
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Rue du Simplon 4

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

Juicer: A Weighted

Finite-State Transducer

speech decoder
Darren Moore a John Dines a

Mathew Magimai Doss a Jithendra Vepa a

Octavian Cheng a Thomas Hain b

IDIAP–RR 06-21

April 2006

to appear in

MLMI’06, Washington DC

a IDIAP Research Institute and Ecole Polytechnique Federale de Lausanne (EPFL),
Martigny, Switzerland
b Department of Computer Science, University of Sheffield, UK





IDIAP Research Report 06-21

Juicer: A Weighted Finite-State Transducer

speech decoder

Darren Moore John Dines Mathew Magimai Doss Jithendra Vepa

Octavian Cheng Thomas Hain

April 2006

to appear in

MLMI’06, Washington DC

Abstract. A major component in the development of any speech recognition system is the de-
coder. As task complexities and, consequently, system complexities have continued to increase the
decoding problem has become an increasingly significant component in the overall speech recogni-
tion system development effort, with efficient decoder design contributing to significantly improve
the trade-off between decoding time and search errors. In this paper we present the “Juicer”
(from transducer) large vocabulary continuous speech recognition (LVCSR) decoder based on
weighted finite-State transducer (WFST). We begin with a discussion of the need for open source,
state-of-the-art decoding software in LVCSR research and how this lead to the development of
Juicer, followed by a brief overview of decoding techniques and major issues in decoder design.
We present Juicer and its major features, emphasising its potential not only as a critical com-
ponent in the development of LVCSR systems, but also as an important research tool in itself,
being based around the flexible WFST paradigm. We also provide results of benchmarking tests
that have been carried out to date, demonstrating that in many respects Juicer, while still in
its early development, is already achieving state-of-the-art. These benchmarking tests serve to
not only demonstrate the utility of Juicer in its present state, but are also being used to guide
future development, hence, we conclude with a brief discussion of some of the extensions that are
currently under way or being considered for Juicer.



2 IDIAP–RR 06-21

1 Introduction

Speech recognition technology draws on a number of sources of knowledge and integrates these in
the speech decoder to estimate the most likely word sequence from the given acoustical evidence.
Typically these knowledge sources are represented in the form of hidden Markov models (HMM),
pronunciation lexica, and N-gram language models. The means for combining these knowledge sources
and efficient decoding of the acoustic input is a demanding task and a range of optimisation techniques
and heuristics are employed to achieve lower computational and memory requirements with minimal
sacrifice to recognition accuracy [1]. In this paper we present the “Juicer” decoding software that has
been developed at IDIAP. The decoder is based on weighted finite-state transducer (WFST) theory,
permitting simple decoder design through the efficient composition of a static decoding network.

We begin the paper with a short preamble, presenting our motivation for developing the Juicer
decoder, followed in Section 3 by a brief overview of decoder technology and the primary design
considerations, thus leading to Section 4 in which we present the Juicer system. In Section 5 we then
follow-up with some preliminary benchmarking tests that have been carried out to date and in Section
6 an overview of future development directions for Juicer. Section 7 gives some brief concluding
remarks concerning the material presented.

2 Why another speech decoder?

Over the years many decoding software packages employing a number of different decoding strategies
and sporting varying capabilities have been made available to the research community and public at
large, often in open source form. To name a few, there is HVite as part of HTK [4], Sphinx [11],
NOWAY [8] not to forget IDIAP’s own earlier effort, TODE [15]. One feature that all these decoders
have in common is that they employ the acoustic, phonetic, lexical and linguistic knowledge sources in
a manner that is hard-wired into the decoder architecture, thus making modifications to the decoder
non-trivial. This can make the incorporation of new research into the decoder a significant undertaking
(and possibly even infeasible for a given decoder architecture) and, as a result of this, it means that
advancements to the state-of-the-art in speech recognition are often not included in the decoder and
are rather used for rescoring decoder output, where their impact is likely to be more limited.

