The challenges of merging two similar structured
overlays: A tale of two networks™*

Anwitaman Datta and Karl Aberer

anwitaman.datta@epfl.ch, karl.aberer@epfl.ch
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Abstract. Structured overlay networks is an important and interesting
primitive that can be used by diverse peer-to-peer applications. Multi-
ple overlays can result either because of network partitioning or (more
likely) because different groups of peers build such overlays separately
before coming in contact with each other and wishing to coalesce the
overlays together. This paper is a first look into how multiple such over-
lays (all using the same protocols) can be merged - which is critical for
usability and adoption of such an internet-scale distributed system. We
elaborate how two networks using the same protocols can be merged,
looking specifically into two different overlay design principles: (i) main-
taining the ring invariant and (ii) structural replications, either of which
are used in various overlay networks to guarantee functional correctness
in a highly dynamic (membership changes) environment.

Particularly, we show that ring based networks can not operate until
the merger operation completes. In contrast, from the perspective of
individual peers in structurally replicated overlays there is no disruption
of service, and they can continue to discover and access resources that
they could originally do before the beginning of the merger process, even
though resources from the other network become visible only gradually
with the progress of the merger process.

1 Introduction

In the recent years there has been an increasing trend to use resources at the
edge of the network - typically desktop computers interconnected across the
internet provide services and run applications in a peer-to-peer manner, as an
alternative to the traditional paradigm of using dedicated infrastructure and
centralized coordination and control. Many peer-to-peer applications need some
basic functionalities, particularly that of locating resources efficiently in a dis-
tributed large-scale environment in a decentralized manner. Structured overlay

* The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322 and was (partly) carried out in the framework of the EPFL
Center for Global Computing and supported by the Swiss National Funding Agency
OFES as part of the European project Evergrow No 001935.

networks have come to be recognized as a generic substrate which can facilitate
resource discovery in a decentralized fashion [3,9,12-14,16-18].

Even while the peer-to-peer research community prides itself to be pushing
the limits of networked distributed systems, it has so far ignored a fundamen-
tal and realistic problem for structured overlays that any distributed system
needs to deal with - that of making two partitions of such a system merge to
become one. One can speculate several reasons for such omissions in structured
overlay network research. (i) Merger of isolated overlays is trivially resolved in
unstructured overlays, which is where most of the empirical information of P2P
research so far has been derived from. (ii) Until recently, there has not been any
real structured overlay implementations deployed and hence the problem not
identified. (iii) The recent deployments and experiments have typically [1,15]
been under a controlled setting, where some central coordination like the use of
a common set of bootstrap nodes has been used with the intention and sufficient
coordination to construct only one overlay, making sure that independent and
distinct overlays are not created. Moreover, none of these experiments with real
implementations looked specifically for, or even accidentally, encounter network
partitioning problems.

Apart network partitioning which can lead to the creation of two disjoint
overlay networks there is a more likely scenario. It may so happen that disjoint
overlay networks (using the same protocols) are formed over time by disjoint
group of users. One may imagine that an overlay P2P network caters to a specific
interest group from a particular geographic area who participate in an overlay
network. At a later time, upon discovering a hitherto unknown group of like-mind
users from a different part of the world, who use their own “private” network
(using same protocols), these two groups may want to merge their networks in
order to benefit from their mutual resources (like content or knowledge). In fact,
such isolated overlay networks may result because of initial isolation of groups
because of various reasons including geographic, social or administrative - a large
company or country, which may originally restrict their users from interacting
with outsiders in the overlay, and changes the policy at a later time - or purely
because of partitioning of the physical infrastructure.

Structured overlays have often been touted as a generic substrate for other
applications and services. Ideally, there will be one or few such universal over-
lays [5] which will be used by a plethora of other P2P applications. Realizing
such an universal service too will need the possibility to merge originally iso-
lated networks. Small overlays can be built independently, which may later be
all merged together incrementally into a single overlay network.

One can thus imagine isolated islands of functional overlays catering to their
individual participants. Someday, some member from one of these overlays may
discover a member from another overlay. The natural thing to do then would
be to merge the two originally isolated overlays into a single overlay network. In
simple file-sharing networks, the motivation of doing so will be to make accessible
content from both the networks to all the users. Similar conclusions can be drawn
for various other conceivable applications of overlay networks.

