
On Embedding Domain-specific Languages with User-friendly
Syntax

Gilles Dubochet

École polytechnique fédérale de Lausanne, Switzerland

Abstract

I present ZyTyG, a strategy to define domain-specific
languages with a user-friendly syntax. This strat-
egy does not requires any pre-processor or meta-
programming facility and only relies on features pro-
vided by the object-oriented host language. I describe
its application to ScalaDBC, a database library with
an embedded DSL to encode queries in SQL-like syn-
tax and that uses this strategy.

1 Introduction

Domain-specific languages (DSL) [10, 6] can be im-
plemented as stand-alone languages with a native in-
terpreter or compiler. Since this is time-consuming,
DSL designers often prefer extending an existing
general-purpose language with the domain-specific
additions — the DSL is “embedded” in the host lan-
guage and called a “DSEL” [5]. Embedding a DSL is
not trivial. Most languages support easy extension
by importing a library of pre-written code. Chang-
ing the semantics or syntax, on the other hand, is
difficult: DSEL designers often use generative pro-
gramming such as meta-programming [9, 4], C++
template macros [1, 4] or custom pre-processors [3, 2]
to rewrite the domain-specific syntax.

This paper describes “zygotic type-directed
growth” (ZyTyG), a new strategy to embed DSLs
with a custom syntax and without using generative
programming. The syntax allowed for the DSEL is
limited, but is well suited for user-friendly DSLs that
use many “decorative” tokens to improve legibility.

SQL is a typical example of such a DSL. The
ZyTyG host language must be object-oriented and
support a small set of behaviours (in particular
implicit coercions, also called views) found in some
statically-typed languages.

This strategy is then used to implement ScalaDBC,
a database library with a DSEL to encode queries
in SQL-like syntax. ScalaDBC is implemented in
the Scala programming language [8, 7], an object-
oriented language suitable for applying ZyTyG.

The rest of the paper is organised as follows. Sec-
tion 2 presents the key ideas of ZyTyG. Section 3
presents ScalaDBC, a real-life library based on Zy-
TyG. Section 4 describes some research directions
that might lead to broaden ZyTyG’s applicability.

2 ZyTyG
ZyTyG is the strategy I propose for designing DSELs
in object-oriented languages. The three key ideas are
outlined below.

Idea 1: strings of identifiers. This idea re-
quires the host language to support method-as-
infix-operator syntax. This allows writing expres-
sions like “e1 opa e2 opb e3” where “e” are expres-
sions of the host language, and “op” are opera-
tors. These are converted to chains of method calls
like “(e1.opa(e2)).opb(e3)”. Operators, effectively
methods, are any legal method identifier in the host.
Expressions are any host construct, including name
identifiers. This allows writing any string of identi-
fiers, a first step towards embedding a DSL.



Idea 2: building domain-specific data. The
first host expression in a string of identifiers serves
as a “zygote” from where the rest of the expression
will grow. This host expression is an instance of a zy-
gote class whose supported methods have the names
of all tokens allowed immediately to the right of it.

As an example, I will use the SetDSL language.
SetDSL has expressions like “set1 join set2” or
“set1 union set2” where “join” and “union” are
keywords. “set1” is the zygote and is a member of
the following class in the host language’s perspective.

class SetZygote {
SetZygote union (SetZygote right) {...}
SetZygote join (SetZygote right) {...}

}

Since the two methods return a “SetZygote” also,
one can chain further operators to write expressions
like “(set1 join set2) union set3”.

This provides for constant syntax, where “union”
and “join” can be used, from a syntactic point of
view, interchangeably as operators. Richer syntax
requires new zygote classes for every point in the ex-
pression that accepts a different set of tokens immedi-
ately on its right. As for the first zygote, these classes
will define for each right-hand token a method named
like the token. By selecting the appropriate zygote
class as the return type for those methods, the tokens
allowed immediately right of the next zygote are cho-
sen. In other words, the syntax of the DSEL (that is
the order in which tokens can be used) is defined by a
type-directed path from the leftmost zygote through
zygote methods.

