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Abstract. This report addresses the problem of locating facial features in images
of frontal faces taken under different lighting conditions. The well-known Active
Shape Model method proposed by Cootes et al. is extended in order to improve
its robustness to illumination changes. For that purpose, we introduce the use
of Local Binary Patterns (LBP). Three different approaches combining ASM
with LBP are presented: profile-based LBP-ASM, square-based LBP-ASM and
divided-square-based LBP-ASM. Experiments performed on the standard and
darkened image sets of the XM2VTS database demonstrate that the divided-
square-based LBP-ASM gives superior performance compared to the state-of-
the-art ASM. It achieves more accurate results and fails less frequently.
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Chapter 1

Introduction

Active Shape Model (ASM) is a popular statistical tool for locating examples of
known objects in images. It was first introduced by Cootes et al. [5] in 1995 and has
been developed and improved for many years. ASM is a model-based method which
makes use of a prior model of what is expected in the image. Basically, the Active
Shape Model is composed of a set of profile models and a deformable shape model.
The shape model describes the typical variations of an object exhibited in a set of
manually annotated images and the profile models give a statistical representation
of the gray-level structures around each model point. Given a sufficiently accurate
starting position, the ASM search attempts to find the best match of the shape model
to the data in a new image using the profile models. ASM is thus fundamentally similar
to Active Contour Model, or snake, proposed by Kass et al. [12]. However, ASM has
global constraints that allow the shape model to deform only in ways found in the
training set.

A direct extension of the ASM approach has lead to the Active Appearance Model [1].
Besides shape information, the textual information, i.e. the pixel intensities across the
object, is included into the model. The AAM algorithm seeks to match both the
position of the model points and a representation of the texture of the object to an
image.

Although ASM and AAM can be used to find any object in an image, we focus
this thesis on the detection of facial features such as eyes, nostrils, nose and mouth.
Locating such features is an important stage in many facial image interpretation tasks
such as face recognition, face tracking or face expression recognition. However, facial
feature detection is a challenging task because human faces vary greatly between in-
dividuals. Faces can also appear at a wide range of sizes in images and facial hair or
glasses can cause the facial features to be obscured. Although good results for facial
feature localization using ASM and AAM have been reported [2, 13, 7], the ability of
the model to perform well in different lighting conditions is still limited.

We propose in this thesis a novel approach combining ASM with Local Binary
Patterns (LBPs). LBP is a powerful and computationally simple descriptor of local
texture patterns. It expresses the difference of intensity between a given pixel and its
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neighborhood. LBPs are therefore more robust to illumination changes.
This thesis is organized as follows: in the next chapter, we describe the original

ASM method proposed by Cootes et al.. Chapter 3 introduces the different approaches
combining ASM with LBPs that we have investigated during this work. Experiments
and results are presented in Chapter 4 and a conclusion is drawn in Chapter 5.



Chapter 2

Active Shape Model

2.1 Building Models

Faces may vary from one image to another due to the identity of the individual,
his facial expression, the lighting conditions and the 3D pose (both in plane and out
of plane head rotation, scale variation, face location). In order to locate facial features
in an image using Active Shape Models, we must first build a model that can describe
shapes and typical variations of a face. To build a statistical model of a face, we require
a set of training images reflecting possible variations.

In this section, we will present the steps needed to build a model from a set of
training images. The first step is to annotate all the shapes in the training set, then
align the labeled shapes, and finally capture the statistics of the variations.

2.1.1 Labeling the Training Set

The shape of a face is represented by a set of n landmark points or landmarks,
which may be in any dimension d. Therefore, we must first decide upon a suitable
set of landmarks which can be found reliably on every training image. The number of
landmarks should be adequate to show the overall shape and also show details where
it is needed. This number depends on the desired level of detail description.

Following Cootes et al. [4], good choices for landmarks in the two dimensional case,
are points at corners of object boundaries, “T” junctions between boundaries or easily
located biological landmarks such as the center of the eyes and the corners of the
mouth. However, those points are usually not enough to provide a precise description
of a human face. Therefore, we generally make use of intermediate points between well
defined landmarks. Those points which are arranged to be equally spaced, describe
most of the boundaries of the face. Figure 2.1 shows a face image from the XM2VTS
database manually labeled with 68 landmark points.

Since the statistical model that will be used to describe faces is based on the varia-
tions of the coordinates of each landmark points within the training set, it is important
to specify the landmarks positions as accurately as possible. The best method for gen-

9



10 IDIAP–RR 06-07

erating a reliable training set is for a human expert to annotate each image with a set
of corresponding points. In practice, this can be very time consuming, and automatic
and semi-automatic methods are being developed to aid this annotation [4].

As a result, we end up with n landmark points in d dimensions for each shape.
In order to have a mathematical representation, the coordinates of each point are
concatenated to form a single vector of length n × d. For instance, the n points of a
planar shape (d = 2) can be represented by the vector x:

x = (x1, x2, . . . , xn, y1, y2, . . . , yn)T (2.1)

where (xj, yj) are the coordinates of the j th landmark. Given N training images, N
such vectors xi are then generated. Each vector is of length 2n.