In unstructured overlay networks (like Gnutella), merger of two originally
isolated overlays happens trivially. Whichever peers from two originally isolated
networks come in contact with each other need to establish mutual neighborhood
relationship, and then onwards just need to forward /route messages to each other
as they do with all other neighbors. That’s all! Likewise, hierarchical (super-peer
based) unstructured overlays also merge together trivially. This is because no
peer has any specific responsibility and can potentially be responsible for any
and all resources in the network.

Recent years have seen an increasing advocacy of structured overlays, because
of the efficiency and completeness! their guarantees. There has been intensive
study of structured overlays, looking primarily in three important aspects of such
an infrastructure - (i) the topology of the routing network and the correspond-
ing routing algorithms, (ii) resilience of such network under churn (membership
dynamics) and (iii) load-balancing. These are critical issues that needed to be
addressed in order to build practical structured overlay networks which can be
deployed over the internet. The last five years of overlay related research con-
centrated on these issues. However, the issue of merger of structured overlays
has so far not only not been addressed but has even hardly been recognized,?
possibly because of the preoccupation of the P2P community with the other
above mentioned infrastructure issues, which were necessary even to begin with
development of actual software that could be deployed.

In this paper we take a first look at how and whether such merger can be
achieved. And at what cost in terms of algorithmic complexity and development,
as well as in terms of operational cost (bandwidth) and performance (interrup-
tion of service).

We do a case study for two structured overlays - ring based overlay (like
Chord) and P-Grid, in order to identify the properties of an overlay network
which would facilitate or hinder successful merger of distinct (but using the same
protocols) overlay networks. These two networks, apart from being two of the
few structured overlays which have really been implemented, benchmarked and
deployed, also are representative of two very different design principles. Chord
relies on the principle of maintaining what is called the ring invariant in order
to guarantee functionality of the overlay network in presence of membership
dynamics (churn). Maintaining the ring under churn is relatively straightforward
and provides good resilience [8]. P-Grid uses prefix-based routing (PRR [13]
topology). Such topology has been shown to have poorer static resilience than a
ring based topology [8]. P-Grid alleviates the problem, and still avoids the use
of maintaining a ring by using a different way to provide redundancy - which we
call structural replication. This has been shown to provide very good dynamic
resilience [2].

! Recall in terms of information retrieval terminology.

2 The technical report version of the original Chord proposal makes a passing remark
on the merger of isolated overlays. SkipNet [9] addresses a very special case of network
partitioning which is not usable in the general case.

In a ring, there is a strict notion of ordering among all the peers, and the key-
space partition these peers are responsible for. This strict ordering is exploited in
defining the overlay topology and keeping it connected and to guarantee routing.
In contrast, structural replication explicitly allows multiple peers to be respon-
sible for the same key-space partition.

By structural replication we mean that (i) multiple peers can be respon-
sible for the exactly same key space partition, i.e., these peers are mutual repli-
cas; and (ii) each peer has multiple (functionally redundant) routing references
which reduce the distance between source and destination by the same mag-
nitude (probabilistically). CAN [14] uses similar key-space partition replication
and calls it zone replication.

2 Background

In recent years the concept of structured overlays have attracted a lot of attention
because of its potential to become a generic substrate for internet scale applica-
tions - as diverse as locating resources in a wide area network in a decentralized
manner, address independent and robust and flexible (group) communication -
e.g., application layer multicast and internet indirection infrastructure and con-
tent distribution network to name a few.

Structured overlay networks comprise of the three following principal ingre-
dients:

(i) Partitioning of the key-space (say an interval or circle representing the real
number between the range [0,1]) among peers, so that each peer is responsible
for a specific key space partition. By being responsible, we mean that a peer
responsible for a particular key-space partition should have all the resources
which are mapped into keys which are in the respective key-space partition.

(i) A graph embedding/topology among these partitions (or peers) which en-
sures full connectivity of the partitions, desirably even under churn (peer mem-
bership dynamics), so that any partition can be reached from any partition to
any other - reliably and preferably, efficiently.

(iii) A routing algorithm which enables the traversal of messages (query for-
warding), in order to complete specific search requests (for keys).

Various applications can use transparently the (dynamic) binding between
peers and their corresponding key-space partitions as provided by the overlay
for resource discovery and communication purposes in a wide area network.

A structured overlay network thus needs to meet two goals to be functionally
correct:

(i) Correctness of routing: Starting from any peer, it should be possible to
reach the correct peer(s) which are responsible for a specific resource (key).

