including the coupling of the spins to the field. Since this coupling is
linear with respect to the vector potential, Gaussian integration on the field vari-
ables leads again to an effective spin-spin interaction Ws(i, j) and effective cross
interactions Wsm(i, j) and Wms(i, j) between spin and orbital magnetism; details
can be found in (Boustani, 2005). One finds that these interactions are of dipolar
type ∼ r−3, r → ∞ and they have to be added to the magnetic potential Wm(i, j).
In a homogeneous and isotropic phase, the spin interaction terms contribute to the
r−6 tail of the particle correlations with the same amplitude λ

2
aλ

2
be2

ae2
bρaρb

mambc4 , up to nu-
merical factors, as that found in Section 4.4 in the case of the magnetic potential
Wm.

Regarding the electric field correlations in the plasma, we also find that they
have an algebraic decay of dipolar type. This is in disagreement with the macro-
scopic calculation presented by Landau and Lifshitz (Landau et al., 1984, §88),
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based on linear response theory and the fluctuation-dissipation theorem. Indeed,
the electric field fluctuations obtained in this theory are short ranged (exponen-
tially fast decaying): unlike in our calculation, the algebraic parts of the longitu-
dinal and transverse correlations compensate exactly in the Landau and Lifshitz
formulae (Jancovici, 2005). Understanding the relation between our strictly mi-
croscopic approach and the macroscopic theory of field fluctuations is an open
problem.

Let us, however, briefly point out some differences between the two approaches.
The microscopic approach involves all length scales, whereas Landau and Lifshitz
assume that the correlations of the polarisation are local (δ correlated in space)
and thus deal with a wave-number-independent dielectric function ε(ω). Tak-
ing into account the wave-number dependence, it is likely that ε(K, ω) has terms
non-analytic in K, reflecting the fact that Coulombic matter has algebraically de-
caying correlations. In fact, for the jellium model, the static dielectric function
ε(K, ω = 0) has a singular term ∼ |K| in its small-K expansion (Cornu & Martin,
1991). It is possible that in a non-local generalization of the Landau–Lifshitz the-
ory such singular terms also generate power-law decays of the field correlations.
Furthermore, the magnetic permeability is usually set equal to that of the vacuum,
thus ignoring the magnetization fluctuations, whereas in our calculation the latter
are properly included.

We stress again that the results of this paper hold when the electromagnetic
field is classical, which is supposed to correctly depict the small-wave-number
regime, as said in the Introduction. Hence, the occurrence of the Planck constant
originates exclusively from the quantum-mechanical nature of matter. If the field
is quantized, we can, however, not exclude an interplay between �matter and �field,
which could lead to a modification of the asymptotic formulae presented in the
paper.
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Appendix 4.A

To establish (4.40) according to the middle point prescription (4.12) one has to
evaluate the rotationally covariant tensor

∫
D(ξ)

∫ 1

0
dξα(s)

∫ 1

0
dξγ(t) ξω(s)ξε(t) = (4A.1)

= lim
n,m→∞

n,m∑
k,l=1

∫
D(ξ)

[
ξα (kn)−ξα

(
kn− 1

n

)] [
ξγ (lm)−ξγ

(
lm− 1

m

)]

×
1
2

[
ξω (kn)+ξω

(
kn− 1

n

)] 1
2

[
ξε (lm)+ξε

(
lm− 1

m

)]
= δαγδωεA1 + δ

αωδγεA2 + δ
αεδγωA3,

where kn =
k
n and lm =

l
m . Setting C(s, t) = δμν(min(s, t)− st) (see (4.11)), one has

A1 = lim
n,m→∞

1
4

[
C (kn, lm) −C

(
kn, lm− 1

m

)
−C

(
kn− 1

n , lm

)
+C

(
kn− 1

n , lm− 1
m

)]
×

[
C (kn, lm) +C

(
kn, lm− 1

m

)
+C

(
kn− 1

n , lm

)
+C

(
kn− 1

n , lm− 1
m

)]
,

A2 = lim
n,m→∞

1
4

[
C (kn, kn) +C

(
kn, kn− 1

n

)
−C

(
kn− 1

n , kn

)
−C

(
kn− 1

n , kn− 1
n

)]
×

[
C (lm, lm) +C

(
lm, lm− 1

m

)
−C

(
lm− 1

m , lm

)
−C

(
lm− 1

n , ln− 1
n

)]
,

A3 = lim
n,m→∞

1
4

[
C (kn, lm) +C

(
kn, lm− 1

m

)
C

(
kn− 1

n , lm

)
−C

(
kn− 1

n , lm− 1
m

)]
×

[
C (lm, kn) +C

(
lm, kn− 1

n

)
−C

(
lm− 1

m , kn

)
−C

(
lm− 1

m , kn− 1
n

)]
. (4A.2)

This results from the application of Wick’s theorem to the Gaussian average (4A.1)
with covariance (4.11). Expanding C

(
kn − 1

n , lm

)
= C (kn, lm) − 1

n (∂1C) (kn, lm) and

C
(
kn, lm − 1

m

)
= C (kn, lm) − 1

m (∂2C) (kn, lm) and taking the limits n,m→ ∞ gives

A1 =

∫ 1

0
ds

∫ 1

0
dt C(s, t)(∂1∂2C)(s, t) =

1
12
,

A2 =
1
4

(∫ 1

0
ds

d
ds

C(s, s)
)2

= 0,

A3 =

∫ 1

0
ds

∫ 1

0
dt (∂1C)(s, t) (∂2C)(s, t) = −

1
12
, (4A.3)

hence the result (4.40).
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Appendix 4.B

From (4.22) and (4.28) the cross Coulomb-magnetic term is

β2e2
ae2

b

∫
D(ξa)ρ(ξa)

∫
D(ξb)ρ(ξb) Wc(Fa,Fb)Wm(Fa,Fb) =

βe2
ae2

b√
mambc2

∫
dK1

(2π)3

∫
dK2

(2π)3 ei(K1+K2)·(ra−rb)
∫ 1

0
ds1

∫ 1

0
ds2

(
δ(s1 − s2) − 1

)
×

(
Hμa

)∗(K1, K2, s1)Hνb(K1, K2, s2)
4π
K2

1

Gμν(K2), (4B.1)

where

Hμa (K1, K2, s1) =
∫

D(ξa)ρ(ξa) e−iλaK1·ξa(s1)
∫ 1

0
dξμa(s) e−iλaK2·ξa(s). (4B.2)

Because of the rotational invariance of D(ξa)ρ(ξa), averages of odd powers of ξa
vanish. This implies that in the small-K1, K2 expansion of Hμa (K1, K2, s1) only odd
monomials in K1, K2 occur:

Hμa (K1, K2, s1) ∼
∫

D(ξa)ρ(ξa)
∫ 1

0
dξμa(s)

(
iλaK2 · ξa(s)

)
+ O3(K1, K2)

= const × kμ2 + O3(K1, K2), (4B.3)

where O3(K1, K2) represent monomials of order 3 in the components of K1, K2. The
same holds for Hμb (K1, K2, s2). Since kμ2Gμν(K2) = 0 by transversality, one con-
cludes that the term (4B.1) decays at least as |ra − rb|−8.

Appendix 4.C

If point i in Wc(i, j) or Wm(i, j) is a classical end, there is no other ξi dependence
at this point than that arising from these bonds. In the asymptotic formula (4.30)
for Wc, this dependence is linear and thereby vanishes upon the space-inversion
invariant D(ξi) integration. In the case of Wm, from formula (4.22), the D(ξi)
integration yields the factor

∫
D(ξi)

∫ 1

0
dξμi (s1) eiK·λiξi(s1) ∝ kμ (4C.1)

because of covariance under rotation. Hence, this contribution vanishes as a con-
sequence of transversality kμGμν(K) = 0.
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Appendix 4.D

An explicit expression for the constant a = a(�, β, ρ) follows from taking the trace
in equation (4.69) and using (4.67) expanded for small K. This yields

a =
1
2

∑
γ,γ′

eγλγeγ′λγ′
β
√mγmγ′c2

∫
D(ξ)

∫
D(ξ′)

×
∫ 1

0
dξμ(s)

∫ 1

0
dξν(s′)

(
K̂ · ξ(s)

)(
K̂ · ξ′(s′)

)
δ
μν
tr (K̂) nT(γ, ξ, γ′, ξ′, K = 0), (4D.1)

where K̂ = K/K. As λγλγ′ is of order �2, at lowest order in � one can set � = 0 in the
correlation function. The latter becomes independent of the quantum fluctuations
ξ, ξ′ and reduces to the density correlation function of the corresponding classical
system. The remaining functional integrals, of the type

∫
D(ξ)

∫ 1

0
dξμ(s)ξσ(s),

vanish identically. The terms of order O(�) in nT are necessarily linear in ξ or
ξ′. They do not contribute to a since averages of odd powers ξ or ξ′ are zero,
implying that there are no �3-terms in a. We thus conclude that a is O(�4).13
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In this chapter, we come back to the Casimir force exerting between two plas-
mas A and B. We apply to this setting the path-integral formalism developed in
Chapter 4, so as to improve the basic classical model presented earlier by includ-
ing quantum mechanics and the thermalised coupling of matter with the radiation
field. The main result is that the magnetic Lorentz forces, mediated by the trans-
verse field, turn out to not affect the large-distance asymptotic result of the force,
namely,

f (d) = −
ζ(3)

8πβd3 + O(d−4).

Interplasma correlations are nevertheless supplemented by new terms of magnetic
origin, but these are shielded away by screening effects when integrated into the
force.

The object of this chapter has been summed up in a short letter published in
Europhys. Lett., 72, 42–48 (2005), and reproduced hereinafter. Its contents is
as follows. The complete two-plasma system of nonrelativistic quantum charges
interacting with the radiation field is detailed. The field is treated classically on
the ground that the correlations it induces across the two plasmas involve only
long wavelengths (semi-classical regime; see also the discussion in Section 2.3.4).
To simplify the presentation, the quantum particles are said to obey Maxwell–
Boltzmann statistics. The Casimir force is defined as the derivative of the free
energy with respect to d. To cast the full partition function in a classical-like
form, the Feynman–Kac–Itô formalism — which is shortly surveyed — is used.
It thus becomes an integral on loops’ degrees of freedom of the Gibbs weight
e−βU , where U contains pairwise loop interactions of Coulomb origin, Vc, and of
magnetic origin, Wm. The latter interaction results from the exact integration of
the transverse field’s degrees of freedom. Finally, the procedure to arrive at the
asymptotic force using resummed Mayer graphs is tersely sketched, and the result
is discussed.

In the remaining sections of this chapter, following the article, we present the
details of this calculation. Proper Fermi and Bose statistics of the particles will be
included.

The calculation is achieved assuming plasmas of finite thickness.
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The standard expression of the high-temperature Casimir force between per-
fect conductors is obtained by imposing macroscopic boundary conditions
on the electromagnetic field at metallic interfaces. This force is twice larger
than that computed in microscopic classical models allowing for charge
fluctuations inside the conductors. We present a direct computation of the
force between two quantum plasma slabs in the framework of non relativis-
tic quantum electrodynamics including quantum and thermal fluctuations of
both matter and field. In the semi-classical regime, the asymptotic force
at large slab separation is identical to that found in the above purely clas-
sical models, which is therefore the right result. We conclude that when
calculating the Casimir force at non-zero temperature, fluctuations inside
the conductors can not be ignored. Aspects of this subject are treated in a
companion letter by B. Jancovici and L. Šamaj (Jancovici & Šamaj, 2005).

PACS numbers : 05.30.-d— Quantum statistical mechanics.
12.20.-m— Quantum electrodynamics
11.10.Wx— Finite-temperature field theory

Casimir showed in 1948 that the zero-point energy of the quantum electromag-
netic field generates an attractive force between two perfectly conducting metallic
plates at distance d and zero temperature (Casimir, 1948). In his calculation, the
microscopic structure of the conductors is not taken into account. The latter are
merely treated as macroscopic boundary conditions for the electromagnetic field
requiring the vanishing of the tangential electric field. This geometrical constraint

1E-mail: pascal.buenzli@epfl.ch
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modifies the field eigenmodes depending on d. The d-dependence of the modified
zero-point energy is the source of the well known Casimir force

f vac(d) = −
π2
�c

240 d4 (5.1)

(� denotes Planck’s constant, c the speed of light).
The generalisation of Casimir’s calculation to thermalized fields was given

some years later in (Fierz, 1960; Mehra, 1967), see (Balian & Duplantier, 2003)
for a recent account. When the temperature T is different from zero, one can form
the dimensionless parameter α = βπ�c/d (the ratio of the thermal wave length of
the photon to the conductors separation; β is the inverse temperature). A large
value of α (low temperature, short separation) characterizes the quantum regime
whereas a small value of α (high temperature, large separation) yields a purely
classical asymptotic result (independent of � and c)

f = −
ζ(3)

4πβd3 + O(e−b/α), α→ 0, b > 0 (5.2)

where ζ(s) is the Riemann zeta function. Each field mode is a thermalized quan-
tum mechanical oscillator with frequencies obtained from the previously described
macroscopic boundary conditions. All fluctuations inside the conductors are ig-
nored. We note that in fact, on purely dimensional grounds, a term ∝ d−3 must
also be proportional to kBT , the only issue being the numerical value of the pro-
portionality constant. This issue is the subject of this letter.

In recent times, a number of works have adressed the question of the inci-
dence of the microscopic charge and field fluctuations inside the conductors on the
Casimir force (Forrester, Jancovici, & Téllez, 1996), (Jancovici & Téllez, 1996),
(Buenzli & Martin, 2005). The considered models are classical : the conduc-
tors are represented by slabs (or surfaces) containing mobile charges in thermal
equilibrium and interacting through the sole Coulomb potential. These models all
yield the same universal result for the mean electrostatic force between the slabs
at fixed temperature and large distance

〈 f 〉 = −
ζ(3)

8πβd3 + O(d−4), d → ∞ (5.3)

Universality means that the asymptotic force does not involve any parameter char-
acterizing the material constitution of the conductors: particle charges and masses,
densities ρ and slab thicknesses.2 In (Forrester et al., 1996), the authors study a
statistical mechanical system of charges confined to a plane at distance d of a

2In microscopic conductor models, there is a new energy parameter e2/ρ−1/3, the mean poten-
tial energy, so that universality does not follow from a simple dimensional analysis.
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macroscopic (non fluctuating) planar conductor. In (Jancovici & Téllez, 1996),
they show that replacing the above macroscopic conductor by fluctuating charges
does not alter the result (5.3). We provide in (Buenzli & Martin, 2005) a general
derivation of (5.3) showing that universality is guarantied by perfect screening
sum rules (Martin, 1988).