Not all decoder architectures suffer from such limitations. In recent years considerable effort has
been invested in the development of more flexible decoder architectures based upon the theory of
weighted finite-state transducers [14, 2] in which the decoding network is compiled independently
of the decoder, thus enabling a more flexible approach to the incorporation of the various speech
recognition knowledge sources. This approach also has some significant drawbacks, in particular, the
memory demands for the compilation of static decoding networks for LVCSR systems can quickly grow
beyond the capabilities of most machines, but efforts have also been made to alleviate this problem
[10, 2]. While there has been significant efforts made towards developing decoder technology based
upon WFST, unfortunately for the research community, to the best of our knowledge the availability
of a state-of-the-art, open source decoder based upon WFST is yet to be realised.

There are many research groups around the world that are conducting significant research in
LVCSR, many using their own in house recognition engine or relying on cooperation with industry for
their decoder technology. In the present research environment, with many institutions and companies
partnering up in European and international projects such as AMI and DARPA GALE, there is an in-
creasing motivation for using systems and technologies that can be easily integrated and compared. In
this respect there are no ‘standard’ recognition system configurations and file formats, but maintain-
ing compatibility with widely accepted technologies, using modular system and software design and
using open source distribution framework can help engender collaborative speech recognition research
environments.

Thus far, we have identified key motivating factors for the development of new speech decoding
software:



IDIAP–RR 06-21 3

• The lack of a flexible speech decoder architecture, that not only provides state-of-the-art per-
formance, but also acts as a platform for ongoing research, thus enabling it to maintain state-
of-the-art performance in the future.

• There are decoding paradigms and methods for their implementation that offer a promising
avenue to obtain the aforementioned flexible architecture, but for which there is not currently a
solution freely available to the research community.

• Any new decoding software that is developed should be within an open-source development and
distribution framework, to encourage on-going development and facilitate cooperation between
research sites.

In the remaining sections we present a brief overview of speech decoding technology and, more specif-
ically, the Juicer decoder which was developed as a response to these three driving forces.

3 LVCSR speech decoding

3.1 The decoding problem

Simply stated, the decoding problem in speech recognition is to find the most likely word sequence,
Wn

1
= w1, w2, . . . , wn, given a sequence of acoustic observation vectors, OT

1
= o1, o2, . . . , oT , derived

from the speech signal. This can be expressed by the equation:

Ŵ = arg max
W n

1

{

P (Wn

1
)P (OT

1
|Wn

1
)
}

(1)

= arg max
W n

1







P (Wn

1
) ·

∑

ST

1

P (OT

1
, ST

1
|Wn

1
)







(2)

where Wn
1

sequence of words from a vocabulary of size NW , and ST
1

is any state sequence of length
T .

Thus, our knowledge sources are incorporated into the decoder architecture by way of an hierar-
chical organisation:

• P (Wn
1

) comprises the language model (LM) which represents our prior linguistic knowledge
independently of the observed acoustic information. Typically, language modelling is carried out
using stochastic N-gram in which word probabilities are only dependent on the N−1 predecessors:

• P (OT
1
|Wn

1
) represents our model of the lexical, phonetic, and acoustic knowledge:

– The lexical knowledge comprises the known words along with their pronunciation. Multiple
pronunciations may be included, possibly with a prior probability for each pronunciation
variant.

– The phonetic knowledge describes the fundamental units in the pronunciation lexicon.
These units are usually modelled in the context of their neighbours to account for the
systematic, contextual variation that occurs in naturally spoken speech, even across word
boundaries.

– Acoustic knowledge is represented by way of the state emission probability density func-
tions associated with each state of each context-dependent phoneme. In practice, various
parameter tying schemes are used in emission PDF estimation to improve model of robust-
ness.

A complete search of the solution space is practically infeasible, hence, a number of approaches
have been developed to solve the decoding problem in a tractable fashion. In [1] a comprehensive
overview of the major decoding strategies is given, with approaches being first grouped according to
two main axes:



4 IDIAP–RR 06-21

• Time-synchronous versus asynchronous decoding.

• Static versus dynamic expansion of the search space.