(ii) Correctness and completeness of keys-to-peers binding: Any and all peers
responsible for a particular key-space partition should have all the corresponding
keys (and none other).

Correctness of routing is achieved by maintaining the peers’ routing tables
correctly and using a proper routing algorithm. Correctness and completeness

of binding is achieved by moving the corresponding keys (content) as and when
the partition a particular peer is responsible for changes, and synchronizing the
content among replica peers.

Most structured overlays use the ring topology, or a hybrid one [16], relying
on a strongly connected ring for functional correctness of routing in the over-
lay, while the rest of the connections among peers provide optimization, i.e.,
efficiency. Replication is done in immediate neighbors on the ring and hence is
deterministic as long as the ring is maintained correctly. This ensures the cor-
rectness (and completeness) of keys-to-peers binding. Hence, in our case study,
one candidate we consider is the Chord [17] overlay - which not only pioneered
the ring topology in the context of structured overlays, but also is one of the
most extensively studied and developed system.

Both because of the well developed algorithms of Chord to maintain the
ring topology, as well as the relative ease in doing so and better static resilience
than other topologies [8] of the ring topology, it is predominantly used in other
overlays.

We'll show that when it comes to merger of two networks, the reliance on the
ring for functional correctness of the overlay is in fact a liability - hard to achieve
- very slow and costly in terms of communication complexity and in terms of the
required coordination. Merger of two ring based networks disrupt completely the
operations of the overlay, and hence the functioning of other applications and
services using it.

The other overlay we consider is the P-Grid [3] network, which apart using
prefix based routing [13] uses an (almost) unique feature - structural replication
- in order to provide resilience against churn [2], instead of relying on the ring
invariant used by most other overlays. With the use of structural replication,
the correctness of routing is never violated even under network mergers. How-
ever completeness of keys-to-peers binding is harder to achieve. Thus merger of
structurally replicated overlays is graceful because the applications running on
top of the original overlays will always have access to all the resources they had
access to in their isolated overlays, but discovery (and hence, access) to resources
from the originally other overlay will be possible only when the peers (replicas)
for the corresponding key-space partition(s) have synchronized.

We'll like to emphasize that this case study is not a quantitative evaluation to
come out with a final verdict on any specific overlay - each of Chord and P-Grid
networks have many nice, sometimes complimentary features as well as short-
comings - making each better suitable for different application requirements. The
essential goal here is to explore the design space to better identify the features
of overlay networks that can either facilitate or hinder merger of overlays - and
hence get a better insight for (re-)designing such systems.

3 Network merger case-study: Chord

3.1 Chord (Recapitulation)

Chord uses SHA-1 based consistent hashing to generate m-bit identifier for each
peer p, which is mapped onto a circular identifier space (key-space). Irrespective
of how the peers’ identifiers and keys are generated in a ring based topology,
what is essential is that the peer identifiers are distinct. Similarly, unique keys are
generated corresponding to each resource. Each key on the key-space is mapped
to the peer with the least identifier greater or equal to key, and this peer is
called key’s successor. Thus to say, this peer is responsible for the corresponding
resource.

What is relevant for our study is how keys from the key-space are associ-
ated with some peer(s) and how the peers are interconnected (in a ring) and
communicate among themselves.

Definition 1 A ring network is (1) weakly stable if, for all nodes p, we have
predecessor(successor(p)) = p; (2) strongly stable if, in addition, there exists
no peer s on the identifier space where p < s < q where successor(p) = q; and
(8) loopy if it is weakly but not strongly stable.

Condition (2) that there exists no peer s on the identifier space where p <
s < q if p and g know each other as mutual successor and predecessor determines
the correctness of the ring structure. Figure 1(a) shows one such consistent ring
structure (peer’s position in the ring and its routing table). The order-1 successor
known also just as “successor” of each peer is the peer closest (clock-wise) on
the key-space.

If at any time such a s joins the system, the successor and predecessor in-
formation needs to be corrected at each of p, ¢ and s. Maintaining the ring is
basically to maintain the correctness of successors for all peers - this in turn
provides the functional correctness of the overlay - i.e., successor peer for any
identifier key can be reached from any other peer in the system (by traversing
the ring). For redundancy, fs consecutive successors of each peer is typically
maintained, so that the ring invariant is violated only when any fs; consecutive
peers in the identifier space all depart the system before a ring maintenance
mechanism - Chord’s self-stabilization algorithm - can amend for the changes.

