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Abstract. In recent years, the advent of robust tracking systems has ertadsled
havioral analysis of individuals based on their trajectories. An analysthod
based on a Point Distribution Model (PDM) is presented here. It is anpans
vised modeling of the trajectories in order to extract behavioral featliresap-
plicability of this method has been demonstrated on trajectories of a realistically
simulated mobile robot endowed with various controllers that lead to differe
patterns of motion. Results show that this analysis method is able to clearly clas
sify controllers in the PDM-transformed space, an operation extreniilgudt

in the original space. The analysis also provides a link between the behanid
trajectory differences.

1 Introduction

The development of vision-based tracking systems bringsitadmn easy way to extract
trajectory data. Consequently, an ever-increasing nurabdomains are using it for
behavior and trajectory analysis, like video surveillafide 13, 5, 12, 8], sports analysis
[1] and ethology [4]. Behavioral analysis has also been @onleuman trajectories in a
virtual environment [14, 15] or on autonomous-robot tragees [16, 17, 10]. All these
applications aim to classify an individual from its trajet, to analyze the movement
differences between individuals, or to create a motion rhofi@nimals or insects.

This paper addresses the development of tools to analyzadtien of robots, or
more generally people or animals, by means of their traj@mstoAs we will explain
in further detail, robots were chosen as trajectory genesdor their repeatability and
behavioral controllability which natural being are ladkiof. For the analysis, we use
a Point Distribution Model (PDM) [2], a kind of deformablentelate. This model was
often used to detect object shapes in an image, but it canbalssed for trajectory
modeling [3]. It is able to take into account spatial and terapinformation, but in our
experiments we focused on purely spatial analysis. We are imterested in the way
the individual is moving and not by the time it needs to travgiven distance.

The paper is organized as follows. In section 2, the experiahenethod used will
be presented, followed in the next section by a descriptifoth@ Point Distribution
Model. Section 4 will present the results and a discussidircloise the paper.



Fig. 1. Image of the simulated mobile robot, with its 8 infrared sensors (SO to Sifarwheels
(A0 and Al). The two walls of the circuit can also be seen

@ (b)

Fig. 2. The two circuits simulated in Webots (1 on the left, 2 on the right)



2 Experimental Method

In order to collect hundreds of trajectories in a very shonetand perform a first
exploration of PDMs as tool for behavioral analysis, we hdeeided to work with
mobile robots. They may be embedded in a physical envirohinghe same way as
natural creatures, but are more easily programmed to peoteeatable behaviors.
Moreover, they can be small and therefore the experimeatapscan easily fit into a
room and simple video tracking systems can extract theitipos. Finally, their behav-
ioral repertoire can be quite rich and their controllers aalnieve fairly high degrees of
complexity, spanning from purely reactive to more delitigeabehaviors.

In order to further speed up the trajectory generation, weezhout our experi-
ments using a simulated, miniature differential-wheelotadndowed with eight prox-
imity sensors (Fig. 1). We simulated it iWebotd9], a realistic simulator reproducing
individual sensors and actuators with noise, nonlinesjtand dynamic effects such as
slipping and friction. The resulting simulation is suffictly faithful for the controllers
to be transferred to real robots without changes and forithalated robot behaviors
to be very close to those of the real robots, as shown in dguenéous papers (see for
instance [6]).

Figure 2 shows the shapes of the two circuits used for ourlaiion. They share
common features such as being characterized by only onextaha closed loop, how-
ever, the length and curvature differ between them. We ueecinguits for our experi-
ments in order to test the validity of our analysis.

Table 1. Description of the two controllers used for the experiments

Controller 1 Controller 2

If S <T={1=V, |9 =308
Elseif Y58 < T = {4°=" |8 = X5 Si

Ag=V K-(S;—S,r

Else {41=v Ao =V {1+ 2»((Sll+57‘))
_ K-(Sr—51)

A=V (1+ 2»(Sl+S,.l)

So ... S5 are the robot sensors as shown in Figure 1
(back sensorss and.S7 are not used in either of the controllers)
Ap and A, are the robot actuators as shown in Figure 1
T is a constant threshold value

V' is a parameter modifying the robot's overall speed
K is a parameter modifying the robot’s reactivity