Figure 2.1: Example face image annotated with 68 landmarks

2.1.2 Aligning the Training Shapes

The shape of an object is normally considered to be independent of the scale,
orientation and position of that object. Therefore, before any statistical analysis of
the training shapes can be performed, variation due to scale, rotation and translation
must first be removed from the shapes by aligning them into a common coordinate
frame. This is achieved using Procrustes Analysis [9] which aligns each shape so that
the squared distance to the mean (

∑ |xi − x̄|2 ) is minimized.
Although an analytical solution exists [8], the simple iterative approach proposed

by Cootes et al. [4] is sufficient to align a set of shapes (see Algorithm 1).
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Algorithm 1 Aligning the Training Shapes [4]

1. Translate each example so that its center of gravity is at the origin

2. Choose one example as an initial estimate of the mean shape (e.g. the first shape
in the set) and scale so that |x̄| = 1

3. Record the first estimate as x̄0 to define the default reference frame

4. Align all shapes with the current estimate of the mean shape

5. Re-estimate mean from aligned shapes

6. Apply constraints on the current estimate of the mean by aligning it with x̄0 and
scaling so that |x̄| = 1

7. If the mean x̄ has not changed significantly then STOP, else return to step 4

Step 1 of Algorithm 1 filters out variation between shapes due to variable face
location in the training images. Hence, the transformations needed when aligning each
shape to the mean in step 4, are only scaling and orientation. Suppose Ts,θ(x) scales
the shape x by s and rotates it by θ. To align two 2D shapes, x1 and x2, each centered
on the origin, we choose a scale s and rotation θ so as to minimize |Ts,θ(x1)−x2|2. The
optimal solution is given in Appendix A. A weighting matrix can also be introduced in
order to give more significance to the landmark points that tend to be more stable [5].

However, this approach introduces non-linearities. In order to improve the linearity
of the aligned shape data, we project each shape xi into the tangent space [8] of the
mean shape x̄ by scaling it by 1/(xi · x̄) after step 4. The tangent space of the mean
shape is the hyperplane of vectors, normal to the mean shape, passing through it. In
other words, it consists in all the vectors x such that (x̄ − x) · x̄ = 0.

The estimate of the mean shape is then computed in step 5 using:

x̄ =
1

N

N
∑

i=1

xi (2.2)

where N denotes the number of training shapes. To avoid shrinking or drifting of the
mean shape, size and orientation are properly fixed at each iteration by normalization
(step 6).

In most cases, two iterations of the Algorithm 1 are sufficient to align all the shapes.
Figure 2.2 illustrates a small training set before and after alignment.

2.1.3 Building a Shape Model

Each aligned shape can be considered as a single point in the nd dimensional space
and the whole training set as a cloud of points in this space. In order to capture
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(a) Unaligned shapes (b) Aligned shapes

Figure 2.2: Training set before and after alignment

the statistics of the shape variations, we apply Principal Components Analysis (PCA)
to the data (see Algorithm 2). Basically, PCA computes the eigenvectors φi of the
covariance matrix S which correspond to the main axes of the cloud of points. Those
eigenvectors define an orthogonal basis. Each axis gives a “mode of variation”, a way in
which the landmark points tend to move together as the shape varies. The eigenvectors
φi of the covariance matrix corresponding to the largest eigenvalues λi describe the most
significant modes of variation.

Since the landmarks positions are always partially correlated, most of the variation
exhibited in the training set can usually be explained by a small number of modes, t.
Hence, the dimension of the model can be reduced. The proportion of the total variance
explained by each eigenvector is equal to its corresponding eigenvalue. The number
of eigenvectors to retain can then be chosen so that the model represents a certain
percentage p (e.g. 98%) of the total variance given by the sum of all the eigenvalues
λi:

VT =
nd
∑

i=1

λi (2.3)

Therefore, t can be chosen as the smallest number such that,

t
∑

i=1

λi ≥ p · VT (2.4)

where the eigenvalues are sorted into descending order (λi ≥ λi+1).
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Algorithm 2 Principal Components Analysis

1. Compute the mean of the data using Equation 2.2

2. Compute the covariance of the data

S =
1

N − 1

N
∑

i=1

(xi − x̄)(xi − x̄)T

3. Compute the eigenvectors φi and corresponding eigenvalues λi of S

4. Sort the eigenvectors so that λi ≥ λi+1

5. Store the first t eigenvectors as a matrix Φ = (φ1|φ2| . . . |φt)

PCA allows then each shape x in the training set to be approximated using the
mean shape x̄ and a small number of parameters b:

x ≈ x̄ + Φb (2.5)

where b is a vector of dimension t(< nd), obtained by projecting x into the subspace
defined by the mean shape and the matrix Φ:

b = ΦT (x − x̄) (2.6)

Equation 2.5 allows us to generate new examples by varying the vector b. The
parameters bi are assumed to be independent and Gaussian. The variance across the
training set of an individual parameter bi is given by λi. We can thus ensure that the
shape generated is similar to those in the original training set by applying limits of
±3

√
λi to the parameter bi.

Figure 2.3 shows the effect of varying the first three shape parameters in turn
between ±3 standard deviations from the mean value, leaving all other parameters at
zero.

2.2 Image Search

Having generated flexible models in the previous section, we would like to use them
in image search, to find new examples of face in images. This involves finding the
set of parameters which best match the model to the image. Using the model we
described before, the parameters we can vary are the shape parameters b and the pose
parameters (Xt, Yt), θ and s, defining respectively the position, the orientation and the
scale of the model in the image.

In this section, we describe an iterative method proposed by Cootes et al. [4] for
finding the appropriate shape model given a very rough starting approximation. This
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−3
√

λi +3
√

λi
Mean

Mode 1

Mode 2

Mode 3

Figure 2.3: First three modes of the human face shape model. Images of mode i are
generated using the shape parameter vector b where bj = 0 for j = 1, . . . , t; j 6= i and
bi = {−3

√
λi, 0, +3

√
λi}.

approach moves each landmark to a position where the gray-level structure around the
point is the most similar to that occurring at the given model point in the training
images.

2.2.1 The Algorithm

Given an unlabeled face, the ASM search is required to match the shape model to
the face image automatically. We assume in what follows that we know roughly the
position in which the model should be placed.

An initial face model which is generally the mean shape model is first projected
into the image being searched. Using the iterative approach explained by Algorithm 3,
shape and pose parameters are altered such that the model moves and evolves in the
image plane, hopefully converging to the best possible match of the model to the face
image.