In addition to the successor/predecessor information, each peer maintains
routing information to some other distant peersin order to reduce the communi-
cation cost and latency. It is the way these long ranges are chosen which differ
in many ring topology networks. It has no critical impact on the functional cor-
rectness of the overlay. The original Chord proposal advocated the deterministic
use of the successor of the identifier (p + 2¥~!) modulo 2™ as an order-k succes-
sor of peer p or a finger table entry.Many other variants for choosing the long
range links exist - e.g., randomized choice from the interval [p+ 28=1 p+ 2%) or
exploiting small-world topology [11,4] to name a few.

14

i C;lZ ‘7\fl

\ Routing table entries

\11 k : order k-successor
(deterministic chord)
10
9 7
-8

12312
41

(a) A consistent Chord network N7 (b) Peers from two Chord networks meet

12:3
35
42
0 .
1

125
310
414

(c) Ideal Chord network comprising
peers from both networks

Fig. 1. When (peers from) two ring-based overlays meet

Ring self-stabilization highlights The ring invariant is typically violated
when new peers join the network, or existing ones leave it. If such events occur
simultaneously at disjoint parts of the ring, the ring invariant can easily be
reestablished using local interactions among the affected peers. Note that these
events do not lead to a loopy state of the network.

Apart looking into the simple violations of the ring invariant which are rel-
atively easily solved, the original Chord proposal (technical report version) also
provides mechanisms to arrive at a strongly stable network starting from a loopy
network (whichsoever reason such a loopy state is reached). We summarize the
results of stabilizing a loopy network here.

Any connected ring network with N peers becomes strongly stable within
O(N?) rounds of strong stabilization if no new membership changes occur in the
system. Starting from an arbitrary connected state with successor lists of length

O(logN) if the failures rate is such that at most N/2 nodes fail in 2(logN) steps
then, whp, in O(N?) rounds, the network is strongly stable.

3.2 Merger of two ring based networks

Consider two Chord networks A7 and N2 with N7 and N, peers respectively
(e.g., shown superimposed in Figure 1(b)).

When peers from different overlays meet: When peers from the two
different overlays meet each other (by whatsoever reason - accidentally or delib-
erately), in a decentralized setting there is no way for them to ascertain that they
belong to two completely different systems. This is so because overlay construc-
tion always relies on such peer meetings to start with. As a consequence, if the
peer pair that meets have identifiers such that they would replace their respec-
tive successor and predecessor, then they will indeed do that.For our example
from Figure 1(b) lets say peer 1 from N] meets peer 0 from A5. Then peer 1 will
treat 0 as its new predecessor, and 0 will treat 1 as its new successor, instead of
12 and 3 respectively. However, if they only change their local information, then
the ring network will no more be strongly stable (may in-fact not even be weakly
stable). In-fact such a reconfiguration will need and lead to a cascading effect,
so that all members of both the original network try to discover the appropriate
immediate neighbors (successor/predecessor) - requiring coordination among all
the peers.

Estimation of the probability that a peer’s predecessor changes:
From the perspective of any peer in A7, the successor will change, if at least 1
out of the Ny peers have identifier within the next 1/Nj stretch of the key-space
(for which its present successor is responsible, on an average). Any particular
peer from N3 has an identifier for this stretch with probability 1/N;. The number
of peers falling in this stretch is thus distributed as Binomial(Na,1/Ny), which
approaches to a Poisson distribution with expectation No /N7 as No — co. Hence,
a peer from Nj will have its successor unchanged with probability e~ where
A1 = N3 /Nj. Thus each of the N peers will have their successor node changed
with a probability 1 — e~ i.i.d. Peers in N3 will be affected similarly with a
parameter Ao = N7 /Ny (symmetry).

Estimate of the number of peer pairs which will have their imme-
diate neighbors (either successor and/or predecessor) changed: The
number of peers whose successor will change in N is then distributed binomi-
ally Binomial(N;,1 — e~*¢) for i =1,2. Hence the expected number of nodes
which will need to correct their successor nodes (and predecessor nodes) is
Nl(l — 6_>\1) + N2(1 — 6_)\2).

The basic idea of how the ring can be reestablished is that when two peers
from different networks meet so that they replace each other’s successor and pre-
decessor (immediate neighbor), then this information needs to be communicated
to the original immediate neighbors, and the process continues.