3.1.1 Time-synchronous versus asynchronous decoding

This axis concerns the manner in which the decoder network is searched; that is breadth-first, in which
all hypotheses are evaluated in parallel in a time-synchronous fashion; and depth-first, in which the
most promising hypothesis is pursued first until the end of the speech signal is reached, thus, the search
is carried out asynchronously with respect to time. Of these approaches, the breadth-first approaches
dominate today and it is with these approaches that we are concerned. Breadth-first decoding is more
frequently referred to as Viterbi decoding, which approximates the solution to Equation 2 by only
searching for the most probable state sequence:

Ŵ ≈ arg max
W n

1

{

P (Wn

1
) · max

ST

1

P (OT

1
, ST

1
|Wn

1
)

}

(3)

3.1.2 Static versus dynamic expansion of the search space

Static network expansion requires the generation of the entire decoding network prior to decoding.
This can enable significant reduction of the decoder search space by taking advantage of the sparsity of
knowledge sources and permits a simple decoder design which operates independently of the network
expansion stage. For LVCSR systems the static network can be prohibitively large, motivating the
development of techniques for dynamic network generation, though the use of WFST approaches in
LVCSR has to some extent alleviated these concerns and has seen a shift of interest back to static
network generation.

Converse to static network expansion, dynamic network expansion forms an integral part of the
speech decoder, enabling the handling of large scale decoding tasks as the decoding network is only
ever partially expanded. A consequence of this is the need to incorporate a number of sub-optimal
network composition techniques that can be applied on-the-fly; including phonetic prefix trees [6] and
language model spreading [18]. Various methods are employed for the dynamic network expansion,
each with its own pros and cons. An obvious drawback of the dynamic expansion paradigm is the
need for the integration of network expansion and decoder, leading to a more complex and less flexible
design.

3.1.3 Heuristics in decoder design

A number of heuristic techniques are employed, generally falling under the moniker of pruning meth-
ods. The objective of these techniques is to prevent the evaluation of unpromising decoder hypotheses,
thus significantly saving in computational effort. The undesirable side effect of pruning is that some-
times the best path may be pruned, resulting in search errors. With the application of appropriate
pruning strategies should be able to be limited to just a few percent of the total error. We will briefly
describe two of the most common pruning techniques, beam search pruning and histogram pruning.

The basic idea behind beam search pruning is that those hypotheses with likelihood scores suffi-
ciently below that of the highest scoring path can be safely disregarded. Hence, in a time-synchronous
decoder, at each time step all hypotheses are evaluated against the highest scoring path and only
those that fall within the beam search width are extend to next time step. Since not all knowledge
source are evenly distributed across the decoding network it is common to employ multiple pruning
thresholds at a number of different stages of decoding.

Histogram pruning applies an upper threshold on the maximal number of active hypotheses. In
[18] it was shown that the maximum number active paths exceeded by almost two orders of magnitude



IDIAP–RR 06-21 5

the average number of active paths. By taking a histogram of the scores for all of the active paths and
discarding all paths that fall below this upper threshold it was observed that computational demand
could further reduced from regular beam-form with minimal impact on search accuracy.

It need be noted that there are many more techniques for pruning and for reducing search errors
due to pruning, but the application of these approaches is often dependent on the decoder architecture.
Furthermore, it is worth observing that different decoding architectures tend to lend themselves to
more or less effective pruning, thus making pruning an important feature in decoder design.

3.2 WFST and speech decoding

While the use of static networks in speech decoding is far from being a new idea, the explicit use of
weighted finite-state transducers is relatively recent. Pioneered by Mohri and others at AT&T [12],
the key advantage behind the use of WFSTs for speech decoding is that it enables the integration and
optimisation of all knowledge sources within the same generic representation. This provides a more
efficient framework for carrying out speech recognition and also enables greater ease for the integration
of new knowledge sources in various stages of the system hierarchy. In this section we briefly describe
the key features of WFST theory and its application to speech decoding.

3.2.1 Overview of WFST

A weighted finite-state transducer is a finite-state automaton with state transitions labelled with
input and output symbols and each transition having an associated weighting. Sequences of input
symbols are thus mapped to sequence of output symbols with a weighting value which is calculated
over all valid paths through the transducer, where each path weight is a function of all the state-
transition weights associated with that path. An example of a simple WFST is shown in Figure 1.
WFST algorithms comprise a number of fundamental operations for composition and optimisation,
which are briefly summarised below. Further details of the algebraic notation and algorithms for
WFST can be found in [14, 12].

Composition Composition is used to combine transducers of different levels of representation. The
operation C = A ◦ B specifies the composition of two transducers A and B with input/output
symbols x/y and y/z, respectively, into a single transducer, C, with input/output symbols x/z
and weights calculated to give the same weighting to all possible input/output sequences as the
original separate transducers.