More specifically, the algorithm examines at each iteration a region of the image
around each model point to determine a displacement which moves it to a better
location. Although we could consider a region of any shape, we look in practice along
profiles normal to the model boundary, passing through each model point (Figure 2.4).
When the model boundaries correspond to edges, the points are just moved to the
strongest edge along the profiles. However, this is not always the case. The model
points may sometimes represent a weaker secondary edge or some other image structure,
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Algorithm 3 Active Shape Model Algorithm [4]

1. Examine a region of the image around each point xi to find the best nearby match
for the point x′

i

2. Update the parameters (Xt, Yt, s, θ,b) to best fit the new found points x′

3. Apply constraints to the parameters b to ensure plausible shapes (e.g. limit so
|bi| < 3

√
λi )

4. Repeat until convergence

e.g. eye center, tip of nose. It is then necessary to have a more general model of the
gray-level structures. The best approach according to Cootes is to learn from the
training set what to look for in the target image. Since a given point corresponds
to a particular part of the face, the gray-level patterns about that point in images of
different examples will often be similar. A statistical model describing the gray-level
structures around each landmark point in the training images can then be used to find
the best movement.

Once a new position is found for each landmark point, the shape and pose parame-
ters are adjusted so as to fit the model as close as possible to the suggested new points.
By applying constraints to the shape parameters, we force the model to deform only
in ways found in the training set.

Figure 2.4: Profiles normal to the model boundary
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Finding the Best Movement for each Point

For every landmark point i in the image j of the training set, we extract a profile
gij of length np pixels, centered at the point. To reduce the effects of global intensity
changes, we sample the derivative along the profile, rather than the absolute gray-level
values (Cootes et al. [3]). The kth element of the derivative profile is given by:

gijk = Ij(yi(k+1)) − Ij(yi(k−1)) (2.7)

where yik is the kth point along the ith profile and Ij(yik) is the gray level in image j
at that point.

This profile is then normalized by dividing each element by the sum of absolute
element values:

g′

ij =
gij

∑np

k=1 |gijk|
(2.8)

For each landmark point i, we get a set of N normalized samples {g′

ij}. Assum-
ing that these are distributed as a multivariate Gaussian, we can compute the mean
normalized derivative profile,

ḡi =
1

N

N
∑

j=1

g′

ij (2.9)

and the np × np covariance matrix,

Sgi
=

1

N − 1

N
∑

j=1

(g′

ij − ḡi)(g
′

ij − ḡi)
T (2.10)

This gives one gray-level model for each point.
Given a new profile gs, the quality of fit of that profile to its corresponding model

ḡ can then be estimated using the following square error function which decreases as
the fit becomes better:

f(gs) = (gs − ḡ)(gs − ḡ)T (2.11)

This fit function can also be weighted by the inverse of the covariance matrix Sg giving
the Mahalanobis distance between the profile and the model:

f(gs) = (gs − ḡ)Sg
−1(gs − ḡ)T (2.12)

In both cases, minimizing f(gs) is equivalent to maximizing the probability that gs

comes from the distribution.
During search, we extract for each landmark point, a search profile g from the

current image, of some length l (> np) and centered at the point. We take the derivative
and normalize it as we did in the training process. We then test the quality of fit of
the corresponding gray-level model to the l − np + 1 possible sub-profiles (of length
np) along the sample (Figure 2.5). The center of the sub-profile giving the best match
indicates the new location of the landmark point.

In this way, we get a new position for each point. In order to ensure that the shape
defined by the new points is similar to those in the training set, we then update the
current pose and shape parameters to best match the shape model to the suggested
new points.
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Figure 2.5: Search along sampled profile to find best fit of gray-level model [4]

Fitting the Model to New Points

The positions of the shape model points in an image are given by:

X = TXt,Yt,s,θ(x̄ + Φb) (2.13)

where the elements of vector b correspond to the shape parameters and TXt,Yt,s,θ per-
forms a rotation by θ, a scaling by s and a translation by (Xt, Yt).

Given a new set of points Y, the shape model can be fitted to the new shape by
finding a suitable set of shape and pose parameters. The transformation TXt,Yt,s,θ and
b are chosen to minimize the sum of square error between the new set of points Y and
the model instance X:

|Y − TXt,Yt,s,θ(x̄ + Φb)|2 (2.14)

Cootes et al. [4] define an algorithm to iteratively minimize the approximation error
(see Algorithm 4). In Algorithm 4, convergence is declared when applying an iteration
produces no significant change in the pose and shape parameters. Convergence usually
takes only a few iterations.

2.2.2 Multi-Resolution Active Shape Models

An important parameter that affects considerably the image search is the length of
the search profile. On one hand, the search profile should be long enough to contain
within it the target point, but on the other hand, it has to be short so as to avoid
the landmark point moving to far away from the target and missing it. To solve this
problem, Cootes et al. [6] proposed a multi-resolution approach where the search is first
performed in a coarse image, then refined in a series of finer resolution images. This
improves the efficiency, the robustness and the speed of the algorithm while making it
less likely to get stuck on wrong image structures.

For each training and test image, a Gaussian image pyramid is built. The base
image (level 0) is the original image. Each level is then formed by smoothing the
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Algorithm 4 Iterative Fitting to New Points [4]

1. Initialize the shape parameters b to zero

2. Generate the model instance x = x̄ + Φb

3. Find the pose parameters (Xt, Yt, s, θ) which best map x to Y (see Appendix A)

4. Invert the pose parameters and use to project Y into the model co-ordinate frame:

y = T−1
Xt,Yt,s,θ

(Y)

5. Project y into the tangent plane to x̄ by scaling by 1/(y · x̄)

6. Update the model parameters to match to y

b = ΦT (y − x̄)

7. Apply constraints on b (see Section 2.1.3)

8. If not converged, return to step 2

image at the level below with a 5 × 5 Gaussian mask (see Figure 2.6) and then sub-
sampling every other pixel to obtain an image with half the number of pixels in each
dimension. Figure 2.7 shows a three level pyramid.