For example, SetDSL is extended to define or-
derings on set data like “select randomised set1
join set2” where the ordering always starts the ex-
pression. This can be encoded in the host by defining
the following.

class SelectZygote {
SetZygote ordered (SetZygote right) {...}
SetZygote randomised (SetZygote right) {...}

}
SelectZygote select = new SelectZygote()

The methods’ return value means that the rest of the
expression will use the syntax defined in “SetZygote”.

Idea 3: from general-purpose to domain-
specific, and back again. This idea requires
views to be available in the host language. A view is
a function that converts values of some type to values
of another. An expression “x.f(y)” where either

1. the type of “y” is not compatible with the ex-
pected parameter for “f” or

2. the type of “x” does not support method “f”

will have the compiler automatically apply a view re-
spectively to “y” and “x” if it allows successful typing.

In the host language’s perspective, a DSEL expres-
sion is an instance of its last zygote class. Executing
it should return a value that can be used as a normal
value in the host language. The reverting view con-
verts zygotes that can end the DSEL expression to
native host values, executing the DSEL expression.
If the host expression refers to the result, it will be
as a host-language value, triggering the application
of the view and executing the DSEL expression.

For example, say that the SetDSL expressions
now return the host language’s sets that con-
tain an “iterator” method. “(select ordered
set1).iterator” is a valid expression that demon-
strates the seamless transition from DSEL to host.
The compiler will insert a call to the reverting view
around the SetDSL expression just before “iterator”
is called.

On the other hand, if an expression in the DSEL
expression is a value of the host language, it is not
a zygote required to build-up the expression. Views
from relevant host language values to the correspond-
ing zygote are defined to convert them from the host
language universe to the DSEL’s universe.

For example, consider that the sets in SetDSL
really are database tables defined by their name
(a string) like in “select ordered "table1" join
"table2"”. However, since “join” is not defined on
strings, “"table1"” must not be a string. A view
from string to “SetZygote” will automatically be ap-
plied to convert the string to a zygote.

The mechanism used in zygotes to build-up the
data structure used by the reverting view is beyond
the scope of this article. The exact mechanism de-
pends on the complexity of the DSL being parsed. A



simple language might build-up the value after each
operator call. A more complex language might re-
quire building a token-stream first and then parsing
it using standard compiler techniques when the re-
verting view is applied.

Of course, ZyTyG is too simple not to be limited.
In particular the fact that every second identifier
must be a static method name is a major limitation.
If at a given expression point a list of expressions is
expected, they must either be explicitly encoded as
host language lists, or separated by operators such as
“and”. Another limitation is that identifiers must be
legal method names in the host. In particular, they
cannot be tokens of the host language. That means
many of the “good” identifiers — while, if, class,
new, etc. — are already taken.

3 The ScalaDBC library
ScalaDBC is a wrapper around the JDBC database
library and part of the Scala standard library. Unlike
JDBC, ScalaDBC has to keep queries as native data
structures — as opposed to strings. SQL’s syntactic
elements are bound to classes whose members are the
sub-elements, effectively building a syntax tree for
queries. However, writing this directly is verbose and
unintuitive. For example, the query “SELECT * FROM
persons” looks as follows:

statement.Select {
val setQuantifier = None
val selectList = Nil
val fromClause = List(statement.Relation {
val tableName = "persons"
val tableRename = None

})
val whereClause = None
val groupByClause = None
val havingClause = None

}

A small library — effectively a ZyTyG DSEL —
allows writing queries with SQL syntax. The pre-
vious query is then written as “select () from
"persons"”.