There are several combinations of how the neighborhoods of the peers are
affected after their interaction, each of which needs to be accounted for the actual
network merger algorithm. Moreover, different combinations of faults (single or

multiple peers crashing or leaving) can happen during the ring merger, and these
too need to be dealt with. The specifics of such algorithms, and evaluation of
the actual ring network merger algorithm is currently underway.

We’d like to admit at this juncture that without proper and exhaustive eval-
uation of the exact algorithms for merging two ring networks, it is difficult to see
whether a strongly stable ring can be directly achieved, or whether a sequence
of faults during the merger of two rings can even lead to a loopy network, which
would then require even more effort to converge to a strongly stable state using
Chord’s already existing self-stabilizing mechanisms.

Thus the back of the envelope analysis above just provides the expected
lower-bound of the ring reestablishment process in terms of correction of succes-
sor/predecessors. The latency of such a process started because of two peers from
the two networks will be O(Ny + N3) even in there is no membership changes
during the whole merger process - this is the time required to percolate the in-
formation that the ring neighborhood has changed and to discover the correct
neighbor when peers from both the original networks are considered together.

Ring loses bearing during the merge process Above we provided a sketch
of how to only reestablish the ring topology - which only guarantees the func-
tional correctness of the routing process - i.e., the query will be routed to the
peer which is supposed to be responsible for the key-space to which the queried
key belongs.

Reestablishing the ring will be necessary in order to be able to query and
locate even the objects which were accessible in the original network of any indi-
vidual network. Hence, such a merger operation of ring topology based overlay
will typically cause a complete interruption of the overlay’s functioning.?

Managing keys on the merged ring Establishing the ring in itself is however
not sufficient in an overlay network based index. In order to really find all keys
(which originally existed in at least one of the two networks) from any peer
in the merged network, it will still be necessary to transfer the corresponding
key/value data to the “possibly” different peer which has become responsible for
the new overlay. To make things worse, in a ring based network the queries will
be routed to the new peer which is responsible for a key, so that even after the
reestablishment of the ring itself, some keys that could be found in the original
networks may not be immediately accessible, and will need to wait until the keys
are moved to the new corresponding peer.

Lets consider that before the networks started merging, network A; had key
set D; such that |D;| = D;. Furthermore, if we consider that « fraction of the
keys in the two networks is exclusive, that is |D; N Dz| = a|D; U Ds|, then on

3 We'd like to note that such a vulnerability may expose ring topologies to a new kind
of “throwing rings into the ring” distributed denial of service (DDoS) attack, though
the implications of such an attack and the amount of resources an adversary will
require to make such a DDoS attack needs to be studied in greater detail.

an average, if a A; node’s successor changes, it will be necessary to transfer on
an average « fraction of the data from network N;’s m stretch of the key-
space. Thus, on an average, the minimum? required transfer of unique data from
members of original networks N to N; will be DJ.”" = N;(1 — e*Al)afoNQ.
Apart from assigning the data corresponding to a key on the key-space to
the peer which is the successor for that key, ring based topologies provide fault-
tolerance by replicating the same data at f consecutive peers on the ring.® Given
the strict choice of f as neighborhood changes, the transferred data will in-fact
have to be replicated at the precise f consecutive peers of the merged network,
determining the actual minimal bandwidth consumption. Similarly, some of the
original f replicas will need to discard the originally replicated content.

4 Network merger case-study: P-Grid

4.1 The P-Grid routing network

P-Grid divides the key-space in mutually exclusive partitions so that the parti-
tions may be represented as a prefix-free set IT C {0, 1}*. Stored data items are
identified by keys in K C {0,1}*. We assume that all keys have length that is at
least the maximal length of the elements in I, i.e.,

min |k| > max || = Tae
ke well

Each key belongs uniquely to one partition because of the fact that the
partitions are mutually exclusive, that is, different elements in II are not in a
prefix relationship, and thus define a radix-exchange trie.

mrell=na¢rx An’ Cn

where m C 7’ denotes the prefix relationship. These partitions also exhaust the
key-space, so to say, the key-space is completely covered by these partitions so
that each key belongs to one and only one (because of exclusivity) partition.

