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June 2006

published in

ICSLP 2006

Abstract. Given the availability of large speech corpora, as well as the increasing of mem-
ory and computational resources, the use of template matching approaches for automatic speech
recognition (ASR) have recently attracted new attention. In such template-based approaches,
speech is typically represented in terms of acoustic vector sequences, using spectral-based fea-
tures such as MFCC of PLP, and local distances are usually based on Euclidean or Mahalanobis
distances. In the present paper, we further investigate template-based ASR and show (on a con-
tinuous digit recognition task) that the use of posterior-based features significantly improves the
standard template-based approaches, yielding to systems that are very competitive to state-of-
the-art HMMs, even when using a very limited number (e.g., 10) of reference templates. Since
those posteriors-based features can also be interpreted as a probability distribution, we also show
that using Kullback-Leibler (KL) divergence as a local distance further improves the performance
of the template-based approach, now beating state-of-the-art of more complex posterior-based
HMMs systems (usually referred to as ”Tandem”).
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1 Introduction

Stochastic modeling and template matching are the two most successful approaches applied to ASR.
In particular, the most commonly used method is based on hidden Markov models (HMMs) [1],
a parametric stochastic model. HMMs benefit from efficient algorithms for training and decoding.
However, they rely on some assumptions about the data distribution which are not always correct in
the case of the speech signal.

Template matching offers a different approach. All the training data is used at the decoding time
instead of trained models. In this case, no explicit assumption is made about the data distribution.
This technique obviously requires many operations at the decoding time but this issue can be al-
leviated given the powerful computational resources available nowadays. For this reason, template
matching has received more attention in the ASR field recently. For instance, DeWachter et al. [2]
have investigated a bottom-up strategy for selecting the best templates, Axelrod et al. [3] have stud-
ied the combination of HMMs and template matching in an isolated word recognition task and we
have carried out experiments for re-scoring the N-best hypotheses given the template matching-based
distances [4].

Typical ASR systems use features obtained from short-term spectrum, like MFCC or PLP. Phone
posterior probabilities can also be used as features as it has been demonstrated in Tandem system [5].
Studies have been carried out for studying the properties of posterior features [6]. In particular, they
benefit from being more stable and robust. Hence, they are very suitable for a pattern recognition
task.

To our knowledge, posteriors have never been used in the template matching context. Motivated
by their good behavior as features, we study here the use of phone posteriors as features applied to
template matching.

Euclidean or Mahalanobis distances have been typically used as local distance between vectors. In
this work, we also investigate the use of KL-divergence as a measure of local similarity between two
vectors since the posterior vector can be seen as a distribution over the phone space.

The paper is organized as follows: Section 2 describes the template matching technique and its
application to ASR, Section 3 explains the posterior features and the proposed KL-divergence measure,
Section 4 presents the experiments and their results and finally Section 5 gives conclusions and some
ideas for future work.

2 Template Matching

Unlike parametric approaches, where information about the data is summarized into models, template-
based approaches use all the information contained in the training data in a direct way. Since there is
no modeling, no explicit assumption is made about the data distribution. Training data is formed by
a set of templates where a template can be defined as a sequence of feature vectors that represents a
particular pronunciation of a word1. Recognition is, then, based on finding the template most similar
to the sequence of test vectors.

The similarity measure between two sequences has to deal with time warping since they usually
have different lengths. The template sequence is, then, resampled to have the same length as the test
sequence. The resampling function φ must hold some conditions on slope and boundaries, i.e., let
X = {xi}

N
i=1 be a test sequence of N frames and let Y = {yj}

M
j=1 be a template sequence of length

M , then

0 ≤ φ(i) − φ(i − 1) ≤ 2

φ(1) = 1 (1)

φ(M) = N

1In this work, we consider words, but other types of linguistic units can also be represented by templates.



IDIAP–RR 06-23 3

These conditions ensure that no more than one vector from the template can be skipped at each time.
They are typical in the ASR field and they are also used in this work.

