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Abstract. In recent years, the advent of robust tracking systems has enabledbe-
havioral analysis of individuals based on their trajectories. An analysis method
based on a Point Distribution Model (PDM) is presented here. It is an unsuper-
vised modeling of the trajectories in order to extract behavioral features. The ap-
plicability of this method has been demonstrated on trajectories of a realistically
simulated mobile robot endowed with various controllers that lead to different
patterns of motion. Results show that this analysis method is able to clearly clas-
sify controllers in the PDM-transformed space, an operation extremely difficult
in the original space. The analysis also provides a link between the behaviors and
trajectory differences.

1 Introduction

The development of vision-based tracking systems brings about an easy way to extract
trajectory data. Consequently, an ever-increasing numberof domains are using it for
behavior and trajectory analysis, like video surveillance[11, 13, 5, 12, 8], sports analysis
[1] and ethology [4]. Behavioral analysis has also been doneon human trajectories in a
virtual environment [14, 15] or on autonomous-robot trajectories [16, 17, 10]. All these
applications aim to classify an individual from its trajectory, to analyze the movement
differences between individuals, or to create a motion model of animals or insects.

This paper addresses the development of tools to analyze themotion of robots, or
more generally people or animals, by means of their trajectories. As we will explain
in further detail, robots were chosen as trajectory generators for their repeatability and
behavioral controllability which natural being are lacking of. For the analysis, we use
a Point Distribution Model (PDM) [2], a kind of deformable template. This model was
often used to detect object shapes in an image, but it can alsobe used for trajectory
modeling [3]. It is able to take into account spatial and temporal information, but in our
experiments we focused on purely spatial analysis. We are more interested in the way
the individual is moving and not by the time it needs to travela given distance.

The paper is organized as follows. In section 2, the experimental method used will
be presented, followed in the next section by a description of the Point Distribution
Model. Section 4 will present the results and a discussion will close the paper.



Fig. 1. Image of the simulated mobile robot, with its 8 infrared sensors (S0 to S7) and two wheels
(A0 and A1). The two walls of the circuit can also be seen

(a) (b)

Fig. 2. The two circuits simulated in Webots (1 on the left, 2 on the right)



2 Experimental Method

In order to collect hundreds of trajectories in a very short time and perform a first
exploration of PDMs as tool for behavioral analysis, we havedecided to work with
mobile robots. They may be embedded in a physical environment in the same way as
natural creatures, but are more easily programmed to produce repeatable behaviors.
Moreover, they can be small and therefore the experimental setup can easily fit into a
room and simple video tracking systems can extract their positions. Finally, their behav-
ioral repertoire can be quite rich and their controllers canachieve fairly high degrees of
complexity, spanning from purely reactive to more deliberative behaviors.

In order to further speed up the trajectory generation, we carried out our experi-
ments using a simulated, miniature differential-wheel robot endowed with eight prox-
imity sensors (Fig. 1). We simulated it inWebots[9], a realistic simulator reproducing
individual sensors and actuators with noise, nonlinearities, and dynamic effects such as
slipping and friction. The resulting simulation is sufficiently faithful for the controllers
to be transferred to real robots without changes and for the simulated robot behaviors
to be very close to those of the real robots, as shown in several previous papers (see for
instance [6]).

Figure 2 shows the shapes of the two circuits used for our simulation. They share
common features such as being characterized by only one laneand a closed loop, how-
ever, the length and curvature differ between them. We use two circuits for our experi-
ments in order to test the validity of our analysis.

Table 1. Description of the two controllers used for the experiments

Controller 1 Controller 2

If
∑2

0 Si < T ⇒ {A0=V

A1=−V
Sl =

∑2
0 Si

Else if
∑5

3 Si < T ⇒ {A0=−V

A1=V
Sr =

∑5
3 Si

Else {A0=V

A1=V
A0 = V ·

(

1 +
K·(Sl−Sr)
2·(Sl+Sr)

)

A1 = V ·
(

1 +
K·(Sr−Sl)
2·(Sl+Sr)

)

S0 . . . S5 are the robot sensors as shown in Figure 1
(back sensorsS6 andS7 are not used in either of the controllers)
A0 andA1 are the robot actuators as shown in Figure 1
T is a constant threshold value
V is a parameter modifying the robot’s overall speed
K is a parameter modifying the robot’s reactivity