In P-Grid each peer p € P is associated with a leaf of the binary tree, and each
leaf has at-least one peer associated to itself. Each leaf corresponds to a binary
string w € I1, also called the key-space partition. Thus each peer p is associated
with a path w(p). For search, the peer stores for each prefix m(p,l) of 7(p) of
length [a set of references p(p, 1) to peers g with property «(p,1) = 7(g,1), where
7 is the binary string 7 with the last bit inverted. This means that at each level
of the tree the peer has references to some other peers that do not pertain to the
peer’s subtree at that level which enables the implementation of prefix routing

4 The actual implementation of such a data transfer will need to identify the distinct
data in the two networks and transfer only the non-intersecting one, in order to
achieve this minimal effort. This is an orthogonal but important practical issue that
any implementation will need to look into.

® The parameter f is a predetermined global constant determined by the system de-
signer.

for efficient search. The whole routing table at peer p is then represented as p(p)
Moreover, the actual instance of the P-Grid is determined by the randomized
choices made at each peer for each level out of a much larger combination of
choices. The cost for storing the references and the associated maintenance cost
scale as they are bounded by the depth of the underlying binary tree. This also
bounds the search time and communication cost. Figure 2(a) shows instances of
P-Grid network (peer’s path and routing table). e.g., in N7, peers A and F are
mutual replicas and are responsible for the key-space with prefix 00. Peer A’s
routing table comprise of peers C' and D from the partition with prefix 1 and
peer B from the partition with prefix 01.

Each peer stores a set of data items 0(p). For d € d(p) the binary key x(d)
is calculated using an order-preserving hash function. x(d) has 7(p) as prefix
but it is not excluded that temporarily also other data items are stored at a
peer, that is, the set 6(p, m(p)) of data items whose key matches 7(p) can be a
proper subset of &(p). Moreover, for fault-tolerance, query load-balancing and
hot-spot handling, multiple peers are associated with the same key-space par-
tition (structural replication). (k) represents the set of peers replicating the
object corresponding to key k. Peers additionally also maintain references to
peers with the same path, i.e., their replicas (7 (p)), and use epidemic algo-
rithms to maintain replica consistency. Routing in P-Grid is greedy.

4.2 Merger of two structurally replicated networks

When peers from different overlays meet:

A resulting merged overlay network when peers from networks N; and N>
meet is shown in Figure 2(b).

If peers from the two different networks meet, so that their paths are exactly
the same (for example peers A and U from networks N; and A respectively in
Figure 2(a)), then they will execute an anti-entropy algorithm to reconcile their
content and become mutual structural replicas. In fact, such an anti-entropy
algorithm will have to be run among all the other structural replicas of that part
of the key-space too, and eventually of the other parts as well. However, since the
original members of each network still retain the original routing links, routing
functionality is not affected - and whichever keys were originally accessible will
continue to be accessible. So to say, peer C will always be able to access all the
keys/content available at A before the merger process. The keys from the same
key-space which were present in the other network would however be available
only after the background replication synchronization has completed. That is to
say, a resource available originally only in N3 at U and Z (but with the same
prefix 00 as A) will be visible to C' only when A has synchronized its content
with any one of U or Z.

Use of structural replication has an additional downside - by not limiting the
number of replicas nor having a proper structure among the replicas, it is difficult
to have knowledge of the full replica subnetwork at each peer, and hence updates
and replica synchronization is typically probabilistic. In contrast, once the ring
is reestablished, replica positions are deterministic and hence locating replica

(a) Peers from two P-Grid networks meet

N=N+ N,

VB @QEIE ®H WL ©

Peers with same path Peers with |ess specialized paths
become mutual replicas and become replicaof some peer with longer path
use anti-entropy to synchronize content, (using the joining algorithm)
and and synchronize content
gossip random routing entries and borrow routing table information

for
redundancy and randomization

(b) Ideal P-Grid network comprising peers from both
networks

Fig. 2. When (peers from) two structurally replicated overlays meet

is trivial in ring based topologies. Having discovered a replica, the anti-entropy
algorithm itself (is an orthogonal issue) and hence the cost of synchronization of
a pair of peers will be the same.

When two peers from A and A5 meet so that one’s path is strictly a prefix
of the other peer’ path, then the peer with shorter path can execute a normal
network joining algorithm [3] - extending its path to replicate either the peer
it met, or a peer this peer refers it to. For example, Y may extend its path
from 1 to 11. In order to do so, Y will need to synchronize its content with one
of the peers which originally had the path 11, say G. Moreover Y will need to
obtain routing reference to a peer responsible for the path 10 (e.g., peer C) -
information it can obtain from G itself.