Figure 2.6: Gaussian mask

During training, a statistical model of the gray-level structures around each land-
mark point is built at each level of the pyramid using the method described in Sec-
tion 2.2.1. We usually use the same number of pixels in each profile model, regardless
of the level.

During search, we only need to search a few pixels either side of the current point
position at each level. This allows quite large movements at coarse levels whereas the
shape model is just slightly modified in the finer resolution.
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Figure 2.7: Pyramid of images

The search is performed by first searching at the top level of the pyramid. When
the position of a certain percentage of landmark points does not change significantly,
the algorithm is declared to have converged at that resolution. For instance, when 95%
of the new points are within the central 50% of the search profile, the current shape
model is projected into the next image and run to convergence again. The search is
stopped when convergence is reached on the lowest level of the pyramid. Algorithm 5
summarizes the full multi-resolution ASM search algorithm.



20 IDIAP–RR 06-07

Algorithm 5 Multi-Resolution ASM search algorithm [4]

1. Set L = Lmax

2. While L ≥ 0

(a) Compute model point positions in image at level L

(b) Search at ns points on profile either side each current point

(c) Update pose and shape parameters to fit model to new points

(d) Return to (2a) unless more than 95% of the points are found within ns/2
pixels of the current point, or Nmax iterations have been applied at this
resolution

(e) If L > 0 then L → (L − 1)

3. Final result is given by the parameters after convergence at level 0

2.2.3 Examples of search

Figure 2.8 illustrates two examples of face feature localization using Active Shape
Model. The shape model is trained with 600 images annotated with 68 landmark
points. 58 modes of variation are retained and the normal profiles used to build the
local structure models are 25 pixels long.

Face detection is first performed. Then the shape model is initialized according to
the estimated eye positions output by the face detector. The search starts at level 3 of
the pyramid and moves to the next level when 95% of the new points are within the
central 50% of the search profile or 20 iterations have been already performed.

Figure 2.8 shows that large movements are made in the first few iterations. In finer
resolutions, adjustments are made and the shape model converges to a good match.
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Initial After 1 iterations

After 4 iterations After 9 iterations (convergence)

Initial After 3 iterations

After 5 iterations After 10 iterations (convergence)

Figure 2.8: Examples of search using Active Shape Model of a face
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Chapter 3

Active Shape Model using Local

Binary Patterns

Active Shape Model is a powerful tool for face alignment. However, the features
used to model the local gray-level structures are very sensitive to illumination, partic-
ularly when the lighting conditions during search are significantly different from the
lighting conditions used to train the shape model.

In this master thesis, we introduce Local Binary Patterns (LBP) as novel features
for local appearance representations. LBPs are powerful texture descriptors which are
much more robust to illumination changes. So far, only Huang et al. [10] proposed an
improved ASM method based on this idea but they used extended local binary patterns
which encode not only the original image but also the gradient magnitude image.

In this chapter, we first introduce the LBP operator and present the approach
proposed by Huang et al. We then describe the different methods for modeling the
local structures using LBPs that we have investigated during the work.

3.1 Local Binary Patterns

The LBP operator, first introduced by Ojala et al. [15], is a powerful method of
analyzing textures. The operator labels the pixels of an image by thresholding the
3 × 3 neighborhood of each pixel with the center value and considering the result as a
binary number (see Figure 3.1). At a given pixel position (xc, yc), the decimal form of
the resulting 8-bit word can be expressed as follows:

LBP (xc, yc) =
7

∑

n=0

s(in − ic)2
n (3.1)

where ic corresponds to the gray value of the center pixel (xc, yc), in to the gray values
of the 8 surrounding pixels and function s(x) is defined as:

s(x) =

{

1 if x ≥ 0
0 if x < 0

(3.2)

23
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86 102 15

77 83 56

101 95 70

1 1 0

0 0

1 1 0

Threshold

Binary code = 11000110

Decimal value = 128+64+4+2 = 198

Figure 3.1: Calculating the original LBP code

The operator is therefore invariant to monotonic changes in gray scale and can resist
illumination variations as long as the absolute gray value differences are not badly
affected. However, the limitation of the original LBP operator comes from its small
3× 3 neighborhood which can not capture features with large scale structures. Hence,
Ojala et al. [16] extended their original LBP operator to a circular neighborhood of
different radius size. Figure 3.2 illustrates examples of extended LBP operators where
(P,R) refers to P equally spaced pixels on a circle of radius R. The value of neighbors
that do not fall exactly on pixels, are estimated by bilinear interpolation.

Figure 3.2: Examples of extended LBP operators

Further extension of LBP is to use uniform patterns [16]. A Local Binary Pattern
is called uniform if it contains at most two bitwise transitions from 0 to 1 or vice versa
when the binary string is considered circular. For instance, 00000000, 11111001 or
00011111 are uniform patterns. It has been observed that uniform patterns contain
most of the texture information. They mainly represent primitive micro-patterns such
as spots, lines, edges, corners.

The notation LBP u2
P,R denotes the extended LBP operator in a (P,R) neighborhood.

The superscript u2 indicates that only uniform patterns are used, labeling all remaining
patterns with a single label.

Since each bit of the LBP resulting code has the same significance level, two succes-
sive bit values may have a totally different meaning. That is the reason why histograms
of the labels are used to describe textures.
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3.2 Extended Local Binary Patterns ASM

Recently, Huang et al. proposed in [10] an ASM method framework, ELBP-ASM, in
which local appearance patterns of facial landmark points are modeled using extended
local binary pattern.