If one compares the result (5.3) with (5.2), one sees that the extrapolation
of Casimir’s calculation to the classical regime is larger by a factor 2 than that
obtained in the classical microscopic models. The two approaches are based on
different premises : (5.2) was derived from the frequency spectrum of the full elec-
tromagnetic field but treating the metals as macroscopic bodies without internal
structure. One the contrary, the force in (5.3) is purely electrostatic (longitudinal
field) and it originates from the particle fluctuations inside the conductors.

This calls for a more complete model that incorporates the dynamical part of
the field (transverse field) in addition to the internal degrees of freedom of the
conductors. A preliminary remark is in order: it is well known that classical
matter in thermal equilibrium always decouples from the transverse field because
of the Bohr–van Leeuwen theorem (Alastuey & Appel, 2000). It is therefore
necessary to treat the conductors’ charges quantum mechanically. The complete
model is formulated as follows. One considers two parallel slabs A and B of
surface L2, thickness a and at a distance d apart. They contain non relativistic
quantum charges (electrons, ions, nuclei) with appropriate statistics. The total
charge in each slab is taken equal to zero. The slabs are immersed in a quantum
electromagnetic field, which is itself enclosed into a larger box K with sides of
length R, R � L, a. The Hamiltonian of the total finite volume system reads in
Gaussian units3

H =
∑

i

(
pi −

eγi
c A(ri)

)2

2mγi

+
∑
i< j

eγieγ j

|ri − r j|
+

∑
i

Vwalls(γi, ri) + Hrad
0 (5.4)

The sums run on all particles with position ri and species index γi; Vwalls(γi, ri) is
a steep external potential that confines the particles in the slabs . It can eventually
be taken infinitely steep at walls’ position implying Dirichlet boundary conditions
for the particle wave functions.

The electromagnetic field is written in the Coulomb (or transverse) gauge so
that the vector potential A(r) is divergence free and Hrad

0 is the Hamiltonian of
the free radiation field. For it we impose periodic boundary conditions on the
faces of the large box K. Hence expanding A(r) in the plane waves modes K =

3The Pauli coupling terms between spins and magnetic field are not taken into account here.
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( 2πnx
R ,

2πny

R ,
2πnz

R ) gives the usual formulae

A(r) =
(
4π�c2

R3

)1/2 ∑
K,λ

g(K)
eK(λ)
√

2ωK

(a∗K,λe
−iK·r + aK,λeiK·r) (5.5)

Hrad
0 =

∑
K,λ

�ωK a∗K,λaK,λ, ωK = c|K| (5.6)

In (5.5), eK(λ), λ = 1, 2, are the polarization vectors and g(K), g(0) = 1, is a form
factor that takes care of ultra-violet divergences.

We suppose that the matter in the slabs is in thermal equilibrium with the
radiation field and therefore introduce the finite volume free energy of the full
system at temperature T

ΦR,L,d = −kBT ln Tr e−βH (5.7)

where the trace Tr ≡ TrmatTrrad is carried over particles’ and field’s degrees of
freedom. The force between the slabs by unit surface is now defined by

f (d) = lim
L→∞

lim
R→∞

fR,L(d) with fR,L(d) = −
1
L2

∂

∂d
ΦR,L,d (5.8)

Adding and substracting the free energy of the free photon field in (5.7) leads to

ΦR,L,d = −kBT ln
(
Tr e−βH

Zrad
0

)
− kBT ln Zrad

0 (5.9)

where Zrad
0 is the partition function of the free photon field in the volume K. Since

the last term of (5.9) is independent of d, it does not contribute to the force (5.8).
Therefore

f (d) = kBT lim
L→∞

lim
R→∞

1
L2

∂

∂d
ln

(
Tr e−βH

Zrad
0

)
(5.10)

In principle f (d) yields the Casimir force taking into account quantum and thermal
fluctuations of both matter and field.

The main result presented in this letter is that, in the semi-classical regime, the
dominant term of the large distance behaviour of the force (5.10) is still given by
the universal classical behaviour (5.3). This regime is obtained when the particle
thermal wave lengths λγ = �(β/mγ)1/2 are much smaller than the slabs’ thickness
and separation (λγ � a, d).

More precisely, the force is of the form

f (d) = −
ζ(3)

8πβd3 + R(β, �, d), where R(β, �, d) = O(d−4) (5.11)
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namely, the quantum corrections included in the remainder R(β, �, d) only occur
at the subdominant order d−4. We emphasize that it is far from evident that the
dominant d−3 term is identical to that of the strictly classical model (5.3) at any
fixed temperature. It is indeed known (Cornu, 1996; Brydges & Martin, 1999)
that quantum Coulomb correlations have an algebraic decay due to dipolar effec-
tive interactions generated by the intrinsic flucutations of the charges (see below).
Such dipolar interactions could contribute to the d−3 term, as they would in a di-
electric medium. But they do not because of the perfect screening sum rules that
hold in conducting phases.

The formalism adapted to the investigation of the high temperature (or semi-
classical) regime is the Feynman-Kac-Itô path integral representation of the Gibbs
weight. In this formalism a quantum point particle of species γ is represented by
a closed Brownian path r + λγξ(s), 0 ≤ s < 1, ξ(0) = ξ(1) = 0, starting at
r and of extension λγ: it can be viewed as a charged random wire at r. Thus
the ensemble of wires can be treated as a classical-like system with phase space
points (ri, ξi). The wire shape λγξ(s) (the quantum fluctuation) plays the role
of an internal degree of freedom; see (Brydges & Martin, 1999), section IV, for
more details on this formalism. Here, for simplicity, we use Maxwell-Boltzmann
statistics for the particles. We also treat the field classically on the ground that
the spacing between the dimensionless energy levels β�ωK of the K field mode
become vanishingly small in the high temperature and large distance asymptotics
(α � 1). A complete presentation will be found in (Boustani, Buenzli, & Martin,
2006), (Buenzli & Martin, 2006).

The Gibbs weight associated to n wires is

exp
(
−β

n∑
i< j

eγieγ jV
c(ri, ξi, r j, ξ j) + i

n∑
j=1

√
βe2
γ j

mγ j c
2

∫ 1

0
dξ j(s) · A(r j + λγ jξ j(s))

)
(5.12)

where

Vc(ri, ξi, r j, ξ j) =
∫ 1

0
ds

1
|ri + λγiξi(s) − r j − λγ jξ j(s)|

(5.13)

is the Coulomb potential between two wires and the vector potential part a stochas-
tic line integral that represents the flux of the magnetic field across the wire. The
vector potential is itself a random field distributed by the normalized Gaussian
thermal weight e−βH

rad
0 /Zrad

0 . Then the partial trace 〈 · · · 〉rad =
1

Zrad
0

Trrad(e−βH
rad
0 · · · )
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over the transverse field degrees of freedom in (5.10) is easily performed〈
exp

(
i

n∑
j=1

√
βe2
γ j

mγ j c
2

∫ 1

0
dξ j(s) · A(r j + λγ jξ j(s))

)〉
rad

=
( n∏

i=1

e−βe
2
γi

Wm(0,ξi,0,ξi)
)

e−β
∑n

i< j eγi eγ j W
m(ri,ξi,r j,ξ j) (5.14)

In (5.14) Wm is a double stochastic integral

eγieγ jW
m(ri, ξi, r j, ξ j) =

1
β
√mγimγ jc2

∫
dK

(2π)3

3∑
μ,ν=1

j∗μ(K, i)Gμν(K) jν(K, j) (5.15)

where

Gμν(K) =
4π|g(K)|2

|K|2
δ
μν
tr (K), δμνtr (K) = δμν −

kμkν

|K|2
(5.16)

is the free field covariance and δμνtr (K) the transverse Kronecker symbol.4 In (5.15),
j(K, i) is the Fourier transform of the line current j(x, i)=eγi

∫ 1

0
dξi(s)δ(x−ri−λγiξi(s))

associated to the wire i. One sees that the transverse part of the field gives rise to
an effective pairwise magnetic interaction Wm that has (up to a factor) the same
form as the classical energy of a pair of current wires. Its ratio to the Coulomb en-
ergy (5.13) is of the order of kBT divided by the rest mass energy of the particles.
It accounts for orbital diamagnetic effects, which are small in normal conduc-
tors. Performing a small K expansion in the integrand of (5.15) and noting that∫ 1

0
dξ(s) = 0 one sees that the large distance behaviour of Wm is dipolar

eγieγ jW
m(ri, ξi, r j, ξ j) ∼

1
β
√mγimγ jc2

∫ 1

0
dξi(s1) ·

∫ 1

0
dξ j(s2)

×
(
eγiλγ jξi(s1) · ∇ri

) (
eγiλγ jξ j(s2) · ∇r j

) 1
|ri − r j|

(5.17)

Having now identified the basic effective pair interactions between the random
wires, namely the Coulomb potential Vc(i, j) (5.13) and the magnetic potential
Wm(i, j) (5.15), it is possible to proceed exactly as in the treatment of classical
charged fluids (Hansen & McDonald, 1986). One sees that Vc(i, j) differs from
the genuine classical electrostatic interaction between two charged wires

Vel(i, j) =
∫ 1

0
ds1

∫ 1

0
ds2

1
|ri + λγiξi(s1) − r j − λγ jξ j(s2)|

(5.18)

4The product in (5.14) contains the magnetic self energies of the wires.
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by the quantum-mechanical “equal-time constraint” imposed by the Feynman-Kac
formula. It is therefore useful to split Vc(i, j) = Vel(i, j) +Wc(i, j), where

Wc(i, j) =
∫ 1

0
ds1

∫ 1

0
ds2 (δ(s1 − s2) − 1)

1
|ri + λγiξi(s1) − r j − λγ jξ j(s2)|

(5.19)

is the part of Vc(i, j) due to intrinsic quantum fluctuations (Wc(i, j) vanishes if �
is set equal to zero). Its large distance behaviour originates from the term bilinear
in ξ1 and ξ2 in the multipolar expansion of the Coulomb potential in (5.19). It is
dipolar and formally similar to that of two electrical dipoles of sizes e1λ1ξ1 and
e2λ2ξ2.

eγieγ jW
c(ri, ξi, r j, ξ j)

∼
∫ 1

0
ds1

∫ 1

0
ds2 (δ(s1 − s2)) − 1)

(
eγiλγiξi(s1) · ∇ri

) (
eγ jλγ jξ j(s2) · ∇r j

) 1
|ri − r j|

(5.20)

Introducing the diagrammatic representation of the correlation functions by
Mayer graphs, we perform the usual resummations of Vel–chains to sum the Cou-
lomb divergences. This provides a short range screened potential Φ(i, j), as in
the classical Debye-Hückel mean-field theory. Mayer graphs are reorganized in
integrable prototype graphs with bonds

F(i, j) = −βeγieγ jΦ(i, j) (5.21)

FR(i, j) = exp[−βeγieγ j(Φ(i, j) +Wc(i, j) +Wm(i, j))] − 1 + βeγieγ jΦ(i, j) (5.22)

with the constraint of excluded convolution rule between F(i, j) bonds, namely
chains of F bonds are forbidden to avoid double counting of the original Mayer
graphs.

We now sketch the final steps. To obtain the force, one needs to find the
asymptotic form of the correlation between a wire in A and a wire in B. Set
F(i, j) = FAB (FAA) when particle i belongs to slab A and particle j belongs
to slab B (A), and likewise for FR(i, j). Following the methods of (Buenzli &
Martin, 2005), one shows that the bond FAB is responsible for the universal term
−ζ(3)/(8πβd3) of (5.11). Some care has to be exercised with the bond FR

AB that
embodies the effect of field and particle quantum fluctuations through Wm and Wc.
It has a dipolar long distance behaviour FR(i, j) ∼ −βeγieγ j(W

c(i, j) +Wm(i, j)) ∼
|ri − r j|−3 that might contribute to the force. In forming the complete correla-
tion function of the two slab system, the bonds FAB and FR

AB have to be dressed
at their extremities by appropriate internal correlations of the individual slabs in
conformity with the diagrammatic rules. Thus, the complete expressions that en-
ters in the force formula at large separation are of the form GAA � FAB �GBB and
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HAA�FR
AB�HBB. The formation of the slabs’ internal correlations GAA and HAA in

these terms is not the same because of the excluded convolution rule that applies
to FAB but not to FR

AB. Working out the explicit expressions, one sees that perfect
screening sum rules in the system of wires applied to GAA � FAB �GBB imply the
universality of the d−3 term in (5.11), but the term HAA � FR

AB � HBB yields no
contribution at order d−3 because of the same sum rules.

Even without going through the detailed calculations, it is clear from the
asymptotic forms (5.17), (5.20) that the corrections to the electrostatic result (5.3)
due to the quantum nature of the charges and the radiation field are controlled by
the thermal wave lengths λγ = �

√
β/mγ, thus small at high-temperature. Because

of the Bohr-van Leeuwen theorem, the free energy (5.7) of the complete model
continuously approaches that of the corresponding pure electrostatic classical sys-
tem as the λγ vanish. The force cannot jump by a factor 2 in this limit.

One must conclude from this analysis that the discrepancy between (5.2) and
(5.3) is not due to the omission of the transverse part of the electromagnetic inter-
action in the classical Coulombic models of refs. (Forrester et al., 1996; Jancovici
& Téllez, 1996; Buenzli & Martin, 2005) but should be attributed to the very
fact that fluctuations inside the conductors are ignored in the calculation lead-
ing to (5.2). Hence (5.3) is the correct asymptotic form of the high-temperature
Casimir force. In other words, the description of conductors by mere macroscopic
boundary conditions is physically inappropriate whenever the effect of thermal
fluctuations on the force are considered.