Determinization A transducer is deterministic if and only if each of it’s states has at most one
transition for any given input label and there are no epsilon input labels1. Determinization,
denoted det(C), serves to reduce redundancy in the network thus reducing the time taken to
match paths with input sequences.

Minimisation A minimised automata, D = min(C), is equivalent to automata C and has the least
number of states and the least number of transitions among all deterministic automata equivalent
to C. As the weighting of transitions tends to result in all transitions being distinct classical
minimisation techniques tend to be ineffective. In order to alleviate this problem the WFST
network first undergoes weight pushing in which all transitions in the transducer are reweighted
to facilitate minimisation. Typically this involves a shifting of transition weights to the beginning
of the network, but there is no overall effect on the total weights associated with paths through
the network.

1epsilon (ǫ) labels consume no input or produce no output.



6 IDIAP–RR 06-21

0 1 2 3 6
a:X/0.1

4 5

b:Y/0.2 c:Z/0.5 d:W/0.1

e:Y/0.7

f:V/0.3

g:U/0.1

Figure 1: An example of a simple WFST: one path through the network would have input label
sequence abcd, output label sequence XY ZW and weight f(0.1, 0.2, 0.5, 0.1)

3.2.2 Application to LVCSR

The application of WFST in LVCSR requires the representation of each of the knowledge sources
as weighted finite state automata, which subsequently undergo composition and can then be optimised
using the determinization and minimisation to produce a compact and efficient decoding network, as
previously described. Typically, separate transducers are constructed for the N-gram language model,
G, the lexicon, L, and the context dependency expansion, C. Though not currently supported in
Juicer, HMM state level topology, H, and phonological information, P , can also be incorporated into
the network structure:

N = H ◦ C ◦ P ◦ L ◦ G (4)

In order to ensure that the entire transducer can be determinized it is necessary to undertake some
additional steps:

1. In order to make the lexicon and grammar composition L ◦ G determinizable, the addition of
an auxiliary phone symbol marking word endings in the lexicon is necessary, giving L̃. This
auxiliary symbol must then be repeated in the transducers below lexical level (eg. C̃, P̃ and H̃)
which at completion of determinization/minimisation undergo an erasing operation, πǫ, which
replaces the auxiliary symbols with ǫ-labels.

2. Similarly, the context dependency transducer is generally not deterministic as there may be
multiple state transitions with the same input symbol (representing the different contexts in
which that symbol can occur). Building of a compact context dependency transducer can be
achieved by creating the inverse of the context dependency transducer, which can be simply
determinized and then inverting the resultant transducer.

3. Factoring can be employed as a last optional step, which can be used to save storage space of
the transducer. This is achieved by taking any long chains of single incoming-single outgoing
state transitions and replacing these with a single state in the network. These chains may then
be stored separately and incorporated into the network at run-time.

Thus, the composition and optimisation of the entire static network can be expressed as follows:

N = πǫ(min(det(H̃ ◦ det(C̃ ◦ det(P̃ ◦ det(L̃ ◦ G)))))) (5)

Further to this, additional steps may need to be taken when dealing with large vocabularies, NW & 50k,
and long span language models, N ≥ 3. Several approaches to this end have been investigated by
researchers, including language model pruning, finite-state language model approximation, “on-the-fly”
composition techniques and dynamic transducer composition, similar to that employed in traditional
dynamic network generation based decoders, though still employing the general WFST framework.
These issues will be further touched upon in the benchmarking and future development sections in
this paper.



IDIAP–RR 06-21 7

4 An overview of Juicer

The Juicer decoder uses a time-synchronous Viterbi search based on the token-passing algorithm with
beam-search and histogram pruning, as previously described in this paper. At run time the decoder
dynamically expands the model-level transducer network into a state-level network that is suitable for
finding the best state-level path subject to knowledge source constraints, hence, optimisation is not yet
carried out to take advantage of further state-level redundancies arising from HMM parameter sharing.
The package consists of a number of command line utilities in addition to the Juicer decoder itself;
more specifically, a number of tools are provided for the generation, composition and optimisation of
the ASR knowledge sources (language model, pronunciation dictionary, acoustic models) into a single
WFST that is input to the decoder. For the composition and optimisation of WFST resources Juicer
relies on the functionality of the AT&T Finite State Machine Library [13] and/or MIT FST toolkit
[7]. Figure 2 illustrates the modular organisation of the Juicer utilities.