Huang et al. pointed out in their paper that LBP can only reflect the first derivation
information of images, but could not present the velocity of local variation. To solve
this problem, they proposed an Extended version of Local Binary Patterns (ELBP) that
encodes the gradient magnitude image in addition to the original image. Moreover,
in order to retain spatial information, sub-images of landmark points are divided into
small regions from which the LBP histograms are extracted and concatenated into
a single feature histogram representing the local appearance patterns. Algorithm 6
describes the method for building the ELBP histogram associated to a given landmark
point.

The mean ELBP histogram of each landmark can then be computed using:

H̄i,j =
1

N

∑

n

Hn,i,j (3.3)

where N is the number of training images.

Algorithm 6 Building an ELBP histogram [10]

1. Extract from the original image a disk of radius 15 pixels, centered at the land-
mark point

2. Apply a low-pass Gaussian filter to the sub-image in order to reduce noise impact

3. Generate the gradient magnitude image using Sobel filter operators, hx and hy:

|∇I| =
√

(hx ⊗ I)2 + (hy ⊗ I)2

4. Divide the original image and the gradient magnitude image into four regions

5. Build five histograms corresponding to the whole image and four regions using
(see Figure 3.3):

Hi,j =
∑

im,fl

∑

x,y

I{fl(im(x, y)) = i}I{(x, y) ∈ Rj}

where im ∈ {original image, magnitude image}, fl ∈ {LBP u2
8,1, LBP u2

8,2, LBP u2
8,3},

Rj ∈ {region1, region2, region3, region4, whole image} and I is the indicator
function

6. Concatenate the histograms to get the ELBP histogram
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Figure 3.3: Building an ELBP histogram

During search, the ELBP histogram corresponding to each point located on the
normal profile (see Section 2.2.1), is built using Algorithm 6. They are then compared
to the mean histogram. The similarity between the testing point’s histogram H and
the mean histogram H̄ is calculated using Chi square statistic:

χ2(H, H̄) =
∑

i

(Hi − H̄i)
2

(Hi + H̄i)
(3.4)

The smaller the distance is, the more similar the histograms are. The landmark point
is thus moved to the profile point whose ELBP histogram is the closest to the mean
histogram. Similarly to the original ASM, the pose and shape parameters of the shape
model are then adjusted to fit the new suggested points, before starting a new iteration.
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Huang et al. reported that ELBP-ASM achieves more accurate results than the
original ASM. However, summing up the original image and the gradient magnitude
image histograms might not be the most efficient way to take advantage of all the
information available. Indeed, the features specific to each image histogram are lost
when they are summed together. Moreover, using multi-scale LBP allows to capture
the gray-level structures at different scales but it also adds computational load. Con-
sequently, we believe that even better results can be achieved using simpler methods.

3.3 Proposed Approaches

During this work, we investigated new methods for modeling the local structures
using LBPs. The following subsections describe the different approaches.

3.3.1 Profile-based LBP-ASM

We first propose to use a local appearance descriptor based on the LBP values
extracted from the normal profile of each landmark point. In this method, LBP u2

8,2

operator is used.
During training, we extract a profile of length n for every point of every training

image and build the associated histogram of LBP values. We then compute the mean
histogram of each landmark point.

During search, we extract for each landmark point, a search profile which is longer
than the training profile. For each sub-profile of length n contained in the search pro-
file, we build a histogram. The obtained histograms are compared to the corresponding
mean histogram using the Chi square dissimilarity measure given by equation 3.2 (Fig-
ure 3.4). The landmark point is then moved to the center of the sub-profile which
produces the most similar LBP histogram.

Figure 3.4: Search using histograms extracted from a profile

This approach is very simple but limited. First, the training profile has to be long
enough to provide a sufficient number of points in order to build a reliable histogram.
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Since the LBP u2
8,2 operator produces 59 different labels, the profile has to be at least

59 pixels long to fill the histogram with in average one pixel per bin. However, this
condition can hardly be satisfied. Second, comparing the histograms of two consecutive
points along the profile does not make any sense since only one point has been replaced
from one histogram to the other. These histograms can be considered to be almost
identical. To cope with these problems, we propose to build the histogram with the
points contained in a square centered at the landmark point.

3.3.2 Square-based LBP-ASM

The local appearance patterns are complex and it is hard to model them well only
using simple profiles. In order to acquire more information related to the local gray-
level structures, we use the points which are located within a square centered at a given
landmark point to build the LBP histogram.

Basically, the training part is very similar to the one described before but sampling
the points in a square region instead of a profile. During search, a LBP histogram is
computed in the same manner for each point located on the search profile (Figure 3.5).
The length of the search profile depends in this case only on the distance we allow
the landmark point to move at each iteration (a few points). The similarity between
the testing point’s histograms and the mean histogram is also measured using the Chi
square distance.

Figure 3.5: Search using histograms extracted from a square

Hence, this method allows us to model larger structures and fill the histograms
with much more LBP values. However, this approach still suffers from the lack of
spatial information. Indeed, the main pattern we want to detect could be anywhere
in the square, the resulting histogram will always look similar. In order to retain
spatial information, we divide the square into small regions as Huang et al. did in their
algorithm.
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3.3.3 Divided-Square-based LBP-ASM

The square used in the previous method is divided into four regions from which
the LBP histograms are extracted and concatenated into a single feature histogram
representing the local appearance patterns (Figure 3.6).