One the other hand, recent experiments validate the zero temperature formula
(5.1). In (Bressi, Carugno, Onofrio, & Ruoso, 2002) the authors find an experi-
mental agreement with the value of Casimir force’s strength π2

�c/240 to a 15%
precision level. This indicates that fluctuations in conductors are drastically re-
duced as the temperature tends to zero and possibly have no more effect on the
force at T = 0. A full understanding of the crossover from the high temperature
regime (5.11) to the zero temperature case is an open problem.

Finally we like to comment on the Lifshitz versus Schwinger method to take
the metallic limit in their theories of forces between macroscopic dielectric bodies.
In (Lifshitz, 1955) Lifshitz obtained the high-temperature large-distance (α � 1)
force between two dielectric slabs having a static dielectric constant ε as

f (d) ∼ −
1

16πβd3

∫ ∞

0
ds

s2

Δ2es − 1
, Δ =

ε + 1
ε − 1

(5.23)

which is easily seen to reduce to (5.3) in the perfect conductor limit of electro-
statics ε → ∞. In (Schwinger, DeRaad, & Milton, 1978), Schwinger et al. have
proposed to take the limits in the reverse order, i.e., the perfect conductor limit
is taken first and the high-temperature large-distance asymptotics afterwards, re-
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sulting in the value (5.2). In the light of the preceding considerations, the Lifshitz
procedure is the right one to recover the high temperature regime for conductors.

In a companion letter (Jancovici & Šamaj, 2005), B. Jancovici and L. Šamaj
present closely related aspects of the classical Casimir force, in particular the role
of field fluctuations in classical conductors as well as a more thorough analysis of
the Lifshitz theory.
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5.1 The force expressed in the loop formalism

As said in the introduction of this chapter, we expose hereafter the details of the
calculations outlined in the preceding letter. Due to the similarity of the loop
formalism with the classical system of charges, we follow (see Section 2.5.6) the
classical route leading to the asymptotic force.

5.1.1 The free energy of the full system and its differentiation

Classically, the force between the two plasmas defined by the derivative of the
free energy

fK,L(d) = −
1
L2

∂

∂d
ΦK,L,d

corresponds to the average Coulomb forces between the charges in A and the
charges in B. It can thus be written in terms of the particle density correlation
function.

If the charges become quantum-mechanical but no radiation field is added, the
same holds. The quantum correlation function can readily be expressed in terms
of the loop correlation function by Equation (4.s) so that its Mayer expansion can
be investigated.

When the coupling of matter with the transverse field is taken into account,
however, the loop correlation functions are difficult to exhibit from the average
value of the total Lorentz forces. This average involves nondiagonal particle-
density matrix elements and field degrees of freedom. As an alternative, one can
start from the free energy, represent it in the loop phase space, and differentiate it
with respect to d. The averages of the microscopic Coulomb and magnetic forces
are in this way directly displayed as integrals over the loop correlation function.

The loop partition function of the two-plasma model

The free energy of the full system is given from the partition function ZK,L,d (2.12).
In Chapter 4 [Equation (4.k)], we have seen that the latter takes the form

ZK,L,d = Zrad
0,K ΞK,L,d (5.24)

where Zrad
0,K (2.10) is the partition function of the free radiation field, and ΞK,L,d is

the partition function of the auxiliary system of loops, which exhibits a convenient
classical form.
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Since Zrad
0,K is independent on d, the total force exerting between the plasmas

becomes

f (d) = lim
L→∞

lim
K→�3

kBT
L2

∂
∂dΞK,L,d

ΞK,L,d
. (5.25)

We stress out that in spite of the analogy of (5.25) to the force in the classical
system (2.35), here ΞK,L,d still contains the degrees of freedom of the radiation
field.

In the two-plasma system with ideal walls forbidding the particles to cross the
interspace, the loop partition function reads

ΞK,L,d =

∞∑
nA=0

1
nA!

∞∑
nB=0

1
nB!

∫ nA∏
a

dLb z(La)
∫ nB∏

b

dLb z(Lb) e−βU({La},{Lb}). (5.26)

This expression only differs from (4.79) by the fact that the discernability between
the particles in A and the particles in B (which transposes to the loops) has been
taken into account.5 Accordingly, the total loop energy U is separated into intra
and interplasma contributions:

U = UA + UB + UAB + Vwalls
A + Vwalls

B,d . (5.27)

The energies UA, UB and UAB are sums of pair interactions

eγieγ j

[
Vc(Li,L j) +Wm(Li,L j)

]
, (5.28)

where Vc is the Coulomb potential (4.81) and Wm the magnetic potential (4.82)
embodying the integrated field’s degrees of freedom. In UA, these interactions
occur only among the loops confined into plasma A by

Vwalls
A ({La}) =

∑
a

Vwalls
A (La). (5.29)

The ideal confinement of the quantum particles imposed by the wall potentials in
the original Hamiltonian (2.3) imposes the ideal confinement (to the same volume)
of the whole path of the loops. This is a consequence of the way a general one-
particle potential generates a corresponding one-loop potential in the path integral
representation: every element of line of the loop feels the particle potential.6

5For a function f (γ1, ..., γN) depending only on the numbers {nγ} counting the particles of
species γ, one has the summation identity

∑0,...,∞
{nγ}

1∏
γ nγ!

f ({nγ}) =
∑∞

N=0
1

N!
∑
γ1,...,γN

f (γ1, ..., γN),
where N =

∑
γ nγ. However, in the two-plate situation, the function f involved in the particle

partition function also depends on |S A| and |S B|, the total number of species in plasma A and B, so
that this identity can only be used separately in the two plasmas.

6An alternative view, when dealing with ideal confining walls, is to consider that the Brow-
nian shape satisfies the diffusion equation with Dirichlet conditions at the interfaces of the slab
(due to the enforcement of Dirichlet conditions on the quantum particles’ wavefunction). See
Appendix 5.C.
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After the limit L→ ∞ will be taken, it will mean that

e−βV
walls
A (La) = A(La) =

⎧⎪⎪⎨⎪⎪⎩1, if γ ∈ S A and − a < x+λγX(s) < 0 ∀s ∈ [0, q]
0, otherwise.

.

(5.30)

The energy UB similarly takes into account the pairwise interactions internal to
plasma B. The interactions occurring between the two plasmas are contained into

UAB({La}, {Lb}) =
∑

a

∑
b

eγaeγb

[
Vc(La,Lb) +Wm(La,Lb)

]
. (5.31)

The activity z(L), which contains the loop self-energy7, is given by

z(L) =
(2sγ + 1)(ηγ)q−1

q
(eβμγ)q

(2πqλ2
γ)3/2 e−βU

self(L). (5.32)

In these last sections, we take into account the Bose and Fermi statistics of
the particles. Considering their spin sγ merely adds the factor (2sγ + 1) to the
activity in (5.32) (we recall that we omitted the spin-field coupling in the basic
Hamiltonian (2.3), see Section 2.1.1).

Two-loop forces

The differentiation of the loop partition function according to (5.25) results in
the average value of a pairwise summation of the forces acting between the loop
objects.

As in the classical case, the dependence upon d in the partition function is
exclusively contained in the confinement of the loops of B. To undertake the
differentiation with respect to d, we perform similarly the change of variable

xb �→ x̃b ≡ xb − d (5.33)

in every positional integral dxb present in dLb. Again, this corresponds to measure
the positions of the loops in B from the inner surface of the slab (see Figure 2.4).
Effectuating the differentiation leads to

fK,L(d) =
1
L2

〈∑
a

∑
b

eγaeγb(∂xVc + ∂xWm)(La,Lb + d)
〉

= f c
L(d) + f m

L (d). (5.34)

7The loop self-energy is made of a Coulomb and a magnetic contribution (see Section 4.7).
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We have denote by Lb + d a loop whose position along x is shifted by d. The
Casimir force is thereby expressed as the average value of two-body loop observ-
ables. This average is calculated with the loop Gibbs weight e−βU and the partition
function (5.26). At this stage, the enclosing box of the field can be taken infinitely
extended: K → �3. Doing so replaces the sums on the field modes K by Fourier
integrals in the potential Wm.

We see that two types of terms have emerged from the differentiation. The
part f c

L(d) concerns the Coulomb forces exerted between the loops. Since this
part remains when there is no radiation field in the model, it is associated to the
average value of the Coulomb forces exerting between the atomic charges. The
second contribution, f m

L (d), contains the magnetic part of the Lorentz forces.

Notations

We set again a few notations. They will stress out further the similarities between
the classical system of charges and the system of loops.

• Loop variables: we recall first that a loop is a collection L = (r, χ) =
(r, γ, q,X(·)) regrouping its position r, and its internal degrees of freedom
χ: species index γ, integral charge number q, and Brownian shape s �→
X(s), X(0) = X(q) = 0. For convenience, we extend the definition of X(s),
s ∈ [0, q] by a q-periodic function over s ∈ �. The path in space of the loop
is

r[s] ≡ r + λγX(s), s ∈ � (5.35)

where λγ is the de Broglie wavelength. We will be using the even more
condensed notation

1 ≡ L1,

∫
d1 . . . ≡

∫
dL1 . . . =

∫
dr1

∑
γ1

∞∑
q1=1

∫
D(X1) . . . . (5.36)

The integral
∫

D(X1) is a normalised Gaussian functional integral of zero
mean and covariance (4.78). According to the decomposition r1 = (x1, y1)
of the positions, we also define

1 ≡ (x1, χ) = (x1, γ1, q1,X1(·)),
∫

d1 . . . ≡
∫

dx1

∑
γ1

∞∑
q=1

∫
D(X1) . . . .

(5.37)

• To the separation of the space along the x axis and the y plane correspond
also the following decompositions of the Fourier vectors, and the loops’
shape:

K ≡ (k1,k), X(s) ≡ (X(s),Y(s)) (5.38)
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• Indices A, B, AB: we follow the same convention as in the classical case.
Every integral runs over the whole space, but is constrained by characteristic
functions A(1), B(2) of the form (5.30). These characteristic functions are
merged in the notation with one-loop and two-loop quantities, exactly like
in (2.44): ρA(1) ≡ A(1)ρ(1), etc.

5.1.2 The force expressed in terms of the loop-correlation

With these notations, and using the “microscopic loop density” (4.q) (p.113), the
two-loop force (5.34) is expressed as

fL(d) =
1
L2

∫
d1

∫
d2 eγ1eγ2(∂x1V

c
AB + ∂x1W

m
AB)(1, 2) ρAB(1, 2). (5.39)

In the limit L→ ∞, the space becomes invariant by translation and rotations in the
y plane. Since ρAB(1, 2) tends to a function of y1 − y2 only, the surface L2 cancels
with one of the y-integrals. In the partial Fourier space k at k = q/d, we thus have

f (d) =
1
d2

∫
d1

∫
d2

∫
dq

(2π)2 eγ1eγ2(∂x1V
c
AB + ∂x1W

m
AB)(1, 2, q

d ) ρAB(1, 2, q

d )

≡ f c(d) + f m(d). (5.40)

We see here that the loop formalism enables us to retrieve an expression very
similar to the purely classical case. Examining the leading contributions of this
formula can be carried out basically the same way. Namely, by

1. determining whether the correlation ρAB can be truncated at no cost, and if
necessary, calculating the truncated term;

2. writing the resummed Mayer graph series of the loop Ursell function and
analysing the decay rates of its bonds;

3. verifying the validity of the perfect screening sum rule.

Before proceeding to the analysis of the asymptotic loop correlations, we es-
tablish that the Coulomb forces between the loops as given by f c(d) coincide with
the atomic electrostatic forces, i.e., that f c(d) is the average of the Coulomb part
of the Lorentz forces exerting between the charges. Note that this average in the
coupled system of radiation and matter still contains radiative contributions.

Electrostatic forces

In addition to provide the physical understanding of the force f c(d) in terms of
the original quantum particles, establishing this correspondence will also provide
a simplified formula.
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We come back to this purpose to the force before the limit L has been taken.
The mean value of the electrostatic forces exerting between the quantum particles
is given like in (2.45) by

1
L2

∫
dr1

∫
dr2 Fx(r1 − r2) cAB(r1, r2), Fx(r) = −

x
|r|3
, (5.41)

except that cAB is now the quantum charge correlation function. We can express
this correlation in terms of the loop correlation function from Formula (4.s):

cAB(r1, r2) ≡
∑
γ1,γ2

eγ1eγ2

∑
q1,q2

q1q2

∫
D(X1)

∫
D(X2) ρAB(L1,L2). (5.42)

In the loop language, the mean Coulomb forces thus read

1
L2

∫
d1

∫
d2 eγ1eγ2

[
q1q2Fx(r1 − r2)

]
ρAB(1, 2), (5.43)

which is not manifestly equal to the force f c
L(d) as given by the first term of (5.39):

according to (4.81), one has

(∂xVc)(1, 2) =
∫ q1

0
ds1

∫ q2

0
ds2 δ(s̃1− s̃2) Fx

(
r

[s1]
1 − r

[s2]
2

)
. (5.44)

However, we will see that these two forces coincide because of an invariance
property with respect to the loops’ origin, that renders Fx in (5.44) independent of
s1 and s2 when integrated into f c

L(d).

Loops’ origin invariance properties: when a loop is formed by gathering par-
ticles, the position of one of them is chosen to give it its origin r. The positions of
the remaining particles are specified relatively to this origin by the loop’s shape:
they are given by r[ j], j = 1, ..., q − 1. A specific invariance of the loop entities is
associated to the arbitrariness of this choice. The loop L = (r, γ, q,X(·)) that has
its origin shifted by the vector λγX(u), u ∈ �, is given by

L[u] ≡ (r[u], γ, q,X[u](·)) ≡ (r + λγX(u), γ, q,X(· + u) − X(u)). (5.45)

One easily checks that the paths in space of L and L[u] are identical. With this
notation, the following invariance properties hold (some have already been used
in (Ballenegger et al., 2002, Sec. 5.2); those concerning Vc and Wm are shown in
Appendix 5.A, p. 180).

• The confinement of a loop concerns only its path in space, which is not
affected by the change of origin. The same holds for the loop’s self-energy.
Thus,

A(L[u]) = A(L), Uself(L[u]) = Uself(L) ∀u (5.46)
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• Regarding the Coulomb interaction between loops, one has

Vc(L[u],L′[u′]) = Vc(L,L′) if u − u′ ∈ �. (5.47)

The restriction u − u′ ∈ � is the manifestation that elementary Coulomb in-
teractions occur only at equal times between unit portions of the two loops.
Only a relative portion can be chosen arbitrarily for the second loop’s origin.
(see Figure 4.m)

• Such a constraint does not occur for the magnetic potential and one has

Wm(L[u],L′[u′]) = Wm(L,L′) ∀u, u′, (5.48)

which also holds when L = L′ and u = u′, i.e., for the magnetic self-energy
of a loop.