We simulate the robot moving continuously within the twauits, extracting each
lap as a separate trajectory. Since a lap does not begin drat #re same point, it adds
variability to the trajectories. Two different reactiventmllers were implemented to
drive the robot on the circuits. The two controllers moveusighthe track at the same
average speed, but using different methods of avoiding s wrhe first controller



was rule-based (“if a wall is too close in front, turn awayrfr¢he wall, otherwise go

straight”). The second controller is essentially a Braiteng vehicle and linearly adjusts
its trajectory as a function of its proximity to a wall on theftlor the right side. The

robot was moving clockwise in both circuits. Both contradleontinuously calculate
the perception-to-action loop every 32 ms. The descrigifdhe two controllers can be
found in Table 1. The two controllers were chosen for themrmicity, but the analysis

has very few limitations and could easily be used with moragiex controllers.
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Fig. 3. 6 trajectories (3 for each controller) of the robot’s movement simulatetti® 2 circuits

From this description, we can see that Controller 1 is chiarged by essentially
two discrete behaviors: go straight or turn in place. Cdler@ makes much smoother
turns and its overall behavior changes as a function of thudce to the left or right
wall. Figure 3 shows three trajectories per controller arhezf the two circuits. Slight
differences can be seen between the two controllers; fanpbke Controller 2 makes
more zigzags than Controller 1 (even if its turns are smaptheirns more often than
Controller 1). At first glance, it is not so easy for the humge ® differentiate between
the raw trajectories.

2.1 Trajectory Sampling

In order to apply thdPoint Distribution Modelpresented in section 3, each trajectory
must be sampled with the same number of points. For our pusveéaperiments, pre-
sented in [3], the sampling of the trajectories was done lii#is orthogonal to a ref-
erence trajectory that needed to be chosen. However, thissois cumbersome and
limits the number of sampling points. Therefore, we devetba new sampling method-
ology based on the circuit instead of a reference trajecidrg inner and outer wall of



the circuit were modeled with b-splines and sampling gatesewreated as orthogo-
nal as possible to the two walls. A fixed number of gates was iedected based on
three different criteria: the distance between gates (8agplethod A), the curvature

(SM-B), and the linearity of the circuit (SM-C). The first tEniion selects gates that
are equidistant from each other (the distance is measuteeée the midpoints of the
gates), the second places more gates in the curves (as shévguie 4(a)), and the last
places more gates in the straight sections (Figure 4(b)}. Mikthod allows us to very
easily modify the number of gates per circuit. The perforogaof the three placement
strategies will be compared in Section 4.3.

Y coordinate
Y coordinate

X coordinate X coordinate

@ (b)

Fig. 4. Sampling of the trajectory with gates as orthogonal to the wall as possiblenwithgates
in the curves (SM-B, left) and more gates in the straight lines (SM-C, right)

3 Modeling of the Trajectories

We have slightly modified the representation we used in [3dcommodate the new
sampling method presented above. Each trajedtasyrepresented as an ordered set of
N points corresponding to the intersections of the trajgctath the sampling gates.
Each point can be expressed as the linear position osthheampling gater’. Each
positiont¥ has a value betweeh(the inner wall) and (the outer wall). Therefore the
trajectoryr;, can be expressed as:

Tk:[’]T]f...’]T’X/]T. (1)
The covariance matrix of the trajectories is
1 K
S=——> (m-)(m-7"=P-A- P, )

K-1
k=1



where P = [P;...P.... Pg] is the matrix of the eigenvectorB., A the diagonal
matrix containing the eigenvalues 8f K is the number of trajectories in the set, and
whereR = min(2N, K) — 1 is the number of degrees of freedom of the set.

Each trajectoryry in the set can be decomposed into an average trajectory and a
linear combination of deformation modes:

T =7+P B &)
By =P ! (r, — 7). (4)

Equations 3 and 4 correspond to the projection from the dedtion spacef;) to
the trajectory space{) and the projection from the trajectory space to the deftiona
space, respectively.

The computation of matri¥? corresponds to the Principal Component Analysis
(PCA) [7] of the trajectory set. The first vectdY corresponds to the direction of maxi-
mal variance in the trajectory space. The second vdéiaorresponds to the direction
of maximal variance orthogonal tB,. The other vectors are found likewise. In most
cases, this construction implies that most of the defomnatinergy will be contained
in the first few deformation modes.

The Point Distribution Model[2] affords the transformation from the space of the
trajectories £;) to the space of the modeBy).

3.1 Inter-cluster Distance

In this section we will describe the inter-cluster measueeused for our experiments.