Figure 3.6: Local appearance representation using a divided square

This representation has many interesting properties. First, it is robust to illumina-
tion changes since it uses LBPs. Second, it allows us to capture appearance patterns
of any size since the square’s dimension can easily be changed. Third, it contains in-
formation on three different levels: the LBP labels describe the pixel-level patterns,
the histograms extracted from the small regions provide information in a regional level
and the regional histograms are concatenated to build a global description of the gray-
level structures around each landmark point. And last but not the least, it is easy to
compute.
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Chapter 4

Experiments and Results

This chapter describes the experiments we did in order to compare the perfor-
mances of the different approaches presented in the previous chapters: original ASM,
ELBP-ASM, profile-based LBP-ASM, square-based LBP-ASM and divided-square-
based LBP-ASM. Each algorithm has been implemented using Torch3vision1 which
is a machine vision library written in C++ and developed at IDIAP.

The tests have been carried out using the standard and darkened image sets of the
XM2VTS database. Comparative results are presented and discussed.

4.1 Dataset

The XM2VTS database2 [14] consists in face images of 295 subjects collected over
four sessions, at one mouth intervals. It was originally designed for research and
development of personal identity verification systems but it has been used to evaluate
performances of facial feature detection algorithms as well. In this work, we use the
frontal image set and the darkened frontal view images.

The frontal image set contains two frontal views for each of the 295 subjects and
each of the four sessions. The 2360 images are at resolution 720 × 576 pixels. They
have been taken under controlled conditions against a flat blue background. The face is
large in the image and there is no background clutter. The subjects were volunteers of
both sexes and many ethnical origins. Since the data acquisition was distributed over
a long period of time, significant variability of appearance of individuals, e.g. changes
of hair style, facial hair shape and presence or absence of glasses, is present in the
recordings. Some examples are shown in Figure 4.1.

The darkened image dataset contains four frontal views for each of the 295 subjects
taken from the final session. In two of the images, the studio light illuminating the
left side of the face was turned off. In the other two images, the light illuminating the
right side of the face was turned off. See Figure 4.2.

1Torch3vision; http://www.idiap.ch/~marcel/en/torch3/torch3vision.php
2XM2VTSDB; http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/
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Figure 4.1: Sample images from the standard image set

Figure 4.2: Sample images from the darkened image set

The standard and darkened image sets are both supplied with manually located
eye center positions. However to enable more detailed testing and model building,
the XM2VTS markup3 has been expanded to landmarking 68 facial features on each
face of the standard image set. The 68 points chosen are shown in Figure 2.1. Since
the ground-truth position of these landmark points are not available for the darkened
image set, tests on this dataset will essentially be based on the eye locations.

4.2 Experimental Setup

From the standard dataset, training set, evaluation set and test set are built ac-
cording to the Lausanne protocol [14]. The Lausanne protocol was originally defined
for the task of person verification. The standard image set is randomly divided into
200 clients, 25 evaluation impostors and 70 test impostors. It exists two configurations
that differ in the distribution of client training and client evaluation data. For our
experiments, we use configuration I which is illustrated in Figure 4.3.

The training set is used to build the face shape model and the local gray-level
structures models. The evaluation set is then used to find the optimal search param-
eters. Finally the test set is selected to evaluate the performance of the facial feature
detection algorithms. In order to test the system robustness to illumination changes,
the detection is performed on the darkened images using the shape model and search

3Available on Tim Cootes’ web site:
http://www.isbe.man.ac.uk/~bim/data/xm2vts/xm2vts_markup.html
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Figure 4.3: Partitioning of the XM2VTS database according to Lausanne protocol
Configuration I

parameters obtained with the standard image set.

We assume that the facial feature detection follows a face detection step. The shape
model is then initialized according to the estimated eye positions output by the face
detector.

4.3 Training Part

From the training set, we build a statistical model for each method described in the
previous chapters: original ASM, ELBP-ASM, profile-based LBP-ASM, square-based
LBP-ASM and divided-square-based LBP-ASM. The building process of each model
requires the choice of three parameters:

• the number of landmark points

• the number of modes to use

• the size of the local appearance pattern descriptor

The number of landmark points is equal to 68 and the number of modes is chosen so
that the model represents 98% of the variance. As a result, 58 modes are retained. For
the original ASM and the profile-based LBP-ASM, 12 pixels along the normal profile
are sampled either side of the landmark point in order to build the local structure
model. To simplify the implementation, the ELBP histogram is built using the LBP
values contained within a square instead of a disk. The size of the square used in the
ELBP-ASM, the square-based LBP-ASM and the divided-square-based LBP-ASM, is
set to 25 pixels (12 pixels from the landmark point to each side).



34 IDIAP–RR 06-07

4.4 Evaluation Part

The evaluation set is then used to find the optimal search parameters. Each search
algorithm requires the choice of four parameters:

• L, the coarsest level of the Gaussian pyramid to search

• ns, the longest displacement the landmark point can make along the search profile

• itmax, the maximum number of iterations allowed at each level

• q, the proportion of points found within the central 50% of the search profiles
determining when to change pyramid level

However, we noticed during experiments that the choice of parameters itmax and q does
not affect significantly the final shape compared to parameters L and ns. Therefore,
in the following tests, the maximum number of iterations allowed at each level is set
to 20 and the shape model is projected to a lower level when 95% of points are found
within the central 50% of the search profiles.

In order to measure the quality of fit of the resulting shapes to the ground-truth
model, we compute the mean square error and estimate the point location accuracy.

4.4.1 Mean Square Error

The mean square error (MSE) is given by:

MSE =
1

2n

2n
∑

i=0

(xi − gti)
2 (4.1)

where n is the number of landmark points (n = 68), x is the search vector and gt is
the ground-truth vector.

Figure 4.4 shows the MSE mean and median measured for each algorithm given
different combinations of L and ns. The median is the value in the middle of the MSE
distribution: half the MSE measures are above the median and half are below it. The
variances have also been calculated but are not represented on the graphs due to their
large values.