In turn, these properties imply that the total energy of the combined system A and
B is such that

U(L1, ...,L[u]
i , ...,L

[u′]
j , ...,Ln) = U(L1, ...,Ln) if u − u′ ∈ � (5.49)

for any choice of i and j in A or B, and that the one-point and two-point correlation
functions satisfy

ρ(L[u]) = ρ(L) ∀u, (5.50)

ρ(L[u],L′[u′]) = ρ(L,L′) if u − u′ ∈ �. (5.51)

To take advantage of theses properties, let us introduce the two-loop function
g(L1,L2) ≡ Fx(r1 − r2), which depends only on the loops’ position, and rewrite
(∂x1V

c) in f c
L(d) as

(∂xVc)(L1,L2) =
∫ q1

0
ds1

∫ q2

0
ds2 δ(s̃1− s̃2) g(L[s1]

1 ,L
[s2]
2 ). (5.52)

In this integral, s1−s2 is forced to be an integer by the Dirac equal times condition.
We therefore can, at fixed q1, q2, s1, and s2, replace ρAB(L1,L2) by ρAB(L[s1]

1 ,L
[s2]
2 )

in the integrand of f c
L(d). Then, one can perform first the changes of variable

r1 �→ r
[s1]
1 , r2 �→ r

[s2]
2 , (5.53)

of unit Jacobian, and next

X1(·) �→ X
[s1]
1 (·), X2(·) �→ X

[s2]
2 (·). (5.54)
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The latter changes are known to leave the Gaussian measures D(X1) and D(X2)
in dL1dL2 invariant as well, see (Macris, Martin, & Pulé, 1988, Lemma 2) or
(Ballenegger et al., 2002, Lemma 1).8 As an effect of these transformations, the
functions g and ρAB have become independent of s1 and s2, so that

f c
L(d) =

1
L2

∫
dL1

∫
dL2 eγ1eγ2

∫ q1

0
ds1

∫ q2

0
ds2 δ(s̃1− s̃2) g(L1,L2)ρAB(L1,L2)

=
1
L2

∫
dL1

∫
dL2 eγ1eγ2q1q2 Fx(r1 − r2) ρAB(L1,L2), (5.55)

which is equal to (5.41). In the remainder, we will calculate the force f c(d) by
means of this simplified formula. Note that it represents both the particle average
of the Coulomb forces and the loop average of the monopole force between the
total charges Q1 = q1eγ1 and Q2 = q2eγ2 carried by the loops.

Magnetic forces

We have seen that f c(d) consists in the average of the electrostatic microscopic
forces. It is thus expected that the part f m(d) of the Casimir force includes the
remaining parts of the Lorentz forces exerting between the plasmas. These re-
maining parts are (according to our sign convention) the average〈∑

b

eγbEt(rb)
〉
=

〈∑
b

eγb

−1
c

Ȧ(rb)
〉

(5.56)

of the transverse electric force on plasma B,9 and the magnetic contribution〈∑
b

eγb

c
vb × (∇ × A(rb))

〉
. (5.57)

In fact, the contribution due to the transverse electric field turns out to average to
zero,10 so that only magnetic contributions are left (which justifies our appellation
for this force).

8To state it with precision, the random process X̃(s) ≡ X(s + u) − X(u) is still Gaussian, with
the same unit normalization, zero mean, and covariance (4.78) than X(s).

9We recall that the transverse electric field Et = −Ȧ/c depends on the field’s mode amplitudes
αK,λ by Formula (4.72).

10Indeed: this average is an integral of the correlation function 〈ĉB(r)Et(r)〉, where ĉB(r) is
the microscopic charge density in plasma B. One can for example use the same technique as in
Section 4.6 to calculate this function. The exact decoupling of the transverse electric field from
matter occurs here as well, and results in the vanishing of the factorized correlation function even
for a nonneutral plasma, because 〈Et(r)〉 = 0.
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Note that it is not possible in f m(d) to make use of similar invariance proper-
ties to come back to the particle density correlation. Structurally, this fact orig-
inates from the presence of the stochastic line integrals

∫
dX
μ
1(s1)

∫
dXν2(s2) (in

place of the equal time integrals), which allow any value of s1 − s2. Physically,
these magnetic forces are related to the microscopic currents of the plasma (like in
magnetostatics). The question of the relation between the loop correlation func-
tion and current correlation functions of the particles is of general interest and
demands further developments.

Truncation of the loop correlation function

Coulomb part: Regarding the Coulomb part f c(d), we can truncate the correla-
tion function exactly as in the classical situation from Formula (5.41), see Section
2.5.1. If the plasmas are nonneutral, the capacitor force (2.47), mainly constant,
is added.

Magnetic part: The term subtracted in the magnetic part f m(d) by the trunca-
tion of the loop correlation function is∫

d1
∫

d2
∫

dy eγ1ρA(1) eγ2ρB(2) (∂x1W
m
AB)(1, 2, y)

=

∫
d1 eγ1ρA(1)

∫
d2 eγ2ρB(2) (∂x1W

m
AB)(1, 2,k=0). (5.58)

Evaluating the field covariance Gμν(K) = Gμν(k1,k) (4.19) in Wm at k = 0, one
sees that it vanishes when μ = ν = 1, and equals δμν4π/k2

1 otherwise. Hence

∂x1W
m
AB(1, 2, 0) =

1
β
√mγ1mγ2c2

∫ q1

0
dY1(s1) ·

∫ q2

0
dY2(s2)

∫
dk1

2π
eik1(x1−x2−d)

× ik1
4π
k2

1

eik1λγ1 X1(s1) e−ik1λγ2 X2(s2) |g(k1,k = 0)|2. (5.59)

Terms independent of s1 or s2 in the integrand do not contribute by Itô’s Lemma,
stating that the line-integral along a closed loop is zero:∫ q

0
d X(s) = 0. (5.60)

This Lemma is a straightforward consequence of the definition (4.12) of the line-
integral. (It has been extensively used in Chapter 4 with q = 1.) Thus, performing
first these stochastic integrals, the unit term of both exponentials in the second line
of (5.59) can be left behind. They only begin with their linear term ∝ k1. Taking
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into account that g(0, 0) = 1 is finite, the apparent 1/k1 singularity of the integrand
as k1 → 0 is smoothed out. From the asymptotic analysis of Fourier transforms
(see Appendix A), one thus knows that ∂x1W

m
AB(1, 2, 0) = ∂x1W

m
AB(|x1 − x2 − d|)

decays more rapidly than any inverse power of |x1 − x2 − d| as |x1 − x2 − d| → ∞,
which prevents any algebraical contribution to f m(d) as d → ∞.

We can, however, improve this result as follows: the high-frequency cutoff
function |g(k1, 0)|2 can be chosen analytic and even in k1. It has to be equal to
1 at k1 = 0 and to vanish for |k1| � mc/� (see Section 2.1.1). This function is
not needed to legitimate the k1 Fourier integral in (5.59), taken in the sense of
distributions. We can expand it as a power-series of k1 and integrate term by term.
Representing the multiplications by k1 occurring in the expansion |g(k1, 0)|2 =
1 + O(k2

1) as derivatives ∂x1 of the function in the regular space, and using the
result ∫

dk1

2π
eik1 x 4π

k2
1
= −2π|x| (5.61)

(Jones, 1982, Table of Fourier transforms, p. 529), one concludes that

∂x1W
m
AB(1, 2, 0) = ∂x1

1
β
√mγ1mγ2c2

∫ q1

0
dY1(s1) ·

∫ q2

0
dY2(s2)

×
[
1 + O(∂2

x1
)
]

(−2π)
∣∣∣d + x[s2]

2 − x[s1]
1

∣∣∣
≡ 0. (5.62)

Indeed, |x[s1]
1 − x[s2]

2 −d| = d+ x[s2]
2 − x[s1]

1 so that the double stochastic integral van-
ishes by Itô’s Lemma. Consequently, the truncated term (5.58) never contributes
to the force f m(d).

The force expressed in terms of the loop Ursell function

According to the discussion above, the Casimir force can finally be expressed as

f (d) =
1
d2

∫
d1

∫
d2

∫
dq

(2π)2 eγ1eγ2

(
q1q2 ∂x1vAB + ∂x1W

m
AB

)
(1, 2, q

d )

× ρA(1)ρB(2)hAB(1, 2, q

d ) ≡ f c(d) + f m(d), (5.63)

where ∂x1vAB(1, 2, q

d ) is the bare (monopole) Coulomb force (2.50) and hAB(1, 2, q

d )
is the loop Ursell function

hAB(1, 2, q

d ) =
ρAB(1, 2, q

d )
ρA(1)ρB(2)

− 1. (5.64)

We will now investigate the asymptotic correlations between the loops in A and in
B, by expanding this Ursell function in a resummed Mayer-like series.
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5.2 Quantum Mayer graphs

Due to the classical-like structure of the partition function (5.26), the loop Ursell
function is expandable in a Mayer graph series in the very same way as is done
classically. Points in the graphs are integrated over loop’s degrees of freedom by
means of (5.36), with a local loop-density weight ρ(1). The Mayer bonds are

f (i, j) = e−βeγi eγ j [V
c(i, j)+Wm(i, j)] − 1. (5.65)

The resummation of this series is needed as in the classical situation by the fact
that at large distances |ri − r j| → ∞, the Coulomb loop interaction eγieγ jV

c(i, j) is
dominated by its monopole-monopole contribution eγieγ jqiq j/|ri − r j|, thus nonin-
tegrable (but fortunately signed).

Resummations in the loop formalism

There are several ways of introducing a resummed potential in this formalism,
corresponding to the different ways of extracting a long range tail of the Mayer
bond.

In homogeneous (bulk) systems, it is possible to build a screened loop po-
tential from resumming convolution chains of the whole Coulomb loop potential
Vc (Ballenegger et al., 2002). The resulting potential encompasses different be-
havioral regimes depending on the distance scale involved: at short distances, in
a dilute system, it reduces to the bare Coulomb interaction between the loops.
At intermediate distances, it matches the classical exponentially screened Debye–
Hückel potential. However, its asymptotic decay is dipolar-like (algebraical). At
that scale, the quantum-mechanical fluctuations of the particle’s positions interfere
with the arrangement of charges involved in screening, so that the efficiency of the
latter is lessened. This is the most striking peculiarity of quantum plasmas. Their
large-distance correlations are accordingly no longer exponentially screened, but
decay algebraically as ∼ r−6. Nevertheless, the perfect screening sum rule is still
valid: the screening cloud around a fixed charge shields it exactly. The screening
of multipoles, on the other hand, no longer holds.

Because of the presence of the magnetic potential Wm, and to disentangle
explicitly the classical regimes from the large-distance quantum regime, we carry
out the resummation differently.

The “classical” and “quantum” components of Vc

We extract from Vc a genuine quantum-mechanical component Wc which encom-
passes the equal-time constraint, as follows:

Vc(i, j) = Vel(i, j) +Wc(i, j), (5.66)
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with

Vel(i, j) =
∫ qi

0
dsi

∫ q j

0
ds j

1

|r[si]
i − r

[s j]
j |
, (5.67)

Wc(i, j) =
∫ qi

0
dsi

∫ q j

0
ds j

(
δ(s̃i− s̃ j)−1

) 1

|r[si]
i − r

[s j]
j |
. (5.68)

• The contribution Vel represents the standard, classical, electrostatic energy
which sums up the mutual interactions between the line elements of the two
uniformly charged loops Li and L j. It contains multipole contributions of
any order because of the extension in space of the loops. These extensions
are still scaled by the quantum-mechanical de Broglie wavelength, but we
will consider this contribution as if it were classical.

• The contribution Wc contains, on the other hand, the memory of the equal
time condition in Vc that arises when using the Feynman–Kac formalism.
It does not reduce to a classical interpretation of the interaction between
charged wires, and vanishes identically when λγi and λγ j are set equal to
zero, by (4.29). Its large-distance behaviour is dipolar-like (Brydges & Mar-
tin, 1999).

5.2.1 Resummation of the “classical” contribution Vel

The total loop interaction Vc +Wm in the Mayer bond can now be reorganised as

f (i, j) = e−βeγi eγ j [V
el(i, j)+W(i, j)] − 1, (5.69)

where

W(i, j) ≡ Wc(i, j) +Wm(i, j). (5.70)

We proceed to the resummation of the part f el(i, j) ≡ −βeγieγ jV
el(i, j) of the Mayer

bond. The asymptotically dipolar-like interaction W included in the remaining
part f R ≡ f − f el does not need to be resummed.11

The situation is exactly the same as in classical plasmas (Section 2.5.2) and
the steps leading to the resummed Mayer series are identical. The dipolar-like
potential W plays the role held before by the regularizing short-range potential,
with the difference that its slower decay still demands its consideration into AB
correlations.

11Dipolar potentials are at the border of integrability. Finite results are obtained when the angu-
lar integrals are performed before the radial one.
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Summing all f el-convolution chains defines the resummed bond F(i, j) =
−βeγieγ jΦ(i, j), where Φ is solution of the integral equation

Φ(i, j) = Vel(i, j) −
∫

d1
κ2(1)
4π

Vel(i, 1)Φ(1, j), (5.71)

κ2(1) = 4πβe2
γ1
ρ(1). (5.72)

The new diagrams are made of links F of either of the two types

F(i, j) = −βeγieγ jΦ(i, j) (5.73)

FR(i, j) = e−βeγi eγ j (Φ+W)(i, j) − 1 + βeγieγ jΦ(i, j), (5.74)

and the resummed Mayer graph series of the Ursell function reads

h(1, 2) =
∑
Π

1
S Π

∫
d3 ρ(3) · · ·

∫
dmρ(m)

∏
{i, j}∈Π

F (i, j). (5.75)

Properties:

• The diagrammatic rules for the resummed loop graphs are the same as in
the classical case. In particular, they do not have articulation points, and
convolutions in chain of the bond F are forbidden.