C

Construction

gramgen

Lexicon WFST
Construction

lexgen

Context Dep.
Phoneme WFST

Construction

cdgen

Decoding
Engine

juicer

Integrated
WFST Network

Sources
ASR Knowledge

Language Model
Dictionary
Acoustic Models
Phoneme lists

Input Speech Files
(Features/Posteriors)

L

build−wfst

Integrated WFST
Construction

(uses 3rd party
WFST utilities)

GGrammar WFST

Figure 2: High level architecture of the Juicer decoding package.

The major features of Juicer and its utilities are summarised as follows; further details can be
found in the user manual [16]:

• juicer: decoding search engine

– Flexible WFST-based Viterbi decoder (decoding network fully independent of decoding
engine implementation)

– Beam-search (global, model-end) and histogram pruning

– Lattice generation in AT&T FSM format

– Word-level or model-level output with timing information

• gramgen: language model WFST generation

– Simple word-loop with start/end silence

– ARPA Naval Resource Management style word-pair grammar



8 IDIAP–RR 06-21

– ARPA MIT-LL text format N-gram (arbitrary N, subject to memory limitations)

• lexgen: dictionary WFST generation

– Multiple pronunciations, with optional pronunciation probabilities

– Tee models are handled via optional silence/short pause in the dictionary

• cdgen: acoustic model/context dependency WFST generation

– Monophone, word-internal n-phones (tri/quin/...), cross-word triphones

– HTK MMF file format support

– Hybrid HMM/ANN decoding supported (using LNA-format posterior files)

• build-wfst: WFST composition and optimisation

– Calls to AT&T and MIT FST routines

– Supports optional determinization and minimisation of the final transducer (the most mem-
ory demanding step)

5 Benchmarking experiments

Benchmarking of Juicer was carried out with two main aims; the first was to assess its performance
purely from the word error rate versus pruning efficiency standpoint, and the second was to investigate
its capabilities in the context of a very large vocabulary task with long span language models in which
the size of the network was going to be a limiting factor.

For the first step of experiments, a system developed using the WSJ1 continuous speech recognition
corpus [17]. Three-state, cross-word triphone, decision tree state-clustered CDHMM models were
trained using HTK on the “si tr s” set of 38,275 utterances. Models were trained from 39 dimensional
MF-PLPs including delta and delta-delta features, with speaker side-based cepstral mean and variance
normalisation. The pronunciation dictionary was based off that used for AMI RT05s system [5]. The
standard MIT bigram and trigram backed-off language models were used with the 20k development
test set “si dt 20” from WSJ1 database, consisting of 503 utterances. Figure 3 shows the results for
the various systems tested.

We can see that HDecode is achieving better performance in terms of beam-width versus word-
error rate, but quickly converge within a fraction percent by a beam width of 200. We postulate
that this result derives from HDecode’s use of multiple tokens per state,2 which can be beneficial
to performance by enabling the generation of more active hypothesis for the given beam width. A
comparison of real-time factors could also give more insight into the differences between the two
decoders, but remained outside the scope of our initial benchmarking tests as decoding experiments
were conducted at different sites.

For the second set of experiments the AMI RT05s system was used. First-pass decoding in this
system uses three-state cross-word triphone models and 50k lexicon with backed-off trigram language
model comprising some 29 million bigrams and 40 million trigrams, ensuring that static composition of
these resources was going to be a formidable task. In order to compare the practicality of constructing
a decoding network for such a system, pruned versions of the AMI language model were produced and
compiled along side the full LM. Table 1 shows the outcome of the composition experiments.

We see that the size of the network grows significantly with more relaxed pruning, and in the
unpruned case the final composition stage failed! In light of the size of the language model transducer
this was not at all surprising and this behaviour has also been reflected in the use of relatively
aggressively pruned language models in some of the published literature [14]. Despite this, we were
interested in evaluating the performance of Juicer against HDecode on the RT05s recognition task

2We were unable to disable this functionality.