We simulate the robot moving continuously within the two circuits, extracting each
lap as a separate trajectory. Since a lap does not begin and end at the same point, it adds
variability to the trajectories. Two different reactive controllers were implemented to
drive the robot on the circuits. The two controllers move around the track at the same
average speed, but using different methods of avoiding the walls. The first controller



was rule-based (“if a wall is too close in front, turn away from the wall, otherwise go
straight”). The second controller is essentially a Braitenberg vehicle and linearly adjusts
its trajectory as a function of its proximity to a wall on the left or the right side. The
robot was moving clockwise in both circuits. Both controllers continuously calculate
the perception-to-action loop every 32 ms. The descriptionof the two controllers can be
found in Table 1. The two controllers were chosen for their simplicity, but the analysis
has very few limitations and could easily be used with more complex controllers.
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Fig. 3. 6 trajectories (3 for each controller) of the robot’s movement simulated on the 2 circuits

From this description, we can see that Controller 1 is characterized by essentially
two discrete behaviors: go straight or turn in place. Controller 2 makes much smoother
turns and its overall behavior changes as a function of the distance to the left or right
wall. Figure 3 shows three trajectories per controller on each of the two circuits. Slight
differences can be seen between the two controllers; for example, Controller 2 makes
more zigzags than Controller 1 (even if its turns are smoother, it turns more often than
Controller 1). At first glance, it is not so easy for the human eye to differentiate between
the raw trajectories.

2.1 Trajectory Sampling

In order to apply thePoint Distribution Modelpresented in section 3, each trajectory
must be sampled with the same number of points. For our previous experiments, pre-
sented in [3], the sampling of the trajectories was done withlines orthogonal to a ref-
erence trajectory that needed to be chosen. However, this solution is cumbersome and
limits the number of sampling points. Therefore, we developed a new sampling method-
ology based on the circuit instead of a reference trajectory. The inner and outer wall of



the circuit were modeled with b-splines and sampling gates were created as orthogo-
nal as possible to the two walls. A fixed number of gates was then selected based on
three different criteria: the distance between gates (Sampling Method A), the curvature
(SM-B), and the linearity of the circuit (SM-C). The first criterion selects gates that
are equidistant from each other (the distance is measured between the midpoints of the
gates), the second places more gates in the curves (as shown in Figure 4(a)), and the last
places more gates in the straight sections (Figure 4(b)). This method allows us to very
easily modify the number of gates per circuit. The performance of the three placement
strategies will be compared in Section 4.3.
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Fig. 4. Sampling of the trajectory with gates as orthogonal to the wall as possible, withmore gates
in the curves (SM-B, left) and more gates in the straight lines (SM-C, right)

3 Modeling of the Trajectories

We have slightly modified the representation we used in [3] toaccommodate the new
sampling method presented above. Each trajectoryk is represented as an ordered set of
N points corresponding to the intersections of the trajectory with the sampling gates.
Each point can be expressed as the linear position on theith sampling gateπk

i
. Each

positionπk
i

has a value between0 (the inner wall) and1 (the outer wall). Therefore the
trajectoryτk can be expressed as:

τk =
[

πk

1
. . . πk

N

]T

. (1)

The covariance matrix of the trajectories is

S =
1

K − 1

K
∑

k=1

(τk − τ)(τk − τ)T = P · Λ · P
−1, (2)



whereP = [P1 . . . Pr . . . PR] is the matrix of the eigenvectorsPr, Λ the diagonal
matrix containing the eigenvalues ofS, K is the number of trajectories in the set, and
whereR = min(2N,K) − 1 is the number of degrees of freedom of the set.

Each trajectoryτk in the set can be decomposed into an average trajectory and a
linear combination of deformation modes:

τk = τ + P · Bk (3)

Bk = P
−1(τk − τ). (4)

Equations 3 and 4 correspond to the projection from the deformation space (Bk) to
the trajectory space (τk) and the projection from the trajectory space to the deformation
space, respectively.