• The signed charges are responsible for strong cancellations among the infi-
nite series of the long-range contribution Vel. Because of the classical form
of this potential, the classical theory of screening applies, and the resulting
Debye–Hückel potential Φ will decay exponentially at large distances.

Link with the “multipole” graphs: in (Brydges & Martin, 1999, Sec. V.B.2)
and earlier works (Cornu, 1996a, 1996a), the contribution Vel is decomposed into
a multipolar expansion and only its monopole part is resummed. Such a resum-
mation leads to the introduction of several new bonds in the resummed Mayer
graph series. However, the resulting screened monopole potential Φmon has the
advantage of differing from the potential that would arise if the charges were clas-
sical only by the definition of the screening length.12 The resummed bonds of this
multipolar Mayer series are denoted by Fcc, Fcm, Fmc and Fmm. The bond Fcc is
−βeγieγ jΦ

mon. If one extracts further the contribution −βeγieγ jW of Fmm, resulting

12The screening length arising is κ−1(x) = [4πβ
∑
γ

∑
q

∫
D(X)q2e2

γρ(x, χ)]−1/2. It does not re-
duce to the classical expression 4πβ

∑
γ e2
γρ(x, γ) (with the quantum density) due to the squared

q in the summand, except when exchange effects inside a loop are neglected (Brydges & Martin,
1999, Sec. V.B.2).
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in the bond F̃mm = Fmm + βeγieγ jW, our Debye–Hückel potential Φ is retrieved as
an infinite sum of chain graphs made of bonds Fcc, Fcm, Fmc and F̃mm. Except for
Fcc, these bonds are all given by applying various multipole operators on Φmon.
From our knowledge of the classical Debye–Hückel potential in wall-constrained
plasmas, these bonds are thus exponentially damped at large distances, and we
can conclude the same of the loop potential Φ, as stated above.

Resumming the full Coulomb potential Vc: aside from the technical difficulty
of building a unified resummed potential for all length scales in systems with
boundaries, the resummation process we consider is especially appropriate to our
situation. Indeed, we will see that the screened potential ΦAB between loops in A
and B factorizes into an A and a B contribution as d → ∞, exactly as its classical
counterpart. But this is not the case of the potential WAB. The latter will induce in
the correlation function dominant terms of a new type.

5.3 Asymptotic correlations between the plasmas

We follow Section 2.5.3 in the analysis of the loop Ursell function hAB(1, 2, q

d ).
The graphs’ integrals are decomposed into A and B contributions, and we assume
that the loop densities tend to their single plasma counterparts. To investigate the
asymptotic behaviour of the traversing bonds, we analyse first that of ΦAB, Wc

AB
and Wm

AB.

5.3.1 The Debye–Hückel potential ΦAB at large separations

Iterating the integral relation (5.71) defining Φ represents the latter as a sum of
convolution chains of the potential Vel. We extract the asymptotic behaviour of
ΦAB by keeping only the dominant chains.

Exactly the same steps as in the classical case can be repeated. Indeed, the
potential Vel

AB factorizes as well. With the partial Fourier representation (B.7) of
the Coulomb potential, Vel(1, 2,k) reads

Vel(1, 2,k) =
∫ q1

0
ds1

∫ q2

0
ds2 eik·[λγ1 Y1(s1)−λγ2 Y2(s2)] 2π

k e−k
∣∣∣∣x[s1]

1 −x[s2]
2

∣∣∣∣. (5.76)

Thus (taking into account the shift by −d of the positions in B):

Vel
AB(1, 2,k) =

ke−kd

2π

[ ∫ q1

0
ds1 eik·λγ1 Y1(s1) 2π

k e−k
∣∣∣∣x[s1]

1

∣∣∣∣][ ∫ q2

0
ds2 e−ik·λγ2 Y2(s2) 2π

k e−k
∣∣∣∣x[s2]

2

∣∣∣∣]

≡
ke−kd

2π
Vel

AA(1, 0,k) Vel
BB(0, 2,k). (5.77)
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For simplicity of notation, we have denoted by 0 a loop variable representing a
classical charge situated at the inner side of the slab A or B, i.e.,

0 ≡
(
x=0, α0, q=1, X(·)≡0

)
(in A), (5.78)

0 ≡
(
x′=0, β0, q′=1, X′(·)≡0

)
(in B). (5.79)

The factorization (5.77) is formally the same as (2.68). The resummed poten-
tial Φ(i, j, y) decays faster than Vel(i, j, y) as |y| → ∞ because it encompasses
classical-like screening effects [see the discussion after Equation (5.75)]. In the
partial Fourier space, this implies that as d → ∞, the quantity

Vel(0, 0, q

d ) ≡
2πd

q
(5.80)

is dominant over the potentials Φ̃AA(0, 0, q

d ) and Φ̃BB(0, 0, q

d ), as in (2.78)–(2.79).
Finally, we recover the result [analog to (2.65)]

ΦAB(1, 2, q

d ) d→∞∼
1
d

q
4π sinh q

Φ0
A(1, 0, 0) Φ0

B(0, 2, 0). (5.81)

5.3.2 The potential Wc
AB at large separations

As to Wc
AB, one has from (5.68), similarly to the partial Fourier transform of Vel

AB,

Wc
AB(1, 2,k) =

2πe−kd

k

∫ q1

0
ds1

∫ q2

0
ds2

(
δ(s̃1− s̃2)−1

)
e−k

[
x[s1]

1 +ik̂·λγ1 Y1(s1)
]
ek

[
x[s2]

2 +ik̂·λγ2 Y2(s2)
]
,

(5.82)

where k̂ ≡ k/k. We can extract e−k|x1 |e−k|x2 | from the product of exponentials in the
integrand; expanding the remaining exponentials then accounts for a multipole
expansion. Terms in this expansion assimilating to a sole function of either s1 or
s2 — originating from the unit term of each exponential — vanish upon integration
over the nonequal-time condition, by virtue of (4.29). In the large-distance limit,
after substitution of k = q/d, one therefore has

Wc
AB(1, 2, q

d ) d→∞∼
2πqe−qe−

q|x1 |
d e−

q|x2 |
d

d
λγ1(−λγ2)

∫ q1

0
ds1

∫ q2

0
ds2

(
δ(s̃1− s̃2)−1

)
× [X1(s1) + iq̂ · Y1(s1)][X2(s2) + iq̂ · Y2(s2)]. (5.83)

5.3.3 The magnetic potential Wm
AB at large separations

The asymptotic behaviour of the magnetic potential Wm
AB is less straightforward

to calculate, for it involves the cutoff function g(k1,k), as well as the transverse
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Kronecker function δμνtr (k1,k) in the field covariance Gμν(k1,k) (4.19). The un-
pleasantness occasioned by the latter is merely technical. The difficulty arisen by
the former is overcome as when calculating the truncated term of f m(d): the legit-
imacy of the Fourier integral, taken in the sense of distributions, does not rely on
the presence of this cutoff function; we will expand it in power series of k1. From
(4.82), we have

Wm
AB(1, 2, q

d ) = 1
β
√mγ1 mγ2 c2

∑
μ,ν

∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2) ei q

d ·[λγ1 Y1(s1)−λγ2 Y2(s2)]

×
∫

dk1

2π
eik1

(
x[s1]

1 −x
[s2]
2 −d

)
vμν(k1,

q

d )
∣∣∣g(k1,

q

d )
∣∣∣2 , (5.84)

where

vμν(k1,k) =
4π

k2
1 + k2

δ
μν
tr (k1,k) (5.85)

is the elementary transverse Coulomb potential in Fourier representation.
The cutoff function |g(k1,k)|2 can be chosen analytic in |K|2 = k2

1 + k2. We thus
expand |g(k1,

q

d )|2 as 1 + O(k2
1+q2/d2). Expressing the multiplications by k1 by

derivatives ∂x1 , we have

Wm
AB(1, 2, q

d ) =
[
1 + O

(
∂2

∂x2
1
+

q2

d2

)]
Wm

AB(1, 2, q

d ), (5.86)

where Wm
AB(1, 2, q

d ) is defined as in (5.84) but with the cutoff function set to unity.
This new potential is completely explicit. As shows the known expression for the
partial Fourier transform vμν(x,k) (B.11), its exact spatial dependence (at any d)
is made of terms proportional to either

d
q

e−
q|x1 |

d e−
q|x2 |

d , or (d+x2−x1)e−
q|x1 |

d e−
q|x2 |

d . (5.87)

Applying O(∂2/∂x2
1) to such terms multiplies them by a factor d−1 in the worst case.

As a consequence, the O(∂2/∂x2
1+q2/d2) term in (5.86) can be neglected as d → ∞

and the asymptotic behaviour of Wm
AB is equal to that of Wm

AB.
This behaviour is calculated in Appendix 5.B, p. 181. Itô’s Lemma (5.60) is

responsible for the suppression of the divergency at d = ∞ of (5.87) similarly as
the nonequal-time integral does in Wc

AB. The result is

Wm
AB(1, 2, q

d ) d→∞∼
2π qe−q e−

q|x1 |
d e−

q|x2 |
d λγ1(−λγ2)

β
√mγ1mγ2c2d

∑
μ,ν

∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2)

× wμν (X1(s1),X2(s2),q) , (5.88)

where wμν(X1,X2,q) is a bilinear form in X1,X2, whose coefficients (depending
on μ, ν) are polynomials of q. They are explicitly given in (5B.9–5B.12).
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5.3.4 Behaviour of the Mayer bonds

The preceding O(d−1) behaviours of Wc
AB and Wm

AB show that the leading correla-
tions between the plasmas will contain terms of a new type. It will be convenient
to subtract from the traversing bond FR

AB the contribution WAB by defining

F̃R
AB(i, j) ≡ FR

AB(i, j) + βeγieγ jWAB(i, j)
= e−βeγi eγ j (ΦAB+WAB)(i, j) − 1 + βeγieγ j(ΦAB +WAB)(i, j). (5.89)

Let us sum up the behaviours of the Mayer bonds.

Traversing bonds

• The behaviour of the bond FAB is given by the asymptotic factorization of
ΦAB:

FAB(i, j, q

d ) d→∞∼
−1
βd

q
4π sinh q

F0
A(i, 0, 0)

eα0

F0
B(0, j, 0)

eβ0

. (5.90)

• The bond−βeγieγ jWAB is constituted by Wc
AB and Wm

AB, which are both O(d−1).

WAB(i, j, q

d ) = O(d−1) (5.91)

• The behaviour of the bond F̃R
AB proves to be

F̃R
AB(i, j, q

d ) = O(d−4). (5.92)

Indeed, starting from (5.89), one can follow the same steps as for the clas-
sical bond FR, Equations (3C.4)–(3C.6).

Nontraversing bonds

All types of nontraversing bonds tend to their counterparts of the individual plas-
mas:

FAA
d→∞
−→ F0

A, FBB
d→∞
−→ F0

B, (5.93)

FR
AA

d→∞
−→ (FR)0

A, FR
BB

d→∞
−→ (FR)0

B. (5.94)

In the partial Fourier space, these behaviours are uniform in k (i.e., also valid at
k = q/d).
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5.3.5 Dominant graphs and asymptotic behaviour of hAB

From the asymptotic properties of the links derived in above, the asymptotic be-
haviour of the loop Ursell function is straightforward to deduce by summing its
dominant graphs as in the classical case. The only difference is that a number of
structurally new diagrams arise by the fact that WAB is also O(d−1), like FAB.

Dominant graphs constructed with FAB

The rule forbidding chain convolutions of F-type bonds restricts here as well the
type of links attached to the extremities of FAB: they are not allowed to be single
FAA or FBB bonds. Consequently, the dominant graphs containing FAB are [see
(2.83)]

◦
(
© + FAA•© + δ

ρA

)
• �� FAB ��•

(
© +©•FBB

+ δ
ρB

)
◦. (5.95)

The symbol ◦©◦ is the sum of all subgraphs that do not begin nor end with a single
bond F.

Dominant graphs constructed with WAB

The type of the links attached to the extremities of WAB is, however, not restricted
by the excluded convolution rule. One can reconstruct on each side any two-point
structure in accordance to the diagrammatic rules of the Mayer graphs. These
structures are exactly all the graphs of the loop Ursell functions of the single
plasma, except that they are built with the densities ρA and ρB, and the bonds FAA

and FR
AA of the plasma A still under the influence of plasma B. This difference

disappears in the limit d → ∞. We denote by h̃A(i, j, q

d ) and h̃B(i, j, q

d ) the sum of
these subgraphs, topologically identical to the Ursell functions h0

A and h0
B of the

individual plasmas. The series of supplementary dominant graphs in the Ursell
function then reads

◦
(
h̃A +

δ
ρA

)
• �� WAB ��•

(
h̃B +

δ
ρB

)
◦ (5.96)

=

∫
d3ρA(3)

∫
d4ρB(4)

[
h̃A(1, 3, q

d )+ δ(1,3)
ρA(3)

]
(−βeγ3eγ4)WAB(3, 4, q

d )
[
h̃B(4, 2, q

d )+ δ(4,2)
ρB(4)

]
.

(5.97)

Asymptotic behaviour of hAB

In the limit d → ∞, the factorization of FAB can be used, as well the behaviours
(5.83) and (5.88) for the leading contribution W (as)

AB of WAB = Wc
AB + Wm

AB. The
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asymptotic behaviour of the Ursell function is

hAB(1, 2, q

d ) d→∞∼ −
1
βd

q
4π sinh q

G0
A(1, 0, 0)

eα0

G0
B(0, 2, 0)

eβ0

(5.98)

+

∫
d3 ρ0

A(3)
∫

d4 ρ0
B(4)

[
h0

A(1, 3, 0) + δ(1,3)
ρ0

A(3)

]
× (−βeγ3eγ4)W

(as)
AB (3, 4, q

d )
[
h0

B(4, 2, 0) + δ(4,2)
ρ0

B(4)

]
.

(5.99)

The function G0
A corresponds to the graphical construction

G0
A(1, 0, 0) ≡ ◦©•−◦ + ◦−•©•−◦ + ◦−◦. (5.100)

Comparing it to h0
A, which contains all type of graphs, yields

G0
A(1, 0, 0) = h0

A(1, 0, 0) − ◦−•©◦ − ◦©◦

= h0
A(1, 0, 0) −

∫
d3 ρ0

A(3)
[
F0

A(1, 3, 0) + δ(1,3)
ρ0

A(3)

]
(h0

A)nn(3, 0, 0) (5.101)

(having defined (h0
A)nn = ◦©◦). Alike relations hold between plasma B’s quanti-

ties.