The similarity measure D between a test sequence X and a template Y can, then, be computed as

D(X,Y ) = min
{φ}

N∑

i=1

d(xi, yφ(i)) (2)

where {φ} denotes the set of all possible resampling functions given by the conditions expressed in
(1). The term of the sum d(xi, yφ(i)) defines the local distance between the two acoustic vectors xi

and yφ(i). The choice of this local distance depends on the properties of the feature space. Traditional
features have typically used Euclidean or Mahalanobis distances for computing this similarity between
vectors but other types of measures can be used depending on the features; this issue will be further
discussed in the next section.

Although the computation of D from (2) implies searching among a large set of resampling func-
tions, it can be efficiently computed by the dynamic time warping (DTW) algorithm [7].

In the case of isolated word recognition, the distance D as defined in (2) is computed between the
test sequence and all the possible training templates. The test sequence is, then, classified as the same
class as the template with the lowest distance D.

In the case of continuous speech, there is a variant of DTW known as one-pass DTW [8]. This
algorithm relies on the same principle of finding the resampling function that yields the lowest total
distance. In this case, though, the best resampling function results from a concatenation of templates
since the test utterance usually contains more than a word. A word insertion penalty is then used to
control the number of words per utterance.

The main weakness of this approach is that, if a large amount of templates is required to rep-
resent all the variability of a word, the system can be impractical since the decoding time increases
exponentially with the number of templates.

3 Posterior Features

Short-term spectral-based features, such as MFCC or PLP, are traditionally used in ASR. They
have been successfully applied because they can be modeled by a mixture of Gaussians, which is the
typical function used to estimate the emission distribution of a standard HMM system (HMM/GMM).
However, in addition to the lexical information, spectral-based features also contain knowledge about
the speaker or environmental noise2. This extra information is cause of unnecessary variability in the
feature vector, which may decrease the performance of the ASR system.

A transformation of traditional acoustic vectors can also be used as features for ASR. In particular,
a multi-layer perceptron (MLP) can be trained to estimate the phone posterior probabilities based on
spectral-based features. In this case, the MLP performs a non-linear transformation. Because of this
discriminant projection, posteriors are known to be more stable [6] and more robust to noise (chapter
6 of [9]). These characteristics are illustrated in Figure (1). Moreover, the databases for training the
MLP and for testing do not have to be the same so it is possible to train the MLP on a general-purpose
database and use this posterior estimator to obtain features for more specific tasks; this approach has
been studied in [10].

Also, phone posterior probabilities can be seen as phone detectors as it has been demonstrated
in [11], this interpretation makes posteriors a very suitable set of features for speech recognition
systems since words are formed by phones.

Despite their good properties, posterior features cannot be easily modeled by a mixture of Gaus-
sians. In the Tandem approach [5], posteriors are used as input features for a standard HMM/GMM
system. However, a PCA transform on the logarithm of the posteriors has to be done previously to

2For instance, there are speaker recognition systems that use MFCC features.
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Figure 1: This figure plots the value of one component of the feature vector in the case of MFCC
features and phone posteriors for three different templates of the word ’nine’. Phone posteriors are
more stable than MFCC features because of their discriminant nature.

Gaussianize and decorrelate the feature vector. In the template matching approach, since no distri-
bution has to be modeled, posteriors can be used directly as feature vectors.

A local distance between vectors must be defined for applying posteriors to the template matching
framework. Since the vector feature of posteriors is a probability distribution over the phone space,
it is appropriate to use KL-divergence when measuring the similarity between vectors. Given two
distributions x and y with K classes (i.e. two feature vectors of dimension K, where each component
corresponds to a particular phone), KL-divergence is defined as

KL(x || y) =

K∑

k=1

y(k) log
y(k)

x(k)
(3)

KL-divergence comes from information theory and can be interpreted as the amount of extra bits
that are needed to code a message generated by the a reference distribution y, when the code is
optimal for a given test distribution x [12].