We observe that the median is always much smaller than the mean. This indicates
that the MSE distribution is highly skewed. MSEs are typically close to 10 when the
system converges to a good solution, whereas they can go up to 2000 when the detec-
tion fails. Therefore, a small MSE median indicates that the facial feature detection
succeeded in most images of the evaluation set. On the other hand, a mean value
greater than the median, involves that some large values caused by detection failures,
have affected the mean MSE. The median is therefore more appropriate to evaluate the
algorithm performances since it is less sensitive to extreme values. The optimal search
parameters are consequently given by the combination which produces the smallest
MSE median. In order to validate the choices, we measure the point location accuracy.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Mean MSE and median of the evaluation set (a) original ASM, (b) ELBP-
ASM, (c) profile-based LBP-ASM, (d) square-based LBP-ASM and (e) divided-square-
based LBP-ASM
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4.4.2 Point Location Accuracy

After search, we measure the distance between the found points and their asso-
ciated ground-truth position. We then build a frequency histogram for the resulting
point-to-target errors. For each algorithm, the frequency histograms of the four best
configurations suggested by MSE statistics are compared in Appendix B. The his-
tograms show the proportion of found points whose point-to-target error lies from 0
(perfect match) to 14 pixels. Any point located further than 14 pixels from its cor-
responding ground-truth position is considered as a failure. Therefore, we want to
maximize the proportion of points close to the target while minimizing the number
of detection failures. This method is then more reliable than the MSE median since
it provides more information on the whole set of shapes and it is not influenced by
convergence failures. As a result, the optimal parameters are chosen based on this
method. Most of the time, they correspond to the combination selected with the MSE
median.

Table 4.1 summarizes the parameters selected for each algorithm.

Method L ns itmax q
original ASM 3 3 20 0.95
ELBP-ASM 3 4 20 0.95

profile-based LBP-ASM 2 5 20 0.95
square-based LBP-ASM 1 4 20 0.95

divided-square-based LBP-ASM 2 2 20 0.95

Table 4.1: Optimal search parameters. itmax and q are fixed.

4.5 Test results and Discussion

4.5.1 Mean Square Error

The image search is performed on each image of the test set using the parameters
chosen in the evaluation part. Figure 4.5 shows the MSE mean and median obtained
with each algorithm.

The divided-square-based LBP-ASM seems to give better results than the other
approaches since it has the smallest median. However, due to the reasons explained in
Section 4.4.1, this test cannot be used to draw conclusion on the performances of each
algorithm. It only gives a first insight.
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Figure 4.5: Mean MSE and median of the test set

4.5.2 Point Location Accuracy

The frequency histograms of the point-to-target errors described in Section 4.4.2
are compared in Figure 4.6.

Figure 4.6: Frequency histograms of point-to-target errors of the test set

As expected, the performance of the profile-based LBP-ASM is very limited. LBP
histograms extracted from a profile are not reliable local appearance descriptors due
to the small number of points they are made of. Using a square region instead of a
profile is a good idea but the results of the square-based LBP-ASM show the relevance
of retaining spatial information. Indeed, we observe that our proposed method based
on a divided square gives much more accurate results and less detection failures than
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the other approaches. The ELBP-ASM locates the points slightly less accurately than
the original ASM but fails less frequently. The small failure rate of the divided-square-
based LBP-ASM and the ELBP-ASM is due to the good ability of a square to catch
the target gray-level structure within it. Theses two algorithms are then less likely to
diverge. We can also notice from Figure 4.6 the difference of accuracy between our
approach and Huang et al.’s one. The ELBP histogram gathers too much information
that can not be totally exploited during search. As a result, this affects the ELBP-
ASM’s performance.

4.5.3 Robustness to illumination

In order to test the system robustness to illumination changes, the detection is per-
formed on the darkened images using the shape model and search parameters obtained
with the standard image set. Facial feature localization is particularly difficult in this
case because the lighting conditions during search are considerably different from the
lighting conditions used to train the shape model. Since only the ground-truth eye
center positions are available for this set of images, the quality of fit is assessed using
the eye location accuracy and the Jesorsky’s measure [11].

Let Cl (respectively Cr) be the true left (resp. right) eye coordinate position and
let C̃l (resp. C̃r) be the left (resp. right) eye position estimated by the facial feature
detector. Jesorsky’s measure can be written as

deye =
max(d(Cl, C̃l), d(Cr, C̃r))

‖Cr − Cr‖
(4.2)

where d(a, b) is the Euclidian distance between positions a and b. A successful local-
ization is accounted if deye < 0.25 (which corresponds approximately to half the width
of an eye).

Figure 4.7 presents the mean Jesorsky’s measure and the median derived from the
standard test image set and the darkened image set. Figure 4.8 shows the frequency
histogram of the point-to-target errors corresponding to the eye center positions com-
puted on the darkened images.

In Figure 4.7 and 4.8, the detector’s values correspond to the measures obtained
after the face detection stage (before facial feature detection). As expected, the original
ASM, the ELBP-ASM and the divided-square-based LBP-ASM improve significantly
the Jesorsky’s measure for the standard test images. However, we can see that ELBP-
ASM completely fails on darkened images. The ELBP histogram is based on 6 images:
the LBP u2

8,1, LBP u2
8,2, LBP u2

8,2 of the original image and the LBP u2
8,1, LBP u2

8,2, LBP u2
8,2

of the gradient magnitude image. When lighting conditions change, each image is
degraded in a different way. Therefore, the ELBP histogram obtained by summing up
the six LBP histograms is considerably different from the mean histogram trained on
standard images. The algorithm diverges then more frequently. This problem is not
present in the approaches we propose. We observe in Figure 4.8, that the square-based
LBP-ASM and the divided-square-based LBP-ASM are more robust to illumination
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Figure 4.7: Mean Jesorsky’s measure and median of the standard test image set and
darkened image set

Figure 4.8: Frequency histograms of point-to-target errors corresponding to the eye
center positions computed on the darkened image set
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changes than the original ASM. Indeed, the eye localization failure rates are much
lower.