ScalaDBC support a considerable subset of SQL
(1999 ISO), most of it with the DSEL syntax. This
allows writing queries such as:

select (
"age" is smallint,
"name" is clob,
"salary" is int )

from ("persons" naturalJoin "employees")
where (
"gender" == "M" and
("city" == "lausanne" or "city" == "geneva"))

orderBy "age"

4 Open Issues

Exactly what syntactic tricks a language should sup-
port for hosting DSELs is an open issue. I have
shown that method-as-infix-operator is limited, but
sufficient for many realistic situations. Improving the
set of syntactic tricks might make the ZyTyG strat-
egy practical for general DSEL development.

Using views to improve DSELs is an exciting idea.
Unfortunately, views make debugging more difficult.
Since views are applied transparently by the com-
piler, the semantics of the executed expression dif-
fer from that of the original expression. It becomes
worse with malformed DSEL expressions: zygotes,
which are certainly not designed for user consump-
tion, tend to show-up in error messages. Improving
debugging for ZyTyG expressions, and for languages
that support views in general, is an open issue.

The current strategy has the compiler type-check
the underlying zygotes, which proves nothing about
the safety of the DSEL expression they encode. An
open issue is whether a host supporting a rich type
semantics can relate the type-correctness of the en-
coding zygotes to the type-correctness of the DSEL
expression.

5 Conclusion

The ZyTyG strategy shows how some simple syntac-
tic properties in an object-oriented language permit
defining a user-friendly DSEL. Many DSLs have been
designed with such a syntax. Keeping the same syn-
tax when the DSL is embedded means the learning
curve can be reduced.



More generally, this paper shows how views can
fruitfully be applied to transparently convert data
and concepts between the DSEL and the host lan-
guage. Views very naturally define the boundaries
between two conceptual universes: a set of views is
a complete definition of such a boundary. Both the
scope of the boundary — through input and output
types of views — and the crossing rules — trough the
views’ semantics — are defined.

Let me conclude by the following two observa-
tions. Firstly, a DSEL can transparently integrate
with the host language without macro support. Sec-
ondly, DSEL designers that use an object-oriented
host language have much to gain from using a lan-
guage that supports views such as Scala.

References

[1] D. Abrahams and A. Gurtovoy. C++ Template
Metaprogramming, chapter 10–11. Addison-
Wesley, 2005.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis.
JTS: Tools for implementing domain-specific
languages. In Proceedings of the 5th Interna-
tional Conference on Software Reuse, pages 143–
153, 1998.

[3] M. Bravenboer and E. Visser. Concrete syn-
tax for objects: domain-specific language em-
bedding and assimilation without restrictions. In
Proceedings of the 16th Conference on Object-
Oriented Programming, Systems, Languages,
and Applications, pages 365–383, 2004.

[4] K. Czarnecki, J. O’Donnell, J. Striegnitz, and
W. Taha. DSL implementation in MetaOCaml,
template Haskell, and C++. In Proceedings of
the International Seminar on Domain-Specific
Program Generation, pages 51–72, 2004.

[5] P. Hudak. Building domain-specific embed-
ded languages. ACM Computing Surveys,
28(4es):196, 1996.

[6] M. Mernik, J. Heering, and A. M. Sloane. When
and how to develop domain-specific languages.
ACM Computing Surveys, 37(4):316–344, 2005.

[7] M. Odersky. The Scala Language Specification
2.0. École polytechnique fédérale de Lausanne,
Switzerland, March 2006.

[8] M. Odersky et al. An overview of the
Scala programming language. Technical Re-
port LAMP-REPORT-2006-001, École Poly-
technique Fédérale de Lausanne, 2006.

[9] O. Shivers. A universal scripting framework, or
Lambda: the ultimate “little language”. In Con-
currency and Parallelism, Programming, Net-
working, and Security: Proceedings of the Sec-
ond Asian Computing Science Conference, pages
254–265, 1996.

[10] A. van Deursen, P. Klint, and J. Visser. Domain-
specific languages. Technical Report SEN-
R0032, Centrum voor Wiskunde en Informatica,
2000.