The computation of matrixP corresponds to the Principal Component Analysis
(PCA) [7] of the trajectory set. The first vectorP1 corresponds to the direction of maxi-
mal variance in the trajectory space. The second vectorP2 corresponds to the direction
of maximal variance orthogonal toP1. The other vectors are found likewise. In most
cases, this construction implies that most of the deformation energy will be contained
in the first few deformation modes.

ThePoint Distribution Model[2] affords the transformation from the space of the
trajectories (τk) to the space of the modes (Bk).

3.1 Inter-cluster Distance

In this section we will describe the inter-cluster measure we used for our experiments.
Multivariate normal data tends to cluster about the mean vector, µcluster, falling in

an ellipsoidal cloud whose principal axes are the eigenvectors of the covariance matrix.
The Mahalanobis distance,r, takes into account the covariance of the cluster,Scluster,
to calculate the distance from a pointX to a cluster.

r =

√

(X − µcluster)T
· Scluster

−1
· (X − µcluster) (5)

If normal data is projected on a unidimensional axis, a unitary Mahalanobis distance
is equivalent to a Euclidean distance of the square root of the data variance along this
axis (standard deviation). Thus, the points of unitary Mahalanobis distance to a cluster
forms a ellipsoid.

As a measure of distance between two clusters, we can use a combination of the
two Mahalanobis distances; from the mean of one cluster to the other, and vice versa.
If r2

1
is the Mahalanobis distance from the first cluster mean to thesecond cluster and

r1

2
the Mahalanobis distance from the second cluster mean to thefirst cluster,d12 is a

measure of the inter-cluster distance.

d12 =
r2

1
· r1

2

r2

1
+ r1

2

= d21 (6)

A unitary inter-cluster distance is equivalent to a Euclidean distance between the two
cluster means which is equal to the sum of the standard deviation of the projected mul-
tivariate cluster data on the axis connecting the two cluster means.



4 Results and Discussion

To show the performance of our method for clustering controller trajectories, we ac-
quired 200 trajectories (100 for each controller presentedin Table 1) on the two circuits
(Figure 2 and 2(b)). The trajectories were then re-sampled with 100 points per trajec-
tory, using the gate selection criterion with more gates in the curves (SM-B). Then, we
model all the trajectories using the PDM presented in Section 3. Figure 5 shows the lo-
cations of the 200 trajectories in the space formed by the first two modes of the PDM for
each of the two circuits; two clusters can be easily differentiated. The clear separation
of the controllers shows the benefit of the PDM modeling of thetrajectories. The intrin-
sic variance of the controllers is smaller than the distancebetween them. Therefore the
trajectories can be clustered and hence classified.

4.1 Analysis Using the First two Modes of the PDM
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Fig. 5. Projection of all the trajectories in the space of the first two deformation modes of the
PDM for the first (left) and the second (right) circuit. The ellipse of unitaryMahalanobis distance
is also plotted for each controller

The separation of the first 2 clusters is narrower for the second circuit than the
first. The lack of curves and the predominance of straight lines reduce the number of
obstacles and therefore the number of controller reactionsfrom which the PDM trans-
formation can extract its data. As their straight movementsare equivalent, it becomes
more difficult to detect differences and therefore classifythe two controllers. If we cal-
culate the inter-cluster distance as presented in section 3.1, d = 4.3 for the first circuit
andd = 2.4 for the second circuit.

4.2 Prototype Trajectories

Figure 6(a) displays the mean of each controller’s trajectories. These trajectories are
prototypes of each controller. Slight differences appear at certain places in the circuit;
these are the places where the controllers can be differentiated.
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Fig. 6. On the left, prototype trajectory of the two controllers on the first circuit. On the right,
synthetic trajectories resulting from a contribution of 5 to one of the first two modes (first circuit)

Figure 6(b) shows the synthetic trajectories resulting from a positive or negative
contribution of value 5 to the first or the second deformationmode for the first circuit.
In the straight section on the right side of the circuit, we can see that the first mode is out
of phase with the second mode, such that they alternate. The second mode corresponds
to major trajectory variations in the straight section along the bottom of the circuit.