When the facial feature localization is used for face recognition, it is important to
locate accurately the eye center positions. However, in other applications, minimizing
the Jesorsky’s measure is not sufficient. Indeed, the Jesorsky’s measure expresses only
partially the quality of fit. The system can properly locate the eye center and fail
on the other facial features. In order to perform more detailed tests, it would have
been useful to annotate the 1160 darkened images with the same 68 landmark points.
Unfortunately, it could not be done during this work due to time constraints. Figure 4.9
shows examples of search on a darkened image using the original ASM, the ELBP-
ASM and the divided-square-based LBP-ASM. We can observe that the facial feature
localization performed by the divided-square-based LBP-ASM is the most accurate
whereas the Jesorsky’s measure is not the lowest.

4.5.4 Computation Times

Table 4.2 summarizes the computation times and the average number of iterations
that the five algorithms need to converge. Experiments were performed on a 1GHz PC
with 1GB memory.

Method Computation time (s) # of iterations
original ASM 2.3 12.6
ELBP-ASM 29 13.4

profile-based LBP-ASM 5.3 38.9
square-based LBP-ASM 4.4 14.6

divided-square-based LBP-ASM 7.4 23.4

Table 4.2: Computation times and average numbers of iterations
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(a) Initial Condi-
tion. Jesorsky’s
measure before fa-
cial feature detection
= 0.181623

(b) ASM: iteration 1, 4, 8 and 13. Jesorsky’s measure = 0.023976

(c) ELBP: iteration 1, 16, 25 and 32. Jesorsky’s measure = 0.241385

(d) divided-square-based LBP-ASM: iteration 1, 5, 10 and 19. Jesorsky’s measure = 0.039618

Figure 4.9: Example of search on a darkened image using the original ASM, the ELBP-
ASM and the divided-square-based LBP-ASM
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Chapter 5

Conclusion and Future Work

In this thesis, we extended the Active Shape Model method proposed by Cootes
et al. in order to improve its robustness to illumination changes. Three different
approaches using Local Binary Patterns to model the structures around each landmark
point were proposed:

Profile-based LBP-ASM The local appearance patterns are described using LBP
histograms extracted from the normal profile of each landmark point. Similar to
the original ASM, this method suffers from the limited ability of normal profiles
to describe complex structures.

Square-based LBP-ASM The local structures are modeled using LBP histograms
extracted from a square region around each landmark point. This method ac-
quires more information related to the local appearance patterns but does not
retain spatial information.

Divided-square-based LBP-ASM The square region used in the square-based LBP-
ASM is divided into four regions from which the LBP histograms are extracted
and concatenated into a single feature histogram representing the local appear-
ance patterns.

Although this thesis focused on facial feature detection, the proposed algorithms
can be used to find any deformable object in an image. A prerequisite is only to collect
a training set of images containing instances of the object to be modeled.

Experiments were performed in order to compare those three approaches with the
original ASM and the only method combining ASM and LBP exiting so far, ELBP-
ASM. The tests were carried out using the standard and darkened image sets of the
XM2VTS database.

Experiments on the standard image set demonstrated that the divided-square-based
LBP-ASM achieves more accurate results and fails less frequently than the other ap-
proaches. The accuracy can still be improved by using more landmark points. Indeed,
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68 landmarks were used whereas facial feature localization is usually performed using
at least 133 landmark points.

Experiments on darkened images only gave us an insight into the robustness to illu-
mination changes of the proposed algorithms. Since only the eye center ground-truth
positions were available, tests were based on the Jesorsky’s measure. As expected, the
divided-square-based LBP-ASM is the most robust to illumination changes. However,
we showed through an example that a large Jesorsky’s measure does not mean that
the facial feature detection failed completely. Therefore, although the results look very
promising, more experiments still have to be done before drawing any final conclusion.

Since good results could be achieved by combining ASM with LBP, a logical contin-
uation of this project would be to extend the divided-square-based method to Active
Appearance Model.



Appendix A

Aligning Two 2D Shapes

Given two 2D shapes, x and x′, we wish to find the similarity transformation T (·)
which, when applied to x, minimizes the least squares distance between the two shapes,
as follows.

E = |T (x) − x′|2 (A.1)

The two dimensional similarity transformation is define as

T

(

x
y

)

=

(

a −b
b a

) (

x
y

)

+

(

tx
ty

)

(A.2)

Without loss of generality, both shapes are first translated so that their center of
gravity is on the origin. Thus, tx = ty = 0.

We wish to find then the scale and rotation which best aligns x with x′, i.e. mini-
mizes

E(a, b) = |T (x) − x′|2

=
n

∑

i=1

(axi − byi − x′

i)
2 + (bxi + ayi − y′

i)
2 (A.3)

Differentiating with respect to both a and b and equating to zero gives

n
∑

i=1

ax2
i + ay2

i − xix
′

i − yiy
′

i = 0 (A.4)

n
∑

i=1

bx2
i + by2

i − xiy
′

i + yix
′

i = 0 (A.5)

This implies

a = (
n

∑

i=1

xix
′

i + yiy
′

i)/(
n

∑

i=1

x2
i + y2

i ) = x · x′/|x| (A.6)

b = (
n

∑

i=1

xiy
′

i − yix
′

i)/(
n

∑

i=1

x2
i + y2

i ) = (
n

∑

i=1

xiy
′

i − yix
′

i)/|x| (A.7)

45



46 IDIAP–RR 06-07

Given a and b, a shape x can be approximately mapped to a shape x′ as follows

x′ ≃ x′

c + T (x − xc) (A.8)

where xc is the center of gravity of x and x′

c, the center of gravity of x′.



Appendix B

Frequency Histograms of

Point-to-Target Errors of the

Evaluation Set
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