IDIAP–RR 06-21 9

100 150 200 250

Main beam width

W
E

R
 (

%
)

Juicer - bigram LM

Juicer - trigram LM

HDecode - trigram LM

0

10

20

30

40

50

60

70

80

Figure 3: Results for WSJ 20k task, showing WER versus main beam-width. Sizes of trigram trans-
ducer with Juicer (thousands of arcs): C = 9929, L = 50, G = 15619 and C ◦ L ◦ G = 33378

Language FSM Number of arcs (thousands) Time
Model Software G L C L ◦ G C ◦ L ◦ G (hrs)
Pruned-08 AT&T + MIT 4,145 127 1,065 7,008 14,945 0:30
Pruned-09 MIT 13,692 127 1,065 23,160 50,654 1:44
Pruned-10 MIT 35,895 127 1,065 59,626 120,060 5:38
Unpruned MIT 98,288 127 1,065 DNF DNF 10:33

Table 1: Network composition experiments for AMI RT05s system. DNF – did not finish. Pruned-
XX – language model pruning factor XX, where all N-grams are pruned that reduce language model
perplexity on the training data by less than 10−XX relative. The AT&T toolkit could only be used
for the smallest language model as the library is not available with a 64-bit compilation.

using a heavily pruned LM. The results are shown in Table 2. We see that despite the heavy pruning
of the LM (in fact, this LM is more heavily pruned than all those shown in Table 1) the results are
still resectable, with only 5% relative increase in WER. Future benchmarking experiments will look
into profiling the relationship between WER and language model pruning, including the effect that
this has on decoding speed and lattice generation and rescoring accuracy.

6 Future development

The results of early benchmarking experiments indicate that Juicer is currently severely hampered
when used for large vocabulary tasks with large, high-order N-gram language models. Hence, a
priority of future development is to extend its ability with higher-order language models, however, the
problem of meeting memory requirement of such tasks through the brute force approach is seemingly
unsurmountable. This is a consequence of the fact that, during composition, the size of the resultant
transducer can be as big as the product of its constituents [9]. As we have demonstrated, for cases
of higher-order language models, the composition algorithm, as well as the following optimisation



10 IDIAP–RR 06-21

System TOT Sub Del Ins
P1.HDecode 41.1 21.1 14.7 5.3
P1.Juicer 43.5 23.0 13.7 6.8
P2.HDecode 33.1 15.9 13.4 3.9
P2.Juicer 34.5 16.9 13.6 4.0

Table 2: % WER results on RT05s individual headset microphone task for HDecode (full LM) and
Juicer (Pruned-07 LM). The P1 system uses ML trained models, the P2 system includes VTLN, MPE
trained models, and HSLDA feature transform. Further details of the evaluation system can be found
in [5]

procedure, can easily fail due to lack of memory. Even if the final transducer could be successfully
generated, the size may still be too large for decoding to be carried out on a conventional PC.

One of the possible solutions to this problem is to perform on-the-fly transducer composition
during decoding. Acoustical, phonetic and lexical resources may still be composed and optimised
off-line, while the language model transducer is locally, dynamically composed at run time [3, 19, 9].
By using this approach, we can avoid composing part of the search space which is not traversed by
any hypotheses. In addition, the total size of the constituent transducers will be much smaller than
the integrated transducer. This approach carries certain disadvantages in terms of introducing extra
overheads during decoding and transducer optimisation operations can not be performed on the full
transducer possibly leading to sacrifice to performance.

Future development of Juicer will aim to assess dynamic transducer composition along side al-
ternative schemes, including the investigation of improved static composition techniques developed
as part of the FSA toolkit, which have been demonstrated to achieve much more memory efficient
composition [10] and multiple-pass decoding strategies that enable more sparse language models to
be used on the first pass. Furthermore, the implementation of on-the-fly transducer composition still
permits a flexible decoder architecture and need not be necessary in all applications.

7 Concluding remarks

In this paper we have presented the Juicer speech recognition decoder developed at IDIAP. The decoder
employs a statically built decoding network based upon weighted finite-state transducer theory. In
benchmarking experiments we have demonstrated some of the capabilities of the decoder, in particular,
we have shown that on a medium vocabulary task performance with HDecode compares favourably
with moderate to wide pruning settings, while on a large vocabulary task some of the drawbacks of
the current system were identified, although in spite of this, respectable WER was still able to be
achieved. We have also described some of our future plans for Juicer development, more specifically,
those aimed at addressing the issues raised during benchmarking. Presently, the Juicer decoder and
utilities, including source code, are only available to AMI partners, but we envisage that the decoder
and utilities will soon be made available to the wider research community.