Physical sources of the asymptotic loop correlations: as seen on the asymp-
totic form of hAB, the correlations between the two systems of loops are conveyed
by forces of different origins.

• The term (5.98) corresponds to the electrostatic correlations of the loops
taken as classical extended objects.

• The contribution given by Wc
AB to (5.99), shows, however, that loops’ in-

trinsic quantum nature adds new terms to these correlations. One can inter-
pret these additional terms as resulting from the imperfect screening of the
multipoles in the quantum plasma.

• The radiation field also correlates the loops at leading order by its contri-
bution Wm

AB to (5.99). Nevertheless, the ratio of this radiative part to the
electrostatic quantum part bears a prefactor (βmc2)−1. In effect, it renders
this transverse contribution hardly observable in the semi-classical regime,
as has already been pointed out after Equation (4.44).
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Correlations of the quantum particles: One can come back to the correlations
occurring between the original quantum particles of the two-plasma system by the
following formula [see Equations (4.s)–(4.r)]

ρA(x1, γ1)ρB(x2, γ2)hAB(γ1 x1, γ2 x2,
q

d )

=
∑
q1,q2

q1q2

∫
D(X1)

∫
D(X2) ρA(x1, χ1)ρB(x2, χ2)hAB(x1 χ1, x2 χ2,

q

d ). (5.102)

Hence, in contradistinction to the classical particle Ursell function (2.84), the
quantum particle Ursell function is no longer fully factorized into an A and a
B contribution, because of the term (5.99). Although the contribution (5.98) does
lead to a factorized term in the particle correlation, it does not reduce to the ex-
pression involving particle correlations in the individual slabs.

Integrability on loops’ internal degrees of freedom: Let us finally comment
on integrability concerns regarding loops’ internal degrees of freedom in Mayer
graphs. One needs in principle to check that the sums on the particle numbers q ∈
1, 2, 3, ... , associated to every integrated point, is convergent. Graphs in activity
are known to suffer from such divergencies when summing on these numbers
(Ballenegger et al., 2002, Sec. 5.4). This is due to the fact that taken individually,
these graphs do not necessarily include the physics of screening. Nonetheless,
subseries of them representing real physical quantities must do.

In our approach, we deal with Mayer graphs in density instead. Every in-
tegrated point is accompanied by a loop-density weight ρ(x, χ). This density is
expandable in a loop Mayer graph series in activity, see, e.g., (Ballenegger et al.,
2002). Even though the loop density is not yet a physical quantity, this series
obviously incorporates screening mechanisms among the graphs, for the particle
density is obtained by

ρ(r, γ) =
∞∑

q=1

q
∫

D(X) ρ(x, χ), (5.103)

which shows that ρ(x, χ) contains an integrative factor about q.
Moreover, we consider individual graphs only at intermediate steps of the cal-

culations. The graphs we are interested in are eventually gathered together. They
form loop correlations, whose definitions can be given directly from the original
loop partition function (5.26), without having recourse to Mayer diagrammatics.

5.3.6 Perfect screening sum rules

Before inserting the complete asymptotic behaviour (5.98)–(5.99) into the force
formula, we need to ascertain the status of the perfect screening sum rule in the



5.3. Asymptotic correlations between the plasmas 177

system of loops.

Perfect screening on the Debye–Hückel level

We have seen in Section 5.2.1 that the potential Φ(i, j) decays rapidly at large
distances. In the partial Fourier space, this has as implication that

lim
k→0

Φ0
A(i, j,k)

Vel
AA(i, j,k)

= 0. (5.104)

The property (5.104) is equivalent to the fulfillment of the perfect screening sum
rule in plasma A at the Debye–Hückel level. This has been shown in the classical
case (Section 2.5.4). It applies here as well, with the change that

lim
k→0

Vel
AA(i, 1,k)

Vel
AA(i, j,k)

=
q1

qj
, (5.105)

leading to the result ∫
d1
κ0A

2(1)
4π

q1 Φ
0
A(1, j,k=0) = qj . (5.106)

Written in terms of F0
A(1, j,k) = −βeγ1eγ jΦ

0
A(1, j,k), this equation takes a form

similar to (2.31): ∫
d1 q1eγ1 ρ

0
A(1) F0

A(1, j, 0) = −qjeγ j . (5.107)

It expresses the screening of the charged loops on the Debye–Hückel level. Note
that q1eγ1 ≡ Q1 is the total charge carried by the loop 1.

Perfect screening of the charged loops

The validity of the electroneutrality sum rule on the Debye–Hückel level in the
geometry we consider implies that it holds in full generality for the loop Ursell
function.

The reasoning, already used in the bulk geometry (Brydges & Martin, 1999),
proceeds by “extracting” the Debye–Hückel sum rule from the integrated correla-
tion function h0

A, exactly as in Section 3.5. One can conveniently rewrite h0
A as an

integral on the quantities (h0
A)nn ≡ ◦©◦ and (h0

A)nc ≡ ◦©•−◦:

h0
A(1, 2, 0) = ◦−◦ + ◦−

[
•©◦

]
+

[
◦©◦

]
+ ◦−

[
•©•−◦

]
+

[
◦©•−◦

]
= F0

A(1, 2, 0) +
∫

d3 ρ0
A(3)

[
F0

A(1, 3, 0) + δ(1,3)
ρ0

A(3)

] [
(h0

A)nn+(h0
A)nc](3, 2, 0).

(5.108)
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Integrating h0
A like F0

A in (5.107), the first term obviously yields −qjeγ j . The sec-
ond term is, by contrast, cancelled by the same sum rule: it involves the integral∫

d1 q1eγ1ρ
0
A(1)

[
F0

A(1, 3, 0) + δ(1,3)
ρ0

A(3)

]
≡ 0. (5.109)

From (5.101), it is clear for the same reason that G0
A(1, j, 0) also satisfies the

sum rule. Hence,∫
d1 q1eγ1 ρ

0
A(1) h0

A(1, 2, 0) =
∫

d1 q1eγ1 ρ
0
A(1) G0

A(1, 2, 0) = −q2eγ2 . (5.110)

Perfect screening of the charged particles

The perfect screening of the quantum charges is, in turn, a direct consequence of
the perfect screening in the loop system, by virtue of (5.102) (Ballenegger et al.,
2002, Sec. 6.1).

5.4 The Casimir force in the semi-classical regime:

final result

Having analysed the large-distance correlations between the field-coupled quan-
tum plasmas and verified that the perfect screening sum rule holds, we are now in
position to proceed to the last steps of the calculation of the Casimir force (5.63).

Magnetic forces f m(d)

The loop Ursell correlation function hAB(1, 2, q

d ) brings an asymptotic factor ∝ d−1

to the Casimir force. We have seen that the magnetic potential Wm
AB(1, 2, q

d ) is
O(d−1). Necessarily, the magnetic force between loops ∂x1W

m
AB(1, 2, q

d ) decays
faster. It is shown at the end of Appendix 5.B that it is indeed O(d−2).

Thus, the average of the magnetic part of the microscopic Lorentz forces
elicited in Section 5.1 has no impact on the total Casimir force at dominant or-
der:

f m(d) = O(d−5). (5.111)

Electrostatic forces f c(d)

On the other hand, the Coulomb term ∂x1vAB(1, 2, q

d ) provides the factor

∂x1vAB(1, 2, q

d ) = 2π e−qe−
q|x1 |

d e−
q|x2 |

d = O(1). (5.112)
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The average of the microscopic Coulomb forces exerting between the particles is
thus

f c(d) = O(d−3). (5.113)

5.4.1 Final result

Let us first calculate the contribution to f (d) d→∞∼ f c(d) given by the asymptotic
correlations conveyed by the potential WAB. Using (5.63) and (5.99), one sees that
this contribution vanishes identically by the perfect screening sum rule (5.110).
Indeed, integrating according to the force formula on the root points of this part
of the correlation exhibits the following integrals∫

d1 eγ1q1 ρ
0
A(1)

(
h0

A(1, 3, 0) + δ(1,3)
ρ0

A(3)

)
=

∫
d2 eγ2q2 ρ

0
B(2)

(
h0

B(4, 2, 0) + δ(4,2)
ρ0

B(4)

)
= 0,

(5.114)

which consist in a rewriting of the perfect screening sum rule in the system of
loops.

Only the correlations (5.98) conveyed between the loops by the classical-like
electrostatic interaction contribute to the establishment of the leading term ∝ d−3.
With (5.63) and (5.112), we have

f (d) d→∞∼ −
1

4πβd3

[∫
d1 q1eγ1 ρ

0
A(1)G0

A(1,0,0)
eα0

] [∫
d2 q2eγ2 ρ

0
B(2)G0

B(0,2,0)
eβ0

]∫ ∞

0
dq

qe−q

sinh q

= −
ζ(3)

8πβd3 . (5.115)

Last equality makes use of the sum rule (5.110) holding for the functions G0
A

and G0
B, and of the value ζ(3)/2 of the q-integral. We thus have recovered the

classical result (2.90) of the Casimir force in the semi-classical regime of a system
of quantum charges coupled to the (classical) radiation field.

Physical sources of the leading force: The leading term of the Casimir force
in the semi-classical regime originates exclusively from the Coulomb part of the
microscopic Lorentz forces. Moreover, only the correlations (5.98) driven by the
classical-like electrostatic force between the loops support its establishment. Cor-
relations due to the imperfect screening of the multipoles in the quantum plasmas
and those mediated by the radiation field, contained in the term (5.99) prove to
be inoperative on these Coulomb microscopic forces at dominant order. They are
shielded away by screening mechanisms. The quantum nature of the particles
and the coupling of matter to the radiation field will be felt only in subdominant
terms ∝ d−4.
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Universality’s origin: The universality of the leading term ∝ d−3 holds exactly
in the full system of coupled matter and field. The fundamental origin of this
universality lies in the perfect screening sum rule. The rule used here expresses
the screening occurring in the auxiliary system of the charged loops. Nevertheless,
it reflects the perfect screening of the quantum charges.

As in the classical situation, the result is independent on the (finite) thick-

nesses a and b of the plasmas. This is due to the fact that the sum rules in (5.115)
involve only the screening clouds of loops close to the inner surface of the plates.
For every macroscopic thickness of the slabs, this cloud is able to screen them
exactly.

Appendix 5.A: Properties of Vc and Wm regarding

loops’ origin

With the notation (5.45) for the loop L[u] with shifted origin, this appendix aims
at showing following covariance properties:

Vc(L[u],L′[u′]) = Vc(L,L′), if u − u′ ∈ � (5A.1)

Wm(L[u],L′[u′]) = Wm(L,L′), ∀u, u′ (5A.2)

From (4.82), one has

Wm(L[u],L′[u′]) =
1

β
√mγmγ′c2

∫
dK

(2π)3

∑
μ,ν

∫ q

0
d(X[u])μ(s)

∫ q′

0
d(X′[u

′])ν(s′)

× eiK·(r+λγX(s+u)−r′−λγ′X′(s′+u′))Gμν(K)

which shows the result (5A.2) because for any function f ,∫ q

0
dX[u](s) f (X(s + u)) =

∫ q

0
d(X(s + u)) f (X(s + u)) s�→s+u

=

∫ q+u

u
dX(s) f (X(s))

=

∫ q

0
dX(s) f (X(s)) . (5A.3)

Last equality results from having extended s �→ X(s), s ∈ [0, q] to a q-periodic
function over �. Formula (5A.3) can be proven exactly using the discretization
rule of the middle point (4.12) and the periodicity of X(s).

Regarding Vc, one has from (4.81)

Vc(L[u],L′[u′]) =
∫ q

0
ds
∫ q′

0
ds′ δ(s̃− s̃′)

1∣∣∣r + λγX(s + u) − r′ − λγ′X′(s′ + u′)
∣∣∣

=

∫ q+u

u
ds
∫ q′+u′

u′
ds′ δ

(
(s̃ − u)−(s̃′ − u′)

) 1∣∣∣r[s] − r′[s′]
∣∣∣ , (5A.4)
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where the changes of variable s �→ s + u and s′ �→ s′ + u′ have been performed
for the second equality. The equal time condition δ(s̃− s̃′) can equivalently be
described by the Dirac comb δ̃(s− s′) ≡

∑
n∈� ei2πn(s−s′) (Ballenegger et al., 2002).

It is then evident that δ̃(s−u− s′+u′) = δ̃(s− s′) = δ(s̃− s̃′) whenever u − u′ ∈ �.
The q and q′ periodicity of the integrand in (5A.4) regarding s and s′ then shows
the property (5A.1).

Appendix 5.B: Large-distance behaviour of Wm
AB

In this appendix, we calculate the asymptotic behaviour of Wm
AB(1, 2, q

d ), defined
like Wm

AB(1, 2, q

d ) but with the cutoff function g(k1,
q

d ) set equal to unity. This
asymptotic behaviour determines immediately that of Wm

AB(1, 2, q

d ) by Formula
(5.86).