Since new peers join as structural replica or existing peers, no other existing
peer need necessarily to update their routing table for routing functionality (un-
like in a ring based topology). Thus, peer @ referring to Y for prefix 1 continues
to refer to it as such, and any query 10 from @ is routed first to Y, which then
forwards it to - say C. Peers may however, over time add more routing entries,
for instance, @) adding a reference to D for redundancy in its routing table for
the prefix 1. Such changes however is a normal process in the P-Grid network
and can be carried on in the background, again without interrupting the func-
tioning of the overlay (and in fact instead making it more resilient to faults and
churn).

Consequently, neither joining peers, nor merger of two existing overlay net-
work disrupt the available functionality of the network members.%

If peers with different paths meet each other, they need to do nothing, though
they can refer each other to peers which are most likely to have the same path
(similar to ring based topologies which can forward the peers closer to their
respective key-spaces).

Managing keys in the merged network The amount of data that needs to
be transferred from each system to the other is essentially the non-intersecting
data. However, there is no need to transfer data from one peer to another merely
because the key-space partition a peer is responsible for changes - because with
structural replication, new peer joins or network mergers do not in itself auto-
matically change the network’s structure.”

The important thing to reemphasize is that a peer always finds the keys
it could find before the merger process began, irrespective of the state of the
merger process. Hence the replica synchronization can be done as a slow back-
ground process - hence the performance and network usage is also graceful - that
is, merger of two overlays does not suddenly overburden the physical network’s
resources nor disrupt the functioning of the overlay networks. Such a graceful
merger of existing networks also facilitates highly parallelized overlay construc-
tion [3] in contrast to the traditional sequential overlay construction approaches.

5 Related work

There is very little specifically looking into network partitioning issues of over-
lays. The only system which explicitly discusses the network partitioning issue
is SkipNet [9]. SkipNet is based on ring topology and imposes a restriction on
the peers’ identifiers in that nodes from same administrative domain get con-
tiguous exclusive stretch of the overlay. Thus if the domain gets partitioned, all

5 Note that the above discussion is true only for write once and then onwards read-
only data, since for read/write, it will be necessary to maintain the replicas more
pro-actively.

" Local view of the structure however changes when a peer with shorter path meets a
peer with longer path, and extends its own path according to the network construc-
tion algorithm [3], as explained above.

the nodes are contiguous on the identifier space and thus reconstructing the two
rings is relatively easy. However such restrictions have serious implications on the
general purposes in which the SkipNet can be used. Particularly their approach
does not in any way solve the problems faced by most other overlays. Following
their principles, if private overlays are first formed, either these overlays will
use a minuscule portion of the key-space - which is unrealistic - particularly if
its not known if and when new overlays need to be merged, otherwise, each of
these private overlays will again overlap on the key-space (not be contiguous),
and thus we’d again have the ring reestablishment problem as studied in this
paper. Moreover, in order to find a resource, the query needs to know not only
the resource name, but also the domain it can be found - which may be fine for
specific applications but is very restrictive in general.

Canon [7] proposes organization of isolated overlays in a hierarchical fashion,
and requires merger of the rings. However, they have not investigated the com-
plexity of ring mergers.® Moreover, placement of keys in Canon is again either
domain specific, so that peers from different domains may /may not find the keys.
Such ambiguity (no guarantees on recall!) severely limits applications for which
Canon may be used.

5.1 Network dynamics

Merger of two overlays, seen from the perspective of individual peers (which is
how these decentralized systems operate) can look very similar to simple mem-
bership dynamics, churn!

However, churn is a gradual process, and the system needs to continuously
perform repair operations to rectify local view of peers in order to deal with the
continuous membership changes. When two isolated networks need to merge, the
magnitude of the population change with respect to their original population
size is very high. In fact, if we consider merger of two same-sized overlays, it’d
essentially mean a vanishing half-life [10], without giving any time to the usual
overlay maintenance operations to deal with the changes in the network. This
also means that mechanisms other than what are employed to deal with normal
churn needs to be developed. Even so, we try to reuse tools and ideas already
honed in dealing with churn.

At this juncture, it is also worthwhile to point out that since merger of
two networks is indistinguishable from normal churn from the perspective of
individual peers, it is not obvious when to use the network merger algorithms.