Multivariate normal data tends to cluster about the meatovec,;, s, falling in
an ellipsoidal cloud whose principal axes are the eigevedf the covariance matrix.
The Mahalanobis distance, takes into account the covariance of the clusigr, .;c,,
to calculate the distance from a poikitto a cluster.

r= \/(X - Mcluster)T : Scl'u.ster_1 . (X - lffcluster) (5)

If normal data is projected on a unidimensional axis, a upidahalanobis distance
is equivalent to a Euclidean distance of the square rootetitita variance along this
axis (standard deviation). Thus, the points of unitary Maiabis distance to a cluster
forms a ellipsoid.

As a measure of distance between two clusters, we can use l@iraiian of the
two Mahalanobis distances; from the mean of one clusteregather, and vice versa.
If 7 is the Mahalanobis distance from the first cluster mean tsétend cluster and
ri the Mahalanobis distance from the second cluster mean tiirsheluster,d» is a
measure of the inter-cluster distance.

2, .1
Ty -To

dio = 5—=
r?+rd

= da1 (6)

A unitary inter-cluster distance is equivalent to a Eudidelistance between the two
cluster means which is equal to the sum of the standard dmviet the projected mul-
tivariate cluster data on the axis connecting the two ctustans.



4 Resultsand Discussion

To show the performance of our method for clustering colgrdtajectories, we ac-
quired 200 trajectories (100 for each controller presemd@ble 1) on the two circuits
(Figure 2 and 2(b)). The trajectories were then re-sampléid 100 points per trajec-
tory, using the gate selection criterion with more gate®©endurves (SM-B). Then, we
model all the trajectories using the PDM presented in Se@&id-igure 5 shows the lo-
cations of the 200 trajectories in the space formed by thtficsmodes of the PDM for
each of the two circuits; two clusters can be easily difféegad. The clear separation
of the controllers shows the benefit of the PDM modeling otthgctories. The intrin-
sic variance of the controllers is smaller than the distdreteveen them. Therefore the
trajectories can be clustered and hence classified.

4.1 AnalysisUsing the First two M odes of the PDM
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Fig.5. Projection of all the trajectories in the space of the first two deformationesiodl the
PDM for the first (left) and the second (right) circuit. The ellipse of unitdghalanobis distance
is also plotted for each controller

The separation of the first 2 clusters is narrower for the seéaorcuit than the
first. The lack of curves and the predominance of straiglgslireduce the number of
obstacles and therefore the number of controller reacfimns which the PDM trans-
formation can extract its data. As their straight movemanésequivalent, it becomes
more difficult to detect differences and therefore clastig/two controllers. If we cal-
culate the inter-cluster distance as presented in sectigi 3= 4.3 for the first circuit
andd = 2.4 for the second circuit.

4.2 Prototype Trajectories

Figure 6(a) displays the mean of each controller’s trajgeso These trajectories are
prototypes of each controller. Slight differences appé¢aegain places in the circuit;
these are the places where the controllers can be diffatedti
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Fig. 6. On the left, prototype trajectory of the two controllers on the first circuit. Gnright,
synthetic trajectories resulting from a contribution of 5 to one of the first twdems (first circuit)

Figure 6(b) shows the synthetic trajectories resultingnfr@ positive or negative
contribution of value 5 to the first or the second deformatimrde for the first circuit.
In the straight section on the right side of the circuit, we sae that the first mode is out
of phase with the second mode, such that they alternate.éidomd mode corresponds
to major trajectory variations in the straight section gléime bottom of the circuit.

4.3 Variation of the Trajectory Sampling M ethods and Number of Points

To evaluate the number of gates needed to achieve a goodicktsm of the trajec-
tories, we calculate the inter-cluster distance as a fanatf the number of sampling
gates (from 3 to 500) for the three sampling methods degtiibeection 2.1 and for
both circuits. Figures 7(a) and 7(b) present the resultaiokegperiments. We can see
that a very small number of gates (3) is insufficient to sefeatlae two controllers.
Increasing the number of gates results in a fast gain in elustparability, until we
reached 50 gates. After this point, it has hardly any effecth@ analysis, aside from
requiring additional computational power for calculatthg PCA. We can also see that
the three gate placement strategies (equidistant, mohe icurves, more in the straight
sections) do not have the same influence on clustering pesfaze. Placing gates in the
straight sections is clearly the worst solution, while gsyates in the curves is clearly
the best solution for our experimental setup. Equidistateg yield a solution in be-
tween the other two, but are clearly not so good as emphasitaecurves. This result
can be directly traced to the structure of the controllereyThave the same behavior
in the straight sections, where there is no interaction thighwalls. Curves imply more
interaction with the walls, and therefore elicit more babeal differences between the
two controllers. It can be foreseen that if the controllems the same behavior in the
curves, but different in the straight sections, the pertoroge would be inverted. As an-



other result of the controller’s structure, the separgbdf the clusters on the second
circuit is clearly worse than on the first, because there arasimany curves to separate
the behavior of the two controllers.
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Fig. 7. Variation of the inter-cluster distance based on the first two modes asctdinmf the
number of sampling gates, for the three methods presented in 2.1 ratwebfoircuits (circuit 1
on the left and circuit 2 on the right)