KL-divergence can be used in the template matching framework as the local distance appearing
in Equation (2). As this local distance is always computed between a vector from the test sequence
and a vector from a template, KL-divergence fits naturally in the local distance definition by taking
the reference distribution y as the vector from the template and the test distribution x as the vector
from the test sequence. In our case, then, we can apply (2) as

D(X,Y ) = min
{φ}

N∑

i=1

KL(xi || yφ(i)) (4)

4 Experiments and Results

This work must be considered as a first experiment to evaluate the effectiveness of the phone posteriors
when applied to template matching. With this purpose, we have chosen a continuous digit recognition
task to test our hypothesis that posterior features can outperform traditional features.

Test utterances and templates have been extracted from the OGI Numbers v1.3 database [13]. This
data has been recorded through a telephone channel and a large variety of speakers is represented.
For testing, we have chosen 2820 utterances where all the digits appear in a similar number. The
number of templates is the same for every word in the lexicon. Templates were obtained by a force
alignment process given by a state-of-the-art HMM system. The lexicon has 12 different words (from
’zero’ to ’nine’ plus ’oh’ and ’silence’).
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MFCC features contain 26 dimensions3, 13 static features (12 MFCC coefficients and the log
energy) plus their delta features. These features are normalized in mean and variance.

Posterior features were obtained using a MLP trained on a smaller version of OGI Numbers, the
version 1.0. The MLP has one hidden layer with 1800 units. PLP features jointly with delta and
acceleration features are used as inputs. There are 27 output units, each of them corresponding to a
different phone. The MLP was trained using the relative entropy criterion.

Since we are working with a continuous speech database, our template matching system is based
on one-pass DTW [8]. Constraints for the resampling function are the same as defined in (1) and a
word insertion penalty is used to equalize insertion and deletion errors.

A comparison between MFCC features and posteriors was first carried out. Two types of local dis-
tances were used: Euclidean and KL-divergence (KL-divergence cannot be applied to MFCC features
since they are not distributions). Table 1 presents the results.

Templates MFCC Posteriors Posteriors
per word Euclidean Euclidean KL-divergence

10 60.6 93.2 95.6
20 72.4 93.5 95.4
30 73.4 94.0 95.5
40 78.7 93.6 95.6
50 80.0 93.2 95.6

Table 1: System accuracy using one-pass DTW. The first column shows the number of templates per
word available. Three different experiments are presented: MFCC features using Euclidean distance,
posteriors using Euclidean distance and posteriors using KL-divergence as local distance.

We can observe that, when using MFCC features with Euclidean distance, the accuracy increases
with the number of templates, but still the performance is far below state-of-the-art for this particular
task. The high variability present in MFCC features decreases the performance of the system. How-
ever, there is a significant improvement when using posterior features still using Euclidean distance.
This supports the evidence that posteriors are more stable and hence, more suitable for being used as
features. There is still a very significant improvement when KL-divergence is used as a local measure
between vectors, in this case, results can start to be comparable to state-of-the-art systems on this
task (in this case, a standard HMM/GMM system achieves 96.4% of accuracy).

From Table 1, we can also observe that the accuracy remains stable when increasing the number
of templates. To study the influence of the amount of templates, we carry out a second experiment
where we vary the number of templates. Results are shown in Table 2.

Templates Posteriors
per word KL-divergence

1 76.4
2 89.7
4 94.8
6 95.2
8 95.7
10 95.6

Table 2: System accuracy using one-pass DTW. The first column indicates the number of templates
per word used for decoding.