The inverse Fourier integral in (5.84) can be performed explicitly when g ≡ 1,
yielding

Wm
AB(1, 2, q

d ) = 1
β
√mγ1 mγ2 c2

∑
μ,ν

∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2) ei q

d ·[λγ1 Y1(s1)−λγ2 Y2(s2)]

× vμν
(
x[s1]

1 −x[s2]
2 −d, q

d

)
, (5B.1)

where vμν(x,k) is the partial Fourier transform of the transverse Coulomb potential
given by (B.11). Because here

∣∣∣x[s1]
1 − x[s2]

2 −d
∣∣∣ = d+ x[s2]

2 − x[s1]
1 , the exact spatial

dependence of Wm
AB(1, 2, q

d ) (at any finite d) is inferred to be made up of terms
proportional to

d
q

e−
q|x1 |

d e−
q|x2 |

d , or (d+x2−x1) e−
q|x1 |

d e−
q|x2 |

d . (5B.2)

By Itô’s Lemma, the line integrals that multiply these spatial dependences re-
duce the apparent ∝ d divergency to an O(1/d) decay: they provide a factor
O(q2/d2) (see below) exactly as did the nonequal-time integrals when calculat-
ing the asymptotic behaviour of Wc

AB(1, 2, q

d ).
Differentiating twice with respect to x1 can only increase these terms’ decay

with d (in the slowest case, by a factor q/d), so that the asymptotic behaviour of
Wm

AB is the same as that of Wm
AB by virtue of (5.86):

Wm
AB(1, 2, q

d ) = Wm
AB(1, 2, q

d )
[
1 + O(d−1)

]
. (5B.3)

The cutoff function (i.e., relativistic effects of the particles), disregarded in Wm
AB,

is seen to step in at the first subdominant order already (mixing with subdominant
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orders included in Wm
AB itself). These subdominant orders can only give rise to

contributions to the force at least O(d−5).
Hereafter, we calculate the asymptotic ∝ d−1 term of Wm

AB(1, 2, q

d ). There are
only two types of line integrals occurring in (5B.1) to investigate, namely

I1(k′, q

d ) ≡
∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2) ei q

d ·[λγ1 Y1(s1)−λγ2 Y2(s2)]e−k′
(

d+x[s2]
2 −x

[s1]
1

)
(5B.4)

evaluated at k′ = q
d , as well as I2( q

d ,
q

d ) = d
dk′

∣∣∣
k′=q/d

I1(k′, q

d ). Rearranging the ex-
ponentials, and using Itô’s Lemma to cancel the unit term of their expansion, one
has

I1(k′, q

d ) = e−k′(d+x2−x1)
∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2)

× eλγ1
[
k′X1(s1)+i q

d ·Y1(s1)
]
e−λγ2

[
k′X2(s2)+i q

d ·Y2(s2)
]

= e−k′(d+x2−x1)
∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2)

×
∑∞

n=1
1
n!

(
λγ1

[
k′X1(s1)+i

q

d ·Y1(s1)
])n

×
∑∞

m=1
1

m!

(
−λγ2

[
k′X2(s2)+i

q

d ·Y2(s2)
])m
, (5B.5)

whence I2(k′, q

d ) is deduced by differentiation. Evaluating at k′ = q
d and selecting

the asymptotic terms as d → ∞, it is seen that

I1( q
d ,

q

d ) d→∞∼
q2e−q e−

q|x1 |
d e−

q|x2 |
d λγ1(−λγ2)

d2

∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2)

×
[

X1(s1)+iq̂·Y1(s1)
][

X2(s2)+iq̂·Y2(s2)
]
, (5B.6)

I2( q
d ,

q

d ) d→∞∼
qe−q e−

q|x1 |
d e−

q|x2 |
d λγ1(−λγ2)

d

∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2)

×
{
X1(s1)

[
X2(s2)+iq̂·Y2(s2)

]
+
[

X1(s1)+iq̂·Y1(s1)
]

X2(s2)

−q
[

X1(s1)+iq̂·Y1(s1)
][

X2(s2)+iq̂·Y2(s2)
]}
. (5B.7)

Note that I1( q
d ,

q

d ) always occurs in (5B.1) with a factor d/q, so that it does con-
tribute to the asymptotic behaviour of Wm

AB(1, 2, q

d ). Collecting all dominant con-
tributions given by (5B.6) and (5B.7) in (5B.1) results in the formula

Wm
AB(1, 2, q

d ) d→∞∼
2π qe−q e−

q|x1 |
d e−

q|x2 |
d λγ1(−λγ2)

β
√mγ1mγ2c2d

∑
μ,ν

∫ q1

0
dXμ1 (s1)

∫ q2

0
dXν2(s2)

× wμν (X1(s1),X2(s2),q) , (5B.8)
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with

wμν (X1,X2,q) =αμν(q)
[
X1 + iq̂ · Y1

][
X2 + iq̂ · Y2

]
+ βμν(q̂)

[
X1(X2 + iq̂ · Y2) + (X1 + iq̂ · Y1)X2

]
, (5B.9)

α11(q) =
1 + q

2
, β11(q̂) = −

1
2
, μ = ν = 1, (5B.10)

αμ1(q) =
iqq̂μ

2
, βμ1(q̂) = −

iq̂μ
2
, μ � 1, ν = 1, (5B.11)

αμν(q) = δμν−(1+q)
q̂μq̂ν

2
, βμν(q̂) =

q̂μq̂ν
2
, μ � 1, ν � 1. (5B.12)

The subdominant terms ∝ 1/d2 in (5B.8) have their spatial and q dependences of
the type (disregarding angular dependences q̂)

q2

d2 e−qe−
q|x1 |

d e−
q|x2 |

d ,
q
d

q x j

d
e−qe−

q|x1 |
d e−

q|x2 |
d , or

q3

d2 e−qe−
q|x1 |

d e−
q|x2 |

d , (5B.13)

( j = 1, 2), which are naturally consistent with (5B.2). They exhibit facilitated
integrability properties at q = 0, while not altering that at q→ ∞.

The loop magnetic force ∂x1W
m
AB(1, 2, q

d ) is easily seen from (5B.2) — and the
O(q2/d2) factor supplied by Itô’s Lemma — to be O(d−2) and given by

∂
∂x1

Wm
AB(1, 2, q

d ) = ∂
∂x1

Wm
AB(1, 2, q

d )
[
1 + O(d−1)

]
= O(d−2). (5B.14)

The dominant terms in ∂x1W
m
AB(1, 2, q

d ) have the forms

q2

d2 e−qe−
q|x1 |

d e−
q|x2 |

d , or
q3

d2 e−qe−
q|x1 |

d e−
q|x2 |

d , (5B.15)

with coefficients made of stochastic line integrals depending on q̂, similar to
(5B.8)–(5B.9). Note that the dominant component of ∂x1W

m
AB(1, 2, q

d ) as d → ∞ is
not simply deduced by differentiating the dominant term of Wm

AB(1, 2, q

d ) given by
(5B.8).

Appendix 5.C: Brownian functional integrals in slab

geometries

In this appendix we show how weighting the normalized bulk measure D(X) [of
zero mean and covariance (4.78)] with A(x, χ) (5.30) formally provides a func-
tional integral corresponding to a Brownian (Markovian) process satisfying the
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diffusion equation with Dirichlet conditions at the interfaces x = −a, 0. In fact
the latter path integral naturally arises when representing the partition function in
the Feynman–Kac–Itô formalism with ab initio idealized confinements. In this
chapter, we have always represented it by the weighted measure D(X) A(x, χ) on
the ground of this equivalence.

We restrict the discussion to the X(·) component of X(·). The measure D(X)
factorizes into D(X)D(Y) and the transverse component Y(·) has no boundary
constraints in the thermodynamic limit L→ ∞; D(Y) is a 2-dimensional Gaussian
bulk measure with covariance (4.78).

The 1-dimensional bulk Brownian process X(·) starting from and returning to
the origin in the time [0, q] (X(0) = X(q) = 0) has the following sequence of
absolute probabilities of passing through X1 at time t1; ... ; XN at time tN

W0,q
0,0 (X1 t1, ..., XN tN) = (2πq)1/2 p0(0 q|XN tN)...p0(X1 t1|0 0), (5C.1)

where

p0(X2 t2|X1 t1) =
1

[2π(t2 − t1)]1/2 e−
1
2

(X2−X1)2

t2−t1 . (5C.2)

One may formally represent A(x, χ) as

A(x, χ) = e−
∫ q

0 ds θ∞(x+λγX(s)), θ∞(x) =

⎧⎪⎪⎨⎪⎪⎩∞, if x � [−a, 0],
0, if x ∈] − a, 0[.

(5C.3)

Indeed, by continuity of the Brownian path X(s), the set of times s where x +
λγX(s) is not in [−a, 0], if not empty, is of non-vanishing measure; in that case,
the integral of θ∞ must diverge and A(x, χ) = 0.

Using this representation and (5C.1), one can discretize the confined measure
and calculate its moments, as illustrated by following example:∫

D(X) A(x, χ) = lim
N→∞

∫
dX1...dXN W0,q

0,0 (X1 t1, ..., XN tN)

× e−
∑N

j=0(t j+1−t j)θ∞(x+λγX j), (5C.4)

where t j = j q
N+1 , and j = 0, 1, ...,N + 1, X0 = XN+1 = 0. The transition probability

p0(X2 t2|X1 t1) represents 〈X2|U0(t2, t1)|X1〉, the kernel of the propagator U0(t2, t1) =
exp(−(t2 − t1)Ĥ0) with Ĥ0 = −1

2∂
2/∂X2. Applying Trotter’s formula on (5C.4) to

combine Ĥ0 and θ∞ in a same exponential, one finds∫
D(X) A(x, χ) = (2πq)1/2〈X = 0|e−q(Ĥ0+θ̂∞(x+λγ·))|X = 0〉

≡ (2πq)1/2 p(X = 0, q|X = 0, 0). (5C.5)
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This new transition probability p(X, q|X0, 0) is now the kernel of the propagator
e−q(Ĥ0+θ̂∞(x+λγ·)), namely, it is solution of the diffusion equation (parametrized by x
and a occurring in θ∞)

∂

∂t
p(X, t|X0, t0) =

(
1
2
∂2

∂X2 − θ∞(x + λγX)
)

p(X, t|X0, t0) (5C.6)

lim
t→t0

p(X, t|X0, t0) = δ(X − X0), t ≥ t0. (5C.7)

Equation (5C.6) is to be understood as

∂

∂t
p(X, t|X0, t0) =

1
2
∂2

∂X2 p(X, t|X0, t0), if − (a + x)/λγ < X < −x/λγ,

p(X, t|X0, t0) ≡ 0, otherwise.

This corresponds to a diffusion problem constrained by hard walls at −(a + x)/λγ
and −x/λγ. It can be mapped into a problem with hard walls at −a and 0 (conve-
niently independent on x) by defining

�(ξ, t|ξ0, t0) ≡ 1
λγ

p
( ξ−x
λγ
, t| ξ0−x

λγ
, t0

)
, (5C.8)

which satisfies

∂

∂t
�(ξ, t|ξ0, t0) =

λ2
γ

2
∂2

∂ξ2�(ξ, t|ξ0, t0), if − a < ξ < 0,

�(ξ, t|ξ0 t0) ≡ 0, otherwise, (5C.9)
lim
t→t0
�(ξ, t|ξ0, t0) = δ(ξ − ξ0), t ≥ t0.

As an illustration, the solution of this latter problem when a = ∞ reads (Kleinert,
1990, Chap. 6), (Jancovici, 1980; J. N. Aqua & Cornu, 1999)

�(ξ, t|ξ0, t0) =
θ(−ξ)θ(−ξ0)

(2πλ2
γ(t − t0))1/2

(
e
− (ξ−ξ0)2

2λ2γ(t−t0) − e
− (ξ+ξ0)2

2λ2γ(t−t0)
)
. (5C.10)

Thus, for the semi-infinite plasma, collecting (5C.5), (5C.8) and (5C.10),∫
D(X) A(x, χ) = θ(−x)

(
1 − e

− (2x)2

λ2γq
)
. (5C.11)

Following similar steps leading from (5C.4) to (5C.5), one infers that∫
D(X) A(x, χ)X(t1)...X(tn) =

∫
dX1...dXn (2πq)1/2 p(0, q|Xn, tn)...

× p(X1, t1|0, 0) X1...Xn. (5C.12)
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The spatial constraints on the Brownian paths prevent D(X) A(x, χ) from be-
ing a Gaussian measure; it is not determined by its normalization, mean value
and covariance only. Nevertheless, the path integral is associated to the stochas-
tic Markovian process of transition amplitude p(X2, t2|X1, t1) (given by (5C.8) and
(5C.10) in the semi-infinite situation), and all moments can in principle be com-
puted by (5C.12).



Chapter 6

Conclusions and outlook

From a microscopic description of the perfect conducting behaviour of two paral-
lel metallic plates at a distance d apart, we calculated the Casimir force by which
they are attracted, in the semi-classical regime. The exact statistical methods em-
ployed allowed to show that this force by unit surface behaves, at large distances
and fixed (high) temperature, as

f (d) = −
ζ(3)kBT

8πd3 + R(�, c,T, d), where R(�, c,T, d) = O(d−4). (6.1)

Essentially two models have been investigated:

1. In a first model, the charges were classical and interacting via the Coulomb
potential only. The asymptotic correlations could be analysed exactly, by
means of the resummed Mayer series.

2. Using the path integral formalism of quantum statistical mechanics, the cal-
culation was generalised to include the quantum nature of the particles and
their coupling to the radiation field, so that the whole Lorentz force between
the conductors was taken into account. The correlations could then be in-
vestigated exactly as in the classical situation.

Both models retrieved the asymptotic universal term in (6.1).

Factor 2 controversy: This approach differs from the previous theories calcu-
lating the force in the semi-classical regime — all based on Lifshitz’ formula for
the force between dielectrics — by the following facts.

• The metallic behaviour is described at the root of the model by the fluctuat-
ing charged microscopic constituents of the system. It thus takes fully into
account the charge fluctuations inside the conductors.
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• It is not the result of a controversial metallic limit of dielectrics described
semi-macroscopically.

• It does not require the enforcement of macroscopic boundary conditions to
the electromagnetic field at the plates’ surfaces.

In conclusion, we affirm that it is the correct formula for the force in this
regime. In this sense, we rally to the trend of thought prescribing the use of a van-
ishing reflection coefficient of the transverse electric (TE) mode at zero frequency
in the Lifshitz theory, or equivalently, the use of the Drude model (1.8), at least in
the semi-classical regime.

Universality: In addition to providing a more refined analysis of the factor 2
debate, our method also explains the emergence of the universality of the result
(6.1) in microscopic terms. The asymptotic behaviour of the full interplasma cor-
relation function involves, once integrated into the force, perfect screening sum
rules that express the effective shielding of the charges in the individual conduc-
tors. These perfect screening sum rules imply, on one hand, the universality of the
electrostatic part of the force, whereas they shield away its magnetic part. Fur-
thermore, they involve the screening of charges close to the inner surfaces of the
plates, which explains why the force is independent of the plates’ thickness a and
b (provided they are finite and large enough to allow screening clouds to form,
i.e., not microscopic. See also the discussion on thin or thick plasmas below).