4.3 Variation of the Trajectory Sampling Methods and Number of Points

To evaluate the number of gates needed to achieve a good classification of the trajec-
tories, we calculate the inter-cluster distance as a function of the number of sampling
gates (from 3 to 500) for the three sampling methods described in section 2.1 and for
both circuits. Figures 7(a) and 7(b) present the results of our experiments. We can see
that a very small number of gates (3) is insufficient to separate the two controllers.
Increasing the number of gates results in a fast gain in cluster separability, until we
reached 50 gates. After this point, it has hardly any effect on the analysis, aside from
requiring additional computational power for calculatingthe PCA. We can also see that
the three gate placement strategies (equidistant, more in the curves, more in the straight
sections) do not have the same influence on clustering performance. Placing gates in the
straight sections is clearly the worst solution, while using gates in the curves is clearly
the best solution for our experimental setup. Equidistant gates yield a solution in be-
tween the other two, but are clearly not so good as emphasizing the curves. This result
can be directly traced to the structure of the controllers. They have the same behavior
in the straight sections, where there is no interaction withthe walls. Curves imply more
interaction with the walls, and therefore elicit more behavioral differences between the
two controllers. It can be foreseen that if the controllers had the same behavior in the
curves, but different in the straight sections, the performance would be inverted. As an-



other result of the controller’s structure, the separability of the clusters on the second
circuit is clearly worse than on the first, because there are not as many curves to separate
the behavior of the two controllers.
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Fig. 7. Variation of the inter-cluster distance based on the first two modes as a function of the
number of sampling gates, for the three methods presented in 2.1 and for two circuits (circuit 1
on the left and circuit 2 on the right)

4.4 Variation of the Robot Hardware and Software Parameters

To complete the performance evaluation of our method, we analyze the influence of
possible system design choices on the resulting analysis: the controller reactivity, the
overall robot speed, and the sensory range. For these experiments, we report only re-
sults obtained using Controller 2 for sake of clarity. Referring to Table 1, the reactivity
corresponds toK and the overall speed toV .

Figure 8(a) shows the analysis of the variation of the sensory range from 2 to 20
centimeters. The real range of the sensors (5 cm) is shown with the small lines in Figure
1. For ranges of 10 centimeters and above, the robot will almost always be able to see
both walls at the same time. Therefore, the variability of the controller will decrease
significantly, as the robot will follow a path in the middle ofthe lane. Naturally, the
greater the sensory range, the smaller the variability of the controller. The different
sensory ranges are mainly separated using the first deformation mode in Figure 8(a):
one variation axis (sensory range) corresponds to one dimension for classifying the
different clusters.

Figure 8(b) shows the clustering of the reactivity of the controller. The factorK
varies between 0.25 and 4, the reactivity increasing withK. If K is small, the robot
avoids the wall with more inertia and thus oscillates much more. As as result, the dis-
persion of trajectories in the mode space is much greater, ascan be seen in Figure 8(b).
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Fig. 8. On the left, analysis of the variation of the sensory range from 2 to 20 cm. On the right,
analysis of the variation of the controller weights (K), for a sensory range of 20 cm
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Fig. 9. Analysis of the variation of the overall robot speed (K), for sensory range of 20 cm



With a sensory range of 5 centimeters andK = 0.25, the robot was not able to avoid
colliding with the walls anymore. Therefore, this experiment was made with a sensory
range of 20 centimeters (V = 1).

Figure 9 shows the result of the variation of the overall robot speed factorV . Sim-
ilarly to the previous experiment, with the robot overall speed increased (V = 4), the
robot was not able to avoid walls with a sensory range of 5 cm. Therefore, this experi-
ment was performed with a sensory range of 20 cm. As with a human driver, an increase
in the overall speed means that the robot pass closer to the walls before avoiding them,
resulting in larger oscillations. This variability can be seen in Figure 9.

5 Conclusion and Perspectives

We have presented a method for using a PDM to analyze a robot’sbehavior from its
trajectory on a closed circuit. Applied to trajectories of the same simulated robot driven
by two different reactive controllers, it shows a complete separation of the controllers
in the space of the first two deformation modes of the PDM. The controller clusters
can be separated by a line, affording an easy classification of the trajectories. Quality of
separation depends on the sampling method, the circuit characteristics, and the software
and hardware parameters of the robot. The analysis of the prototype trajectory of each
controller shows the main differences between the controllers. Variation in three other
parameters, such as the robot speed, the controller reactivity, and the sensory range,
implies that all of these parameters can be clustered with our method.