3Feature vectors with 13 and 39 dimensions were also used but the performance was worse. Dynamic features always
improve the accuracy but acceleration features use a too wide context in the case of DTW.
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In this case, we can see that one template per word is not enough for obtaining the maximum
accuracy given by this template matching approach. Results get better when increasing the number
of templates until we reach 8 representations per word. Then, system accuracy remains stable. From
this experiment we can observe that a few examples are enough to represent properly all the variations
of a particular word because of the high stability of posterior features. This issue is very important
since the decoding time of DTW increases exponentially with the number of templates. A reduced
number of templates makes the system feasible in practice.

We also compare one-pass DTW approach with Tandem system [5] because both systems use pos-
teriors as input features. Tandem system uses post-processed posterior features with a HMM/GMM-
based acoustic model. The HMM/GMM part has been trained using 8000 utterances from the OGI
Numbers v1.3 database and a HMM has been trained for each word. Table 3 presents the results of
this comparison. A HMM/GMM system using MFCC features has also been trained. MFCC acoustic
vectors contain delta and acceleration features (39 dimensions).

MFCC 96.4
TANDEM 94.2

DTW 95.6

Table 3: System accuracy for a standard HMM/GMM system using MFCC features, a Tandem system
and one-pass DTW using 10 templates per word.

One-pass DTW with posteriors and KL-divergence outperforms Tandem system even if both sys-
tems use the same input features. This result suggests that one-pass DTW is able to use the informa-
tion given by the posteriors more efficiently that Tandem system, mainly because it does not assume
a distribution of the input vectors. In spite of using only 10 templates per words, one-pass DTW
achieves comparable results to the HMM/GMM system using MFCC features.

In Section 3 we explained that, when computing the KL-divergence, the vectors belonging to the
template should play the role of the reference distribution while the test vectors should be considered
as the test distribution. We consider to do some small variations in the computation of the KL-
divergence to test our natural interpretation. We use the symmetric version of KL-divergence:

KLsym(x || y) =
1

2
[KL(x || y) + KL(y ||x)] (5)

and we also try the reverse KL, i.e. we consider the test distribution as the templates vectors and the
reference as the test vectors. As we can see in Table 4, our assumption is the one which yields the
best result.

KL 95.6
Symmetric KL 95.1

Reverse KL 93.2

Table 4: System accuracy when using 10 templates per word. Symmetric KL uses the symmetric
version of this measure. In reverse KL, we switched the test and the reference vectors.

5 Conclusions and Future Work

In this work, we have carried out some experiments to test the convenience of posterior features in a
template matching approach for ASR. The following conclusions can be drawn:

• Posterior features outperform MFCC features in the template matching approach. Their good
properties on stability and robustness are supported by the results of our experiments.
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• KL-divergence is able to better estimate the similarity between two posterior vectors. Moreover,
test and reference distributions play a different and significant role on the computation.

• Given the high stability of posterior features, a reduced number of templates is required to
represent all the variability of a word. Hence, the system is practical in terms of decoding time.

Template matching offers a very interesting approach for recognizing speech because no distribution
must be modeled and, hence, no explicit assumption has to be made about the data. However,
generalization to larger vocabulary recognition tasks has not been investigated yet. This was unfeasible
when using traditional features because the huge amount of templates that was required was making
the decoding time prohibitive. From the results of this work, only a reduced number of templates per
word is necessary to achieve good performance when using posterior features. Therefore, application
of template matching approach to large vocabulary systems is now practical. Furthermore, strategies
based on pruning or re-scoring can be used to reduce the decoding time.

We ran another experiment where we chose a different set of 10 templates per word. In this case
the one-pass DTW system was able to achieve 96.0% of accuracy. This result shows that the choice
of templates is important and future work should be focused on investigating criteria for selecting the
most representative templates. These criteria could come from the information theory field since, as
we have seen with the application of KL-divergence, it fits very well in this approach.

Another possibility offered by posterior features is that it is possible to train a language independent
MLP for obtaining the posteriors. Then, we can generate the templates depending on each specific
task. In this way, the MLP need not to be trained for each different system. Multi-lingual recognition
tasks would fit very well in this framework.
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