Some conclusions more specifically concerned by the path integral loop for-
malism integrating the radiation field (and by its application to field correlations),
developed in the article of Chapter 4, are to be found there.

Open questions and new problems

As usual when a new problem is being investigated, its resolution raises many
more questions than it resolves. In spite of the rather refined microscopic models
investigated throughout this work, a number of points still call for improvements
or clarification.

Quantum field: By calculating the force in the semi-classical regime, we ar-
gued that only long wavelengths of the radiation field were important for inter-
actions across the plasmas, thus justifying its classical treatment. However, the
full model introduced in the article of Chapter 5 should be solved while keeping
the quantum character of the field. Indeed, short wavelengths of the field may
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in principle alter particles’ intraplasma fluctuations. We suspect the asymptotic
result (6.1) to be unchanged by such a generalisation.

Thin or thick plasmas: For every finite thickness a, b of the plates, the asymp-
totic force as d → ∞ was seen to be always independent of them. This corre-
sponds to situations where d � (a, b) � 1. The question of whether the regimes
d � (a, b) � 1 (thin plasmas) and a, b � d � 1 (thick plasmas) lead to the same
asymptotic force should be answered. We have seen that this is the case in the
classical model. However, it might not be so when the radiation field is included
into the description: indeed, the magnetic effective potential becomes asymptoti-
cally nonintegrable as d → ∞.1 When semi-infinite plasmas are considered before
letting d → ∞ (corresponding to a, b � d � 1), one needs to integrate this poten-
tial before analysing its behaviour as d → ∞. Relativistic corrections O((βmc2)−1)
and O((βmc2)−2) are likely to add to the ∝ d−3 asymptotic term.

This question is also related to that of subleading terms (see next point): a
perturbative expansion in a/d � 1 is expected to be well-defined, by the presence
of spatial dependencies e−

q|x|
d ≈ e−

qa
d in the Coulomb force for example. On the

contrary, one expects an expansion in d/a � 1 to not be so, since the above spatial
factor is nonanalytic in this parameter.

Nevertheless, experimentally, only thin coats of metal, of the order of 50nm,
are presently deposited (by evaporation) on a support. Compared to separation
distances ranging in ≈ 0.5–3μm, the regime is clearly a, b � d (Bressi et al.,
2002). Thicker films lead to undesirable rougher surfaces (already at ≈ 0.3μm)
and there seem to be no experimental data in such regimes (Onofrio, 2006).

Subleading terms: The more general question of the subdominant term in-
cluded in R(�, c,T, d) = O(d−4) is of primordial importance for several reasons.
First, it naturally gives the dominant value ∝ d−3 its range of validity, which is
crucial to establish contact with experiments — facing every kind of effects al-
together —, even the more so in view of the multiple uncertainties found in the
literature about how to take into account the corrections to the ideal, theoretical,
asymptotic results. For example, finite conductivity corrections as usually taken
into account in Lifshitz’ theory appear as subdominant orders scaled by the so-
called skin depth δ, the penetration depth of the field into the metals (Milton,
2004, Sec. 3.3.2). It would be of strong interest to be able to exhibit such an
O(δ/d4) correction in our calculation when the field is included.

We have mentioned, for the investigation of subleading terms, the importance
of knowing more accurately properties of the density profiles as d → ∞ (see Sec-

1By a bulk symmetry argument, the “quantum component” of the Coulomb potential is seen to
be, on the contrary, still integrable.
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tion 3.8). Note that the mainly constant capacitor’s force (2.47), which cannot be
completely “turned off” in experiments, might potentially add O(d−1) contribu-
tions as well.

Although most experiments aim at measuring the zero temperature Casimir
force, they are so far performed at room temperature. Having more accurate
limitations to distinguish the low-temperature and the high-temperature (semi-
classical) regimes would be useful. This leads to the next question, which deserves
a separate attention.

Zero temperature: In principle, as temperature is reduced, the higher-order
terms O(d−4) contained in R(�, c,T, d) should build up the Casimir vacuum force
(1.1) while the classical term ∝ d−3 in (6.1) disappears. However, the interplay
between low temperature and short distances, captured in macroscopic theories
by the single parameter α (1.2), is not as simple in our microscopic theory, which
involves many other characteristic lengths. An explicit form of the subleading
term ∝ d−4 could give insights into the mechanism of this crossover. Nonetheless,
the transition from our charged fluids to crystallised metals at zero temperature
would require investigating the problem by means of a new formalism: that of
loops is not well-defined at too low temperatures, as loops of very large extension
(parametrized by the thermal de Broglie wavelength) would contribute substan-
tially. (Moreover, we assumed translation invariance of the states in the calcula-
tions.) The sum rules satisfied by the correlations, expressing the screening effects
in a conductive state, hold well beyond the weak-coupling regime. A lower bound
of temperature for the validity of our result (T fixed, d → ∞) may then be given
by the requirement that the de Broglie wavelength λpart be much smaller than the
plates’ width a, b. For plates of width ≈ 50nm, temperatures only need to be
greater than a few Kelvins. Understanding the crossover to lower temperatures in
microscopic theories of conductors is an open problem.

The question of whether the quantum fluctuations of the microscopic charged
constituents inside the conductors might as well modify Casimir’s celebrated zero-
temperature result is naturally raised by their importance in the semi-classical
regime.

Note that in a coupled regime of low temperature and low density, however,
one might — starting from the same microscopic premises as ours — investi-
gate the force like Alastuey et al. (n.d.), who computed the effective van der
Waals–London-like interactions in a system of recombined atoms with fractions
of ionized charges. When these fractions are strictly zero, one is likely to fall
back on the Lifshitz force in dilute media interpreted as the pairwise summation
of these van der Waals forces. As soon as free charges are present, contributions
from their interactions with atoms should occur, as well as “Casimir-like” con-



191

tributions resulting from the free charge interacting among themselves. Such a
regime, however, does not model the conducting behaviour of real metallic plates
at low temperature.

Other problems

The methods used in the present work may be applied to investigate related prob-
lems.

Field at an interface: The properties of the thermalised electromagnetic field at
an interface with a perfect conductor could be analysed following the methods of
Chapter 4, used there to calculate the asymptotic field correlations in a bulk ma-
terial. Although such an equilibrium analysis would be difficult to put in parallel
with the frequency-dependent macroscopic fields at an interface, it might still give
insight into why the microscopic charge fluctuations of the conductor lead in effect
to the vanishing of the reflection factor of the TE zero mode in the Casimir force
problem. The calculation of penetration depths (related to the finite conductivity
of the conductor) would require a good knowledge of the density profiles close to
the surface, which have been extensively studied (in the absence of radiation) in
(J.-N. Aqua & Cornu, 2001a, 2001b, 2004).

Atom-wall, charge-wall problems: The attraction occurring between an atom
and a metallic plate is a whole field in itself in fluctuation-induced force, although
it presents many similarities with the Casimir effect: Casimir and Polder (1948)
investigated this case as a preliminary exercise to the retarded van der Waals in-
teraction between two atoms. Yet, the plate is usually described macroscopically
or semi-macroscopically. It would be interesting to describe its perfect conduct-
ing behaviour from a microscopic point of view. A large number of experiments
measure this force too, see e.g., (Duplantier & Rivasseau, 2003).

A similar problem is that of a single charge in front of a metallic plate. The
expected result is to retrieve the very well-known “image charge” description
on the conductor’s side, which corresponds (in the macroscopic language) to a
specific distribution of a surface charge density bearing the opposite sign as the
fixed charge. As a preliminary exercise to the Casimir force, we investigated
this problem in the simplified Debye–Hückel approximation perturbating around
flat density profiles. The leading force was indeed the one usually considered in
macroscopic electrodynamics, i.e., the force exerting between the charge and its
“image”. Higher-order terms were involving the screening length of the plasma.
This problem could be reanalysed so as to go beyond the Debye–Hückel approx-
imation, and to prominently exhibit the screening mechanisms involved in the
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universality of the dominant term. By the fact that an opposite mean charge den-
sity is brought “from infinity” at the conductor’s surface, this problem also relates
to the notion of grounded conductors in the thermodynamic limit.

Other geometries: The problem of investigating the Casimir force between ob-
jects other than parallel slabs with our statistical point of view is expected to be
hard; it is hard already with a macroscopic description. The calculation of the
force in the two-plate geometry used extensively the partial Fourier representa-
tion with respect to the y-plane, which proved very fruitful. This could no longer
be used.



Appendix A

Resummation of Mayer graphs in

density

We sketch here the procedure to follow in order to resum the long-range part
f el(i, j) ≡ −βeγieγ jv(i, j) of the bond f (i, j) = e−β(eγi eγ j v+vSR)(i, j)−1 in Mayer graphs,
giving rise to the resummed Mayer graphs series. (Notations are as in Section 2;
vSR denotes the short-range potential (2.20) between the classical charges.) This
resummation is needed for Coulombic matter when the thermodynamic limit is
taken, for the electrostatic Coulomb potential v(i, j) is nonintegrable at infinity.
Due to the embodiment of screening in the resummation process, infinite spatial
integrations in the new graphs are then well-defined. Only Mayer graphs in den-
sity are considered. The resummation procedure is slightly more complicated for
Mayer graphs in activity, as they allow articulation points.

The principle of the resummation is to give prominence to chain convolutions
of the long-range part f el between two specific points. The sum of these chains
defines the screened Debye–Hückel-like potential (2.57). However, the remaining
part of the Mayer bond f R ≡ f − f el and topological issues (the possibility of hav-
ing two convolution chains in parallel but not two single bonds f across the same
points) imply the playing of a second type of link in the resummed series. Here-
after, we call the intermediate points of f el-convolution chains “Coulomb points”.
These points disappear from the original graphs in the resummation process.

After splitting all the Mayer bonds f into f el + f R, one expands their product.
In one of these expanded graphs, consider two non-Coulomb points that are linked
by a two-point function made of a subgraph that contains only Coulomb points (if
any). We resum the whole class of diagrams that differ from this chosen graph
only by the internal structure of this two-point function. This process is recur-
sively repeated between every other such pair of non-Coulomb points to provide
the new graph series.

We distinguish two categories of subgraph structures for this two-point func-
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tion. The first category links the two points by either f el or a f el-convolution
chain: f el ∗ f el, f el ∗ f el ∗ f el, etc. The second category takes into account every
other possibility, namely

(a) one link f R

(b) n ≥ 2 parallel paths of convolution chains f el ∗ f el, f el ∗ f el ∗ f el, etc.

(c) one link f el or f R with in parallel n ≥ 1 convolution chains like in (b).

Note that having two single f el bonds or two single f R bonds in parallel is not
allowed. Resummation of subgraphs of the first category provides the screened
bond F (2.57). Convoluting F in chains is then no longer allowed. Resummation
of subgraphs of the second category gives rise to another bond:

FR = f R︸︷︷︸
(a)

+

∞∑
n=2

(F − f el)n

n!︸�����������︷︷�����������︸
(b)

+ ( f el + f R)
∞∑

n=1

(F − f el)n

n!︸�������������������������︷︷�������������������������︸
(c)

. (A.1)

The factors 1/n! take into account the changes in the graphs’ symmetry number
occasionned by the presence of parallel convolution chains. Reorganizing the
different terms, one arrives at

FR = f R + eF− f el − 1 − F + f el + f (eF− f el − 1)

= (eF− f el − 1)(1 + f ) + f − F (A.2)

= eF−β vSR − 1 − F. (A.3)

The resummation of all these internal structures yields bonds F + FR, which are
expanded to finally provide graphs built with either F or FR by the same dia-
grammatic rules than the original graphs, except that convolution chains of F are
forbidden.
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Some Fourier transforms

The importance of Fourier transform in asymptotic analyses comes from the re-
lation between the singularities of a function and the behaviour at infinity of its
Fourier transform (or inverse Fourier transform). A nice and simple review of
this important result, as well as of the meaning of Fourier transforms in the sense
of distributions, can be found (in one dimension) in (Lighthill, 1996, especially
Chap. 4). For the generalisation to several dimensions, see (Jones, 1982, espe-
cially Chap. 9).

Our definitions and notations for Fourier transforms are the following. We
recall that we use the notation r = (x, y) and K = (k1,k).

f (K) =
∫

dr e−iK·r f (r), (B.1)

f (r) =
∫

dK

(2π)3 eiK·r f (K), (B.2)

f (x,k) =
∫

dy e−ik·y f (x, y) (B.3)

=

∫
dk1

2π
eik1 x f (K). (B.4)

We use the same symbol to denote a function and its Fourier transforms. These
different entities are distinguished by inspection of their arguments.

Hereafter, some Fourier transforms used in this report are provided, as well as
hints of how to derive them. Note that these Fourier transforms are taken in the
sense of distributions, for the Coulomb potential is naturally not integrable.
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Coulomb potential v

v(r) =
1
|r|

(B.5)

v(K) =
4π
K2 (B.6)

v(x,k) =
2π
k

e−k|x| (B.7)

∂xv(x,k) = −2π sign(x)e−k|x| (B.8)

Formula (B.7) is easily obtained using (B.4) on (B.6) and the Residue theorem.
Its differentiation leads to (B.8).

Transverse Coulomb potential vμν

vμν(K) =
4π
K2 δ

μν
tr (K) =

4π
K2

(
δμν −

kμkν
K2

)
(B.9)

vμν(r) =
1
2r

(
δμν +

xμxν
r2

)
(B.10)

vμν(x,k) =
π

k
e−k|x| ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δμν + k|x|, ν = μ = 1,
δμν − ikμx, μ � 1, ν = 1,
2δμν − (1 + k|x|) kμkν

k2 , μ � 1, ν � 1.
(B.11)

∂xvμν(x,k) = −πe−k|x| ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
kx, ν = μ = 1,
−ikμ|x| + i kμ

k , μ � 1, ν = 1,
sign(x)

(
2δμν − k|x| kμkνk2

)
, μ � 1, ν � 1.

(B.12)

The full Fourier transform (B.1) of the nondiagonal term in (B.10) (yielding part
of (B.9)) can be computed using xμxν

r3 = xμ∂ν
(1

r

)
, partial integrations, and (B.6).

Similar calculations, starting from the same identity (specialized according to the
values of μ and ν) and making use of the partial Fourier transform (B.3) lead to
(B.11). Differentiation, again, provides (B.12).
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