4.4 Variation of the Robot Har dwar e and Softwar e Parameters

To complete the performance evaluation of our method, wéyaadhe influence of
possible system design choices on the resulting analysscdntroller reactivity, the
overall robot speed, and the sensory range. For these mgu@s, we report only re-
sults obtained using Controller 2 for sake of clarity. Refey to Table 1, the reactivity
corresponds td and the overall speed 16.

Figure 8(a) shows the analysis of the variation of the sgnsammge from 2 to 20
centimeters. The real range of the sensors (5 cm) is shovrtirdtsmall lines in Figure
1. For ranges of 10 centimeters and above, the robot will siralvays be able to see
both walls at the same time. Therefore, the variability & dontroller will decrease
significantly, as the robot will follow a path in the middle tife lane. Naturally, the
greater the sensory range, the smaller the variability efdbntroller. The different
sensory ranges are mainly separated using the first defiommabde in Figure 8(a):
one variation axis (sensory range) corresponds to one dimreror classifying the
different clusters.

Figure 8(b) shows the clustering of the reactivity of thetoalfer. The factork
varies between 0.25 and 4, the reactivity increasing \ithif K is small, the robot
avoids the wall with more inertia and thus oscillates muchiemés as result, the dis-
persion of trajectories in the mode space is much greategrabe seen in Figure 8(b).
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Fig. 8. On the left, analysis of the variation of the sensory range from 2 to 20 enth©right,
analysis of the variation of the controller weighfs), for a sensory range of 20 cm
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With a sensory range of 5 centimeters did= 0.25, the robot was not able to avoid
colliding with the walls anymore. Therefore, this experimme&as made with a sensory
range of 20 centimeterd/(= 1).

Figure 9 shows the result of the variation of the overall tapeed factof’. Sim-
ilarly to the previous experiment, with the robot overalésd increased{ = 4), the
robot was not able to avoid walls with a sensory range of 5 dmerdéfore, this experi-
ment was performed with a sensory range of 20 cm. As with a hudriger, an increase
in the overall speed means that the robot pass closer to tehefore avoiding them,
resulting in larger oscillations. This variability can bees in Figure 9.

5 Conclusion and Per spectives

We have presented a method for using a PDM to analyze a rdietavior from its
trajectory on a closed circuit. Applied to trajectoriestod same simulated robot driven
by two different reactive controllers, it shows a completparation of the controllers
in the space of the first two deformation modes of the PDM. Tdwroller clusters
can be separated by a line, affording an easy classificatithre drajectories. Quality of
separation depends on the sampling method, the circuiacteaistics, and the software
and hardware parameters of the robot. The analysis of thetppe trajectory of each
controller shows the main differences between the coetmlMariation in three other
parameters, such as the robot speed, the controller rigcimd the sensory range,
implies that all of these parameters can be clustered witmathod.

Even though the clustering method is not sophisticateaifral Component Anal-
ysis is a common tool), the fact that behavioral featureshmdistinguished makes
it very interesting. So far, only one variation axis has baealyzed at a time (cir-
cuit shape, controller description, sensory range, ctiatn@activity, and overall robot
speed). This kind of experiment affords us to separate Hjectiories using only the
first two dimensions of the PDM. More complex setups mightneere than two di-
mensions to achieve good clustering of the trajectoriesdiRg two combinations of
hardware and software that provide different trajectoviasch can not be separated
with our method would help us to understand its limitatiddewever, our goal is not
to distinguish two different implementations of the samkawor, but rather to classify
different behaviors.

To validate the results obtained with the trajectories efritbot simulated in We-
bots, we will create a similar circuit with a real robot, ugia vision-based tracking
system. The same analysis will be applied to real trajezgcaind results will be com-
pared with the results gathered in simulation. Anotherlehgke will be to extend our
method to trajectories not bound to a closed circuit. Thienalte goal will be to model
robot trajectories in an open space.
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