5.2 Portability

Over the last few years, there has been tens (possibly even running close to a
hundred) different topologies defined for structured overlays, of which some have

8 The simulations they have seem to have merged the rings automatically. One can
only speculate that most likely the new rings were formed using the global knowledge
of the simulator in a manner a centralized system would. To that end, our paper
exposes the complexity of achieving ring mergers.

seen sustained development and deployment - including Chord [17], Kadem-
lia [12], Pastry/Bamboo [16,15] and P-Grid [3]. Nonetheless, these are diverse
systems using different protocols. To that end, there has been effort to identify
common APIs [1,6,15] that can make development of applications modular and
independent of the underlying overlay infrastructure.

Intercommunication of peers based on different implementations and pro-
tocols has been relatively better explored - possibly because of the prolifer-
ation of numerous overlay topology proposals as well as different implemen-
tation/protocols of theoretically equivalent networks - leading to these rather
numerous tentative proposals for universal APIs.

The problem of merger of two distinct overlays (but using the same protocols)
is somewhat different from how peers across different overlay networks using
different protocols can communicate among themselves, or how applications can
be developed and run transparently on any overlay substrate.

6 Summary and conclusion

This paper is a first step in looking at the problem of merging two separate
overlay networks. Depending of the peculiarities of a specific overlay - whether
it relies on the strong stability of the ring, or whether it uses structural repli-
cation, we identified the mechanisms which are necessary to execute the merger
process, indicated the minimal effort it will require in order to merge two net-
works as well as discussed the specific challenges that need to be met for practical
implementation of such an approach.

For managing data in any merged networks efficiently, it is necessary to use
an efficient anti-entropy algorithm, so that ideally non-intersecting data items
are identified efficiently and only those are exchanged among peers.

We also observed that the ring based networks can not function at all until
the whole merge process is complete. This may have serious consequences of
usability of ring based topologies, particularly if merger of two such overlay
networks becomes necessary.

In contrast, use of structural replication instead of the ring as a fault-tolerance
mechanism makes overlay mergers graceful. However, location of all structural
replicas may be tricky, and hence replica management in such a system is rela-
tively more complex than in ring based systems which has deterministic choice
of the location and size of the replica subnetwork.

The actual algorithmic details of merger of ring based overlays is still under
study and refinement, particularly looking into the potentially catastrophic com-
bination of faults that may occur during the long latency incurred in merging
two rings. Quantitative and comparative evaluation of network merger for ring
based networks and structurally replicated networks, along with precise finalized
algorithms to merge ring based networks thus is part of our ongoing and future
work.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi.
The essence of P2P: A reference architecture for overlay networks. In P2P2005,
The 5th IEEE International Conference on Peer-to-Peer Computing, 2005.

K. Aberer, A. Datta, and M. Hauswirth. Efficient, self-contained handling of iden-
tity in peer-to-peer systems. IEEE Transactions on Knowledge and Data Engi-
neering, 16(7), 2004.

K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing data-oriented
overlay networks. 81st International Conference on Very Large Databases (VLDB),
2005.

A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-
attribute range queries. In SIGCOMM, 2004.

M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. One Ring to Rule
Them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Net-
works. In ACM SIGOPS European Workshop, 2002.

F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common API for struc-
tured peer-to-peer overlays. In IPTPS 2002.

P. Ganesan, P. K. Gummadi, and H. Garcia-Molina. Canon in G Major: Designing
DHT's with Hierarchical Structure. In ICDCS, 2004.

K. Gummadi, R. Gummadi, S. Ratnasamy, S. Shenker, and I. Stoica. The Impact
of DHT Routing Geometry on Resilience and Proximity. In Proceedings of the
ACM SIGCOMM, 2003.

N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality properties. In USITS 2003, Seattle, WA,
March 2003.

D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the Evolution of
Peer-to-Peer Systems, 2002.

G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a
Small World. In USITS, 2003.

P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information System
Based on the XOR Metric. In IPTPS, 2002.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of
Replicated Objects in a Distribute d Environment. In SPAA, 1997.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In ACM SIGCOMM, 2001.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
and H. Yu. OpenDHT: A Public DHT Service and Its Uses. In SIGCOMM, 2005.
A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), 2001.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-To-Peer Lookup Service for Internet Applications. In ACM SIGCOMM,
(Technical report version: hitp://pdos.csail.mit.edu/chord/papers/), 2001.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-are location and routing. Technical Report UCB/CSD-01-1141,
UC Berkeley, 2001.