8 Acknowledgements

The authors would like to thank all those involved in the development of the AMI ASR system, which
formed the basis of some of the benchmarking evaluations that were carried out. We would also like
to thanks Cambridge University Engineering Department for the right to use Gunnar EvermannŠs
HDecode at the University of Sheffield; and Adam Janin and Chuck Wooters from ICSI, who allowed
us to carry out the large network composition on one of their recently acquired 64-bit AMD Opteron
Processors. This work was supported by the European Union 6th FWP IST Integrated Project AMI



IDIAP–RR 06-21 11

(Augmented Multi-party Interaction, FP6-506811) and the Swiss National Center of Competence in
Research (NCCR) on Interactive Multi-modal Information Management (IM)2.

References

[1] X. Aubert. An overview of decoding techniques for large vocabulary continuous speech recogni-
tion. Computer Speech and Language, 16(1):89–114, January 2002.

[2] D. A. Caseiro. Finite-state methods in automatic speech recognition. PhD thesis, Instituto Superior
Téchnico, Universidade Técnica de Lisboa, December 2003.

[3] H. Dolfing and I. Hetherington. Incremental language models for speech recognition using finite-
state transducers. In Proc. IEEE ASRU2001, 2001.

[4] S. Young et. al. The HTK Book. Cambridge University Engineering Department, December 2002.
For HTK Version 3.2.1.

[5] T. Hain et. al. The 2005 AMI system for the transcription of speech in meetings. In Proc. NIST
RT05 Workshop, Edinburgh, July 2005.

[6] R. Haeb-Umbach and H. Ney. Improvements in beam search for 10000-word continuous speech
recognition. IEEE Trans. on Speech and Audio Processing, 2(2):353–356, April 1994.

[7] L. Hetherington. The MIT FST toolkit. MIT Computer Science and Artificial Intelligence
Laboratory: http://people.csail.mit.edu/ilh//fst/, May 2005.

[8] M. Hochberg, S. Renals, A. Robinson, and D. Kershaw. Large vocabulary continuous speech
recognition using a hybrid connectionist-HMM system. In Proc. ICSLP, pages 1499–1502, Yoko-
hama, Japan, 1994.

[9] T. Hori, C. Hori, and Y. Minami. Fast on-the-fly composition for weighted finite-state transducers
in 1.8 million-word vocabulary continuous speech recognition. In Proc. Interspeech (ICSLP),
volume 1, pages 289–292, 10 2004.

[10] S. Kanthak and H. Ney. FSA: An efficient and flexible C++ toolkit for finite state automata
using on demand computation. In Proc. ACL, pages 510–517, Barcelona, Spain, July 2004.

[11] K. F. Lee. Automatic Speech Recognition – The Development of the Sphinx System. Kluwer
Academic Publishers, Norwll, Mass., 1989.

[12] M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,
23(2), 1997.

[13] M. Mohri, F. Pereira, and M. Riley. General-purpose finite-state machine software tools. AT&T
Labs – Research: http://www.research.att.com/sw/tools/fsm, 1997.

[14] M. Mohri, F. Pereira, and M.l Riley. Weighted finite-state transducers in speech recognition.
Computer Speech and Language, 16(1):69–88, January 2002.

[15] D. Moore. TODE: A Decoder for Continuous Speech Recognition. IDIAP Research Institute,
Martigny, Switzerland, 2002.

[16] D. Moore. The Juicer LVCSR decoder - user manual. IDIAP Research Institute, Martigny,
Switzerland, August 2005. for Juicer version 0.5.0.

[17] D. B. Paul and J. M. Baker. The design for the wall stree journal-based CSR corpus. In Proc.
ICSLP, 1992.



12 IDIAP–RR 06-21

[18] V. Steinbiss, B.-H. Tran, and H. Ney. Improvements in beam search. In Proc. ICSLP, pages
2143–2146, Yokohama, Japan, September 1994.

[19] D. Willett and S. Katagiri. Recent advances in efficient decoding combining on-line transducer
composition and smoothed language model incorporation. In Proc. ICASSP, volume 1, pages
713–716, 5 2002.