Even though the clustering method is not sophisticated (Principal Component Anal-
ysis is a common tool), the fact that behavioral features canbe distinguished makes
it very interesting. So far, only one variation axis has beenanalyzed at a time (cir-
cuit shape, controller description, sensory range, controller reactivity, and overall robot
speed). This kind of experiment affords us to separate the trajectories using only the
first two dimensions of the PDM. More complex setups might need more than two di-
mensions to achieve good clustering of the trajectories. Finding two combinations of
hardware and software that provide different trajectorieswhich can not be separated
with our method would help us to understand its limitations.However, our goal is not
to distinguish two different implementations of the same behavior, but rather to classify
different behaviors.

To validate the results obtained with the trajectories of the robot simulated in We-
bots, we will create a similar circuit with a real robot, using a vision-based tracking
system. The same analysis will be applied to real trajectories and results will be com-
pared with the results gathered in simulation. Another challenge will be to extend our
method to trajectories not bound to a closed circuit. The ultimate goal will be to model
robot trajectories in an open space.

5.1 Acknowledgments

Pierre Roduit and Alcherio Martinoli are currently sponsored by two Swiss National
Foundation grants (Nr. 200021-105565 and PP002-68647 respectively).



References

1. M. Bertini, A. Del Bimbo, and W. Nunziati. Highlights modeling and detectionin sports
videos.Pattern Analysis and Application, 7(4):411–421, 2005.

2. T. Cootes, C. Taylor, and D. Cooper. Active shape-models - their training and applications.
Vision and Image Understanding, pages 38–59, 1995.

3. Yuri Lopez de Meneses, Pierre Roduit, Florian Luisier, and Jacques Jacot. Trajectory analysis
for sport and video surveillance.Electronic Letters on Computer Vision and Image Analysis,
5(3):148–156, 2005.

4. M. Egerstedt, T. Balch, F. Dellaert, F. Delmotte, and Z. Khan. What are the ants doing
? vision-based tracking and reconstruction of control programs. pages 4193–4198. IEEE
International Conference on Robotics and Automation, IEEE Computer Society, April 2005.

5. W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adaptive tracking to classify
and monitor activities in a site. pages 22–29. Conference on Computer Vision and Pattern
Recognition, IEEE Computer Society, June 1998.

6. A. T. Hayes, Alcherio Martinoli, and R. M. Goodman. Distributed odor source localization.
In Gardner J. W. Nagle H. T. and Persaud, editors,Special Issue in Artificial Olfaction,
volume 2, pages 260–271. IEEE Sensors Journal, 2002.

7. J. Jackson. Principal components and factor analysis: part 1.Journal of Quality Technology,
12:201–213, October 1980.

8. Nail Johnson and David Hogg. Representation and synthesis of behaviour using gaussian
mixtures.Image and Vision Computing, 20:889–894, 2002.

9. Olivier Michel. Webots: Professional mobile robot simulation.Journal of Advanced Robotics
Systems, 1(1):29–42, 2004.

10. Ulrich Nehmzov. Quantitative analysis of robot-environment interaction towards ”scientific
mobile robotics”.Robotics and Autonomous Systems, 44:55–68, 2003.

11. J. Owens, A. Hunter, and E. Fletcher. Novelty detection in video surveillance using hierar-
chical neural networks.Lecture Notes in Computer Science, 2415:1249–1254, 2002.

12. Fatih Porikli. Learning object trajectory patterns by spectral clustering. volume 2, pages
1171–1174. IEEE Conference on Multimedia and Expo, IEEE, June 2004.

13. P. Remagnino, T. Tan, and K. Baker. Agent orientated annotation inmodel based visual
surveillance. page 857. Sixth International Conference on Computer Vision, IEEE Computer
Society, 1998.

14. C. Sas, G. O’Hare, and R. Reilly. A performance analysis of movement patterns.Lecture
Notes in Computer Science, 3038:954–961, 2004.

15. C. Sas, G. O’Hare, and R. Reilly. Virtual environment trajectory analysis: a basis for naviga-
tional assistance and scene adaptivity.Future Generation Computer Systems, 21 (7):1157–
1166, Jul 2